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Abstract

Calcium responses have been observed as spikes of the whole-cell calcium concentration
in numerous cell types and are essential for translating extracellular stimuli into cellular
responses. While there are several suggestions for how this encoding is achieved, we still
lack a comprehensive theory. To achieve this goal it is necessary to reliably predict the
temporal evolution of calcium spike sequences for a given stimulus. Here, we propose a
modelling framework that allows us to quantitatively describe the timing of calcium
spikes. Using a Bayesian approach, we show that Gaussian processes model calcium
spike rates with high fidelity and perform better than standard tools such as
peri-stimulus time histograms and kernel smoothing. We employ our modelling concept
to analyse calcium spike sequences from dynamically-stimulated HEK293T cells. Under
these conditions, different cells often experience diverse stimuli time courses, which is a
situation likely to occur in vivo. This single cell variability and the concomitant small
number of calcium spikes per cell pose a significant modelling challenge, but we
demonstrate that Gaussian processes can successfully describe calcium spike rates in
these circumstances. Our results therefore pave the way towards a statistical description
of heterogeneous calcium oscillations in a dynamic environment.

Author summary

Upon stimulation a large number of cell types respond with transient increases of the 1

intracellular calcium concentration, which often take the form of repetitive spikes. It is 2

therefore believed that calcium spikes play a central role in cellular signal transduction. 3

A critical feature of these calcium spikes is that they occur randomly, which raises the 4

question of how we can predict the timing of calcium spikes. We here show that by 5

using Bayesian ideas and concepts from stochastic processes, we can quantitatively 6

compute the calcium spike rate for a given stimulus. Our analysis also demonstrates 7

that traditional methods for spike rate estimation perform less favourably compared to 8

a Bayesian approach when small numbers of cells are investigated. To test our 9

methodology under conditions that closely mimic those experienced in vivo we 10

challenged cells with agonist concentrations that vary both in space and time. We find 11

that cells that experience similar stimulus profiles are described by similar calcium spike 12

rates. This suggests that calcium spike rates may constitute a quantitative description 13

of whole-cell calcium spiking that reflects both the randomness and the spatiotemporal 14

organisation of the calcium signalling machinery. 15
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Introduction 16

Transient changes in the intracellular calcium (Ca2+) concentration have long been 17

associated with the activation of plasma membrane receptors [1]. Since the seminal 18

work by Woods et al. [2] linking the frequency of cytosolic Ca2+ oscillations in 19

hepatocytes to the concentration of various hormones, both experimental and 20

theoretical studies have provided compelling evidence for encoding extracellular stimuli 21

into intracellular Ca2+ oscillations [3–14]. In whole-cell recordings, Ca2+ oscillations are 22

usually observed as sequences of spikes of the intracellular Ca2+ concentration. 23

A prominent feature of Ca2+ spike sequences is that they are random. Ca2+ spikes 24

only occur with some probability that generally changes over time. For example, there 25

are distributions of inter-spike intervals (ISIs) for agonist induced Ca2+ oscillations in 26

HEK293 cells and spontaneous Ca2+ oscillations in astrocytes, microglia and PLA cells 27

instead of a single value [15]. When astrocytes are transiently stimulated with ATP 28

three times, with a recovery period between stimuli, the observed Ca2+ spikes display 29

any number of response patterns, from no spikes to three [16]. To elucidate the 30

principles that govern the translation of extracellular cues into changes of the 31

intracellular Ca2+ concentration therefore requires faithfully capturing the stochasticity 32

in Ca2+ spike generation. 33

To date, the main modelling approach to investigate stochastic Ca2+ spike 34

generation has been based on numerical solutions of differential equations, both 35

ordinary and partial [11, 12,15,17–30]. In these studies, the randomness of Ca2+ spikes 36

results from the stochastic behaviour of Ca2+ releasing channels, such as the 37

inositol-1,4,5-trisphosphate (InsP3) receptor (InsP3R), and their interactions. The 38

random dynamics of the InsP3R is then either described by coupling a Markov chain for 39

the InsP3R to the differential equations, or by assuming a Langevin-type equation. All 40

of these approaches require detailed models of the InsP3R (with often a considerable 41

number of rate constants), and other assumptions such as the number of InsP3Rs per 42

