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Article history: Background & aims: B-hydroxy-B-methylbutyrate (HMB) is purported as a key nutritional supplement for

Received 30 May 2017 the preservation of muscle mass in health, disease and as an ergogenic aid in exercise. Of the two

Accepted 29 September 2017 available forms of HMB (calcium (Ca-HMB) salt or free acid (FA-HMB)) — differences in plasma
bioavailability have been reported. We previously reported that ~3 g oral FA-HMB increased muscle
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study was to quantify muscle protein metabolism responses to oral Ca-HMB.
Methods: Eight healthy young males received a primed constant infusion of 1,2 3C, leucine and *Hs
phenylalanine to assess MPS (by tracer incorporation in myofibrils) and MPB (via arterio-venous (A-V)
dilution) at baseline and following provision of ~3 g of Ca-HMB; muscle anabolic (MPS) and catabolic
(MPB) signalling was assessed via immunoblotting.
Results: Ca-HMB led a significant and rapid (<60 min) peak in plasma HMB concentrations
(483.6 + 14.2 pM, p < 0.0001). This rise in plasma HMB was accompanied by increases in MPS (PA:
0.046 + 0.004%/h, CaHMB: 0.072 + 0.004%/h, p < 0001) and suppressions in MPB (PA: 7.6 + 1.2 pmol Phe
per leg min~!, Ca-HMB: 5.2 + 0.8 pmol Phe per leg min~', p < 0.01). Increases in the phosphorylation of
mTORc1 substrates i.e. p70S6K1 and RPS6 were also observed, with no changes detected in the MPB
targets measured.
Conclusions: These findings support the pro-anabolic properties of HMB via mTORc1, and show that
despite proposed differences in bioavailability, Ca-HMB provides a comparable stimulation to MPS and
suppression of MPB, to FA-HMB, further supporting its use as a pharmaconutrient in the modulation of
muscle mass.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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stimulation of MPS [5] and an insulin mediated suppression of MPB
[6]. It has been known for ~25 y that essential amino acids (EAA) are
the primary nutrients driving increases in MPS after feeding [4,7],
with the branched chain amino acid (BCAA) leucine acting as an
anabolic ‘signal’ and being key to this effect [8,9]. However, as a
BCAA, leucine undergoes catabolism within muscle, metabolites of
leucine could therefore contribute to the anabolic responses to
leucine.

In the sarcoplasm and mitochondria, leucine is transaminated to
a-ketoisocaproate (o-KIC). The majority of a-KIC is transported to the
liver where it undergoes irreversible oxidation for the production of
the energy substrates acetoacetate and acetyl Co-A [10]. However, in
both muscle and liver, some o-KIC is metabolized via KIC-
dioxygenase (more commonly called 4-hydroxyphenylpyruvate
dioxygenase; HPD) to produce B-hydroxy-p-methylbutyrate (HMB)
[10,11], with a recent study in rats showing active conversion of 1C-
leucine to HMB in vivo, with appearance of C-HMB in both plasma
and urine following an oral dose of 'C Leucine [12]. Of all the leucine
metabolites formed, the efficacy of HMB in producing anabolic/anti-
catabolic effects is perhaps most compelling. HMB induces upregu-
lation of mTOR, p70S6K1, 4EBP1 and an associated increase in protein
synthesis in C2C12 murine myotubes [13], whilst also showing an
ability to suppress ubiquitin-proteasomal regulated MPB [14,15] and
inhibition of myonuclear apoptosis by antagonizing mitochondrial-
associated caspases [16]. In humans, HMB supplementation has
been shown to reduce muscle wasting in clinical populations (Cancer
[17], COPD [18], AIDS [19]), whilst also increasing lean body mass and
protein turnover chronically in ageing cohorts when supplemented
alongside the AAs arginine and lysine [20], in addition to attenuating
muscle loss during a period of 10 days of bed rest [21], however the
efficacy of HMB in these situations is confounded by the inclusion of
other AAs within the supplementation. Moreover, its efficacy as a
supplement for the preservation of muscle mass was recently high-
lighted in a meta-analyses [22], with a positive relationship also be-
ing identified between endogenous HMB concentrations and
appendicular lean mass and grip strength [23].