cluster and the spatial distribution of InsP3Rs, Ca2+ pumps and Ca2+ buffers in the 43

case of partial differential equations. However, such mechanistic detail, which has been 44

instrumental in advancing our understanding of Ca2+ spikes, often comes at 45

considerable computational costs. 46

It might be therefore desirable to change the perspective from the mechanistic 47

bottom-up approach to a top-down view, in which cellular Ca2+ spikes are described 48

directly. The mathematical concept that has proven particularly useful for this 49

endeavour is the theory of point processes [31]. Indeed, in [15] a time-dependent 50

conditional rate for the generation of a Ca2+ spike was introduced, and its two 51

parameters (a time scale and an amplitude) were determined from experiments on four 52

different cell types. Subsequent work [32,33] demonstrated in more detail that for 53

constant stimulation, the time scale was cell type specific, while different cells of the 54

same type could be distinguished by their amplitude. 55

These modelling approaches have not confronted the issue of the dynamic nature of 56

cell stimulation that occurs under physiological conditions. Cells in vivo experience a 57

complex and dynamically-changing environment, where signals frequently arrive in a 58

time-varying manner — such as transient release of neurotransmitters or oscillations in 59

the concentration of circulating hormones. Diffusion of messengers through tissue (such 60

as away from a blood vessel) also introduce spatial variation in signal strength, meaning 61

that cell populations encounter a complex spatiotemporal pattern of stimulation. An 62

efficient mechanism for modelling Ca2+ responses in such a heterogeneous population 63

has not yet been devised. Our approach offers a solution to this issue and is based on 64

combining point processes with Bayesian inference. 65

Bayesian concepts have been used with great success across various disciplines (see 66

e.g. [34] for an overview). One advantage of utilising Bayesian ideas is that model 67
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parameters can be effectively constrained by observed data and can be estimated in a 68

controlled fashion. For example, each set of parameter values comes with its own 69

probability that informs us about how likely this set represents the observed data. In 70

the past, the combination of Bayesian inference and point processes has been 71

successfully applied to action potential spike trains in neurons [35,36], but to our 72

knowledge, this is the first time that Ca2+ spike sequences have been analysed in this 73

way. While we can draw on these previous results, the substantial differences between 74

action potential spike trains and Ca2+ spike sequences (e.g. the number of spikes per 75

train or the time scales of spikes) have required significant attention. 76

A particular characteristic of Ca2+ spikes is that their generation depends on the 77

cellular Ca2+ spike history and hence is non-Markovian. This results from both the 78

stochastic nature of Ca2+ spike formation as well as the dynamic variation in the 79

cellular signalling micro-environment. To model such history dependence, we follow a 80

concept introduced in [37], which effectively turns a non-Markovian Ca2+ spike 81

sequence into a Markovian one. This is achieved with the help of a so-called intensity 82

function x(t), for which we provide a definition and more details in the Materials and 83

Methods section. Since the intensity function is directly inferred from individual Ca2+ 84

spike sequences, it is specific to each cell. This results from two facts. Firstly, Ca2+ 85

spikes are shaped by the cellular composition of the Ca2+ signalling toolkit, i.e. the 86

expression levels and spatial arrangement of Ca2+ channels, pumps, transporters and 87

buffers. Secondly, each cell experiences a different signalling micro-environment as 88

illustrated above. Autocrine and paracrine signalling modify the original signal further. 89

In addition, any time-dependence of x(t) that originates from a time varying signal is 90

compounded by dynamic changes of the Ca2+ signalling apparatus, such as Ca2+ store 91

refilling, adaptation or desensitisation. 92

In the present paper we demonstrate how to estimate x(t) in the presence of such 93

single cell variability. This will allow us to make progress in two main directions. 94