Much of the research to date regarding HMB has been per-
formed with the use of HMB in its calcium salt form (Ca-HMB),
however recently HMB in its free acid form (FA-HMB) has been
shown to provide improved bioavailability [24]. Indeed, pharma-
cokinetic studies have demonstrated that FA-HMB, independent of
the form of administration (i.e. gel [24], capsule [25] or dissolved in
water [25]), provided a greater plasma bioavailability compared
with Ca-HMB, with a greater and more rapid rise to peak plasma
HMB levels following administration [24,25]. Moreover, we have
recently shown that ~3 g oral FA-HMB robustly stimulates MPS (and
suppresses MPB independent of insulin) to a similar extent to 3 g of
leucine in young men [8]. Distinct bioavailability of Ca-HMB vs. FA-
HMB [25,26] could lead to distinct effects upon muscle protein
turnover, i.e. is there a relationship between plasma bioavailability
and the effects of HMB, which is crucial knowledge for research in
this area. The aim of this study was to independently investigate
the effect of oral Ca-HMB upon muscle protein metabolism, i.e.
stimulation of MPS and suppression of MPB, in relation to that
empirically seen with the more bioavailable FA-HMB form.

2. Materials and methods
2.1. Ethical approval

All studies were conducted in accordance with the Declaration
of Helsinki, with ethical approval obtained from the University of
Nottingham Ethics Committee. Volunteers were recruited from the
local Derbyshire area via postal advertisement. Following recruit-
ment and before inclusion in the project all volunteers were

additionally screened by a physician to exclude for any metabolic,
respiratory, cardiovascular/vascular or other symptoms of ill health.
All volunteers provided written informed consent before partici-
pation in the study.

2.2. Subject characteristics and study design

Young healthy male volunteers (n = 8, age 26 + 2 y, BMI
276 + 1.2 kg m~2) were recruited to participate in the study.
Volunteers were asked to refrain from heavy exercise for the 72 h
before the study. On the morning of the study (~08:30 h), following
an overnight fast volunteers had an 18 g cannula inserted into the
antecubital vein of one arm to enable tracer infusion, a retrograde
22 g cannula inserted to sample arterialized blood, and a femoral
vein cannulae to enable sampling of arterio-venous blood for MPB
(rate of appearance) measures. Following collection of the first
muscle biopsy, a primed, continuous infusion of [1,2-Cy]Leu
(0.7 mg kg~ ! prime, 1 mg kg h~! continuous infusion) tracer and L-
[ring-’Hs]-phenylalanine (0.3 mg kg~' prime, 0.6 mg kg h!
continuous infusion) (99 Atoms %, Cambridge Isotopes Limited,
Cambridge, MA-US) was started and maintained until the end of
the study (+2.5 h). During the first 2.5 h period we gathered
postabsorptive/fasted measurements, the volunteers then
consumed 3.42 g of Ca-HMB (equivalent to 2.74 g of FA-HMB)
dissolved in ~100 ml of water (Metabolic Technologies, Inc.,
Ames, 1A, USA), such that we were able to gather measures of the
effects of Ca-HMB on protein turnover over the subsequent 2.5 h
(see Fig. 1). Muscle biopsies (~150 mg) were taken from the mid
m.vastus lateralis, under sterile conditions using a local anesthetic
(1% lidocaine) and the conchotome technique [27]. Blood sampling,
for the measure of MPB via A-V balance and the quantification of
plasma HMB concentrations, was performed every 30 min.

2.3. Plasma phenylalanine and HMB analyses

Plasma phenylalanine was analysed as described in [28]. Plasma
was deproteinised with 1 ml ice cold ethanol following treatment
with urease. After incubation on ice for 20 min, samples were
centrifuged and supernatants evaporated to dryness under nitro-
gen. Following lipid extraction via ethyl acetate, samples were
derivatized as their t-BDMS esters before analysis via gas
chromatography-mass spectrometry (GC—MS). Plasma HMB was
extracted from plasma with ethyl ether, then back-extracted into
0.1 M phosphate buffer, dried and analysed by GC—MS as described
by Nissen et al. [29]. There was insufficient blood volume for
measurement of HMB at all time points.

2.4. Measurement of myofibrillar MPS

Muscle samples (~20—30 mg) were homogenised in ice cold
homogenisation buffer (50 mM Tris—HCl (pH 7.4), 50 mM NaF,
10 mM B-glycerophosphate disodium salt,1 mM EDTA, 1 mM EGTA,
1 mM activated Na3VOy4 (all Sigma—Aldrich, Poole, UK)), followed
by centrifugation (10,000g) to pellet the non-soluble components;
the pellet was washed with homogenisation buffer and solubilised
in NaOH to facilitate the separation of the soluble myofibrillar
fraction from the insoluble collagen fraction by subsequent
centrifugation. The soluble myofibrillar fraction was then removed
and precipitated using 1 M perchloric acid (PCA) and pelleted by
centrifugation. Following washing of the myofibrillar pellet with
70% ethanol, the protein-bound AA were released by acid hydrolysis
using 0.1 M HCl and 1 ml of Dowex ion-exchange resin (50W-X8-
200) overnight at 110 °C. AA were further purified by ion-exchange
chromatography on Dowex H' resin columns and derivatized to
their N-acetyl-N-propyl esters. The samples were analysed using
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Fig. 1. Study schematic for assessing the effects of Ca-HMB on human skeletal muscle metabolism.

gas chromatography combustion isotope-ratio mass spectrometry
(GC-C-IRMS) on a Delta Plus XL (Thermo Fisher Scientific, Hemel
Hempstead, UK) [30]. The fractional synthetic rate (FSR) of the
myofibrillar proteins was calculated using a standard precursor-
product method:

FSR (% h™1) = 6Em/Epx1/t x 100

where JE,, = the change in the [1,2—13C2]Leu enrichment in atoms
per excess (APE) between subsequent biopsies, separated by the
time period (t), and E, = the mean enrichment over the same time
period (t) of the precursor for protein synthesis, (plasma a-KIC was
used as a surrogate for leucyl-tRNA [31]), following derivatization
to its t-butyldimethylsilyl (tBDMS)-quinoxalinol form.

2.5. Measurement of MPB

MPB was calculated as previously described by arteriovenous
(A—V) dilution of the [*Hs]-phenylalanine tracer [32]:

MPB (umol Phe per leg min’1> = [(Ea/Ey) — 1] x Ca x BF

where E, and E, are the steady state [?Hs] phenylalanine enrich-
ment values of arterialized and venous samples, respectively, Ca is
the mean [*Hs] phenylalanine concentration in arterialized plasma,
and BF is arterial blood flow in ml leg~!, adjusted for plasma
(haematocrit).

2.6. Measurement of anabolic and catabolic signalling via
immunoblotting

Muscle (~25 mg) was powdered on dry ice using a Cellcrusher™
tissue pulverizer (Cellcrusher Ltd, Cork, Ireland) and prepared as
described [33]. Equal amounts of protein (30 pg) were boiled for
5 minin 1 x Laemmli buffer and separated on 10—15% gels by SDS-
PAGE for 1 h. Following electrophoresis, proteins were transferred
to a BioTrace nitrocellulose membrane (Pall Life Sciences, Pensa-
cola, FL, USA) at 100 V for 1 h. Membranes were incubated over-
night with the following 1° antibodies: phospho-S6K1 Thr389
(#9206), total 70 kDa S6 protein kinase (p70S6K1; #2708),
phospho-S6 ribosomal protein Ser240/244 (#5364), total S6
(#2217), phospho-protein kinase B (Akt) Ser473 (#4060), phospho-

Akt Thr308 (#2965), total Akt (#4691) all from Cell Signalling
Technology, Danvers, MA, USA. Total MuRF1 (sc-398608) was from
Santa Cruz Biotechnology Inc, Heidelberg, Germany, and MAFbx
(ab92281) was from AbCam, Cambridge, UK. Immobilon chemilu-
minescent HRP substrate (Merck Millipore, Watford, UK) was used
to quantify protein content following IgG binding, visualized on a
G:BOX Chemi XT4 imager using GeneSys capture software (Syn-
gene UK, Cambridge, UK). Imaging and band quantification were
carried out using a Chemi Genius Bioimaging Gel Doc System
(Syngene). Phosphorylated proteins were normalised to the rele-
vant total protein, whilst total protein content was normalised to
ponceau staining.

2.7. Statistical analyses

Descriptive statistics confirmed normal data distribution using a
Kolmogorov—Smirnov test. Data are shown as mean + SEM with
the analysis of primary endpoints (e.g. MPS, MPB and signalling)
using paired t-tests; repeated measures ANOVA was used for
plasma HMB analyses with Bonferroni correction (Graph Pad,
Version 5, La Jolla, San Diego, CA). The alpha level of significance
was set at p < 0.05.

3. Results
3.1. Plasma HMB bioavailability

Plasma HMB increased rapidly from fasted levels of 4.4 + 1.3 uM
peaking at 483.6 + 14.2 uM after 60 min (p < 0.0001; Fig. 2). Plasma
HMB remained markedly elevated over fasted levels up to 150 min
(421.8 + 29.6 uM, p < 0.0001), indicating robust bioavailability of
HMB in this form and through this method of delivery.

3.2. Effects of Ca-HMB on muscle protein metabolism

Increases in plasma HMB bioavailability were accompanied by
increases in myofibrillar FSR, which increased from post-absorptive
levels over the experimental 2.5 h period, with an approximate
doubling of MPS (PA: 0.046 + 0.004%/h, Ca-HMB: 0.0715 + 0.004%/
h, p < 0.001; Fig. 2B). This increase was comparable to that previ-
ously reported with the FA-HMB [8]. Ca-HMB also elicited signifi-
cant decreases in MPB (Fig. 2C), approximately halving the Ra of
phenylalanine per leg (PA: 7.6 + 1.2 pmol Phe per leg min~}, Ca-
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Fig. 2. A) Bioavailability of HMB following oral provision of Ca-HMB measured by plasma HMB concentrations. ****Significantly different from fasted, p < 0.0001. Effects of Ca-HMB
on B) human skeletal muscle myofibrillar protein synthesis (FSR) and C) muscle protein breakdown. Significant difference from post-absorptive (PA), ***p < 0.001, **p < 0.01.

HMB: 5.2 + 0.8 pmol Phe per leg min~', p < 0.01), again comparable
to FA-HMB [8].

3.3. Effects of Ca-HMB on anabolic and catabolic signalling

Provision of Ca-HMB led to a significant increase in the phos-
phorylation of the mTOR signalling targets p70S6K (~3 fold,
p = 0.0873 — 2 tailed, 0.0436 — 1 tailed; Fig. 3A) and RPS6 (~3 fold,
p < 0.05 — 2 tailed; Fig. 3B). This was accompanied by a significant
decrease in the phosphorylation of Akt at serine 308 and threonine
473 (both ~1 fold, p < 0.05 Fig. 3C and D). There was no effect on
key muscle catabolism proteolytic markers (MuRF1/MAFbx; Fig. 3E
and F).

4. Discussion

The bioavailability of Ca-HMB vs. FA-HMB has been somewhat
controversial in rats [26] vs. humans [25]. We found that Ca-HMB
had a robust level of bioavailability, with plasma concentrations
peaking after 60 min and remaining elevated throughout the study
(see Fig. 2A). In the present study Ca-HMB was provided mixed in a
small volume of water (~100 ml). In a recent study by Fuller and
colleagues to assess this bioavailability issue in humans further, it

was found that there was a difference in bioavailability when Ca-
HMB was provided dissolved in water compared to capsule form,
with greater and more rapid appearance of Ca-HMB in plasma with
the former [25]. However, when directly compared with FA-HMB,
the plasma bioavailability of both Ca-HMB delivery methods was
less than FA-HMB, with a significantly earlier peak in concentration
at 30 min with FA-HMB [25], in direct contrast to that observed in
rats [26]. Despite this proposed difference in bioavailability, it is
clear that HMB even in its calcium form, evokes a robust (perhaps
maximal) stimulation of MPS in healthy young males, and that this
anabolic potential provides further support for its role as an
important pharmaconutrient for the modulation of muscle mass in
both health and disease. The optimal dose of Ca-HMB to achieve
maximal ideal muscle mass and strength gains was determined to
be 3 g/d (0.38 mg kg~! d~1) and was delivered in 2—3 smaller daily
doses [34,35]. While no dose response studies have been conducted
for MPS/MPB, we speculate that irrespective of bioavailability dif-
ferences, provision of equated doses of either Ca-HMB or FA-HMB
(at least in the ~3 g range) is sufficiently over the threshold to
saturate effects on MPS/MPB (Fig. 4). It is tempting to speculate that
smaller doses of HMB are required to maximize anabolic effects;
this premise might make sense given the small amount created
upon leucine consumption, in vivo [10,11] and smaller 1-1.5 g doses
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potent (and possibly maximal) anabolic effects from a single acute oral dose of HMB independent of calcium or free-acid form.

of Ca-HMB or FA-HMB have been used in practice to modulate
muscle mass and strength in both health and disease [19,34—36].
Clearly further studies are needed in order to test this premise
however.

It may seem difficult for one to reconcile that acute provision of
CaHMB, in the absence of exogenous nutrition (i.e. EAA's) and
following an overnight fast, is still able to elicit a robust, perhaps
near maximal stimulation of MPS, i.e. raising the question as to
where the additional AA's substrates required for supporting this
MPS response are coming from. It would appear that the AA's to
support this response are derived from endogenous intracellular/
plasma pools and/or protein breakdown (which will increase in
fasted periods). This is not as unusual a phenomenon as one may
expect. Indeed, MPS, over equivalent acute time period of a few
hours, can be stimulated to near maximal levels by boluses of single
EAAs [5,37] (and consequently depleting intramuscular BCAA
concentrations), insulin (where MPB will be inhibited too thereby
reducing endogenous AA pool size [38]) and acute resistance ex-
ercise [39]; all in the absence of exogenous nutritional intake. This
clearly highlights that there are sufficient stores of AA's to support
acute short term increases in MPS in an experimental setting; this
may of course differ in a perpetually undernourished or fasted
state. Moreover, it should be noted however that the premise of
HMB as a nutritional supplement is not meant as a replacement for
standard nutrition, but as an adjuvant therapy to support and
maximize maintenance of muscle mass alongside optimal nutri-
tional intake.

There is further evidence that the molecular regulation of HMB's
effects on MPS are occurring via activation of mTORc1, with in-
creases in phosphorylation seen in downstream substrates,
p70S6K1 and RPS6 (Fig. 3). This agrees with our previous data with
HMB in its FA form [8], which saw similar molecular responses, as
well as that provided by preclinical work [13]. Unexpectedly
however, there was a decrease in the phosphorylation of Akt at
both Ser308 and Thr473, which may seem counterintuitive based
on the role of Akt in the upstream activation of mTOR [40]. How-
ever, there is evidence that hyper-active mTOR negatively feeds
back to reduce Akt phosphorylation [41]; therefore, the potent in-
crease in p70S6K and RPS6 phosphorylation may have in turn

caused downregulation of Akt through this negative feedback loop.
Moreover, we hypothesise (as with leucine [42]), HMB's effects on
mTORc1 are downstream of Akt.

The nutritional regulation of MPB is normally driven via an in-
sulin dependent effect, whereby secretion of insulin via carbohy-
drate and/or protein intake provide a nitrogen sparing effect thereby
promoting positive net balance [6]. However, HMB has previously
been shown to have no effect on insulin [8]; as such, suppression of
MPB could be considered insulin independent. Indeed, HMB has
been shown to have anti-catabolic properties in pre-clinical models,
through action to suppress ubiquitin — proteasomal [43,44] and
autophagy [45] pathways following pharmacological enhancement
of proteolysis. Yet despite an effect on MPB here, there were no
obvious effects on the atrogenes MuRF1 and MAFbx (see Fig. 3E and
F), therefore, how and through which proteolytic pathway HMB is
regulating reductions in MPB in vivo is as yet not clear. However, we
have previously reported that the acute suppression of MPB during
insulin clamped conditions are not associated with altered abun-
dance of a number of proteolytic markers such as MuRF1 and Mafbx
[6,46], therefore our observations here with proteolytic targets may
not be so unexpected. Moreover, it is possible that with only a single
timepoint, peak signalling events in response to HMB may not have
been possible to capture — an inherent limitation of clinical studies —
in order to understand the key signalling mechanisms involved in
the modulation of MPS and MPB by HMB, a timecourse study is
needed. Further mechanistic research is needed to resolve the
mechanisms underlying the acute anti-proteolytic effects of HMB in
skeletal muscle.

To conclude, a large single oral dose (~3 g) of Ca-HMB robustly
(near maximally) stimulates skeletal muscle anabolism, in the
absence of additional nutrient intake; the anabolic effects of Ca-
HMB are equivalent to FA-HMB, despite purported differences in
bioavailability (Fig. 4). This data suggests the threshold for stimu-
lation of MPS by HMB is likely to be lower than thought, further
highlighting the potent anabolic properties of HMB and supporting
its use as a pharmaconutrient in the modulation muscle mass in
health and disease. Future research should determine whether this
acute anabolic response can be re-capitulated over more chronic
periods (using novel techniques such as D,0 stable isotope tracer
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techniques) alongside standard nutrition, and in groups of in-
dividuals where such benefits may be most useful (i.e. ageing and
non-communicable disease states). In addition, the efficacy of HMB
would need to be tested using the gold standard placebo controlled
designed, something that could be considered a limitation in the
present study. Moreover, investigation as to whether there is a
distinct threshold for the efficacy of HMB (in either form) through a
dose response approach, will also help clarify whether there is a
relationship between plasma bioavailability and the positive
anabolic effects of HMB.
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