Firstly, one of the most highly discussed questions in computational biology is 95

concerned with scaling dynamics from single cells to tissue. Taking into account our 96

current understanding of intracellular Ca2+ signalling, this will require the simulation of 97

spatially extended single cells driven by fluctuating Ca2+ releasing channels. The 98

computational costs for such studies are extraordinary, and how to sample the 99

associated high dimensional parameter space remains an open challenge. On the other 100

hand, generating Ca2+ spike sequences from an intensity function is computationally 101

cheap and hence puts researchers in an advantageous position to obtain high quality 102

statistical insights into tissue level dynamics. Secondly, while our approach is statistical, 103

the Ca2+ ISI distribution that we determine as part of estimating x(t) has direct 104

mechanistic interpretations. This may further our understanding of how exactly Ca2+ 105

spikes emerge at the single cell level from the orchestrated action of the Ca2+ signalling 106

toolkit. For instance, one line of argument suggests that Ca2+ spikes result from the 107

co-ordinated interplay of a certain number of Ca2+ puffs. Our statistical analysis may 108

provide quantitative estimates for this. 109

Results 110

ISI statistics of Ca2+ spikes 111

A main motivation for our study is the need to model the heterogeneity of Ca2+ 112

responses observed in cell populations in a computationally efficient manner. To 113

illustrate the problem, the results in Fig. 1 show HEK293T cells challenged with a 114

solution containing 100 µM carbachol. Figure 1B illustrates the large variability of Ca2+ 115

responses observed between different cells even when the stimulus is stationary. While 116
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some cells only detect the onset of the stimulus (third trace), other cells exhibit Ca2+ 117

spikes during the entire stimulation period. However, the spike characteristics vary 118

significantly. Some cells show irregular Ca2+ spikes (first trace), while other cells settle 119

into an almost regular pattern (fourth trace). It is also worth noting that the frequency 120

of Ca2+ spikes spans a considerable range (cf. first and second trace) and that all cells 121

display a decrease in peak amplitude, which is indicative of adaptation. Figure 1C and 122

S1 Video provide further evidence for the large heterogeneity in the timing of Ca2+ 123

spikes for a constant stimulus. 124

The first step in developing a top-down model that reproduces this heterogeneity is 125

to determine the probability distribution that most accurately describes recorded ISIs. 126

Throughout this study, Ca2+ spikes are treated as all-or-nothing events and any 127

information on the width or amplitude of a Ca2+ spike is excluded.The reason why we 128

can introduce an ISI distribution and hence treat successive ISIs as independent — 129

instead of trying to fit a time-dependent ISI distribution — comes from the introduction 130

of the intensity function x(t). We tested three possible candidate ISI statistics (see 131

Materials and Methods for details): an inhomogeneous Poisson (IP), an inhomogeneous 132

Gamma (IG) and an inhomogeneous inverse Gaussian (IIG) distribution. The IP 133

distribution often serves as starting point for analysing spiking behaviour as it is the 134

most basic statistical distribution. While the parsimony of the IP distribution has 135

undoubtedly helped in establishing a large body of mathematical results, real world 136

data often exhibit more complex statistics. The IG distribution provides a natural 137

extension of the IP distribution, in that it contains the IP distribution as a special case: 138

putting γ = 1 in (5) recovers (10). The shape parameter γ endows the IG distribution 139

with more flexibility, which has proven fruitful in numerous applications. Conceptually, 140

spikes in general and Ca2+ spikes in particular have been described as first passage 141

events [38]. One of the most fundamental models, which contains positive drift and 142

random motion only, gives rise to the IIG distribution. 143

To ascertain which ISI distribution describes the results in Fig. 1 best, we 144

transformed the recorded ISIs using the time rescaling theorem and analysed the results 145

in a Kolmogorov-Smirnov plot (see Material and Methods). The Kolmogorov-Smirnov 146

plot allows the visual inspection of whether two probability distributions are the same 147

by plotting their respective cumulative distribution functions against one another. If the 148

two distributions are identical, the cumulative distributions functions coincide and 149

plotting one against the other results in a straight line with slope 1. Figure 2A shows 150

results for the Kolmogorov-Smirnov plot for the data taken from Fig. 1. Here, u 151

corresponds to the cumulative distribution of the transformed data, which depends on 152

the chosen ISI distribution, while s stems from a theoretical prediction based on the 153

time rescaling theorem (see Materials and Methods). If we have identified the correct 154

ISI distribution, data points should cluster around a straight line with a 45◦ slope. Note 155

that in our analysis, each cell was treated individually and no data amalgamation took 156

place. 157

Results for the IP and IIG clearly deviate from a line with slope 1, while the data for 158

the IG exhibit much less deviation. This suggests that an IG, but not an IP or IIG, 159

better describes the ISI statistics of Ca2+ spikes. The box plots in Fig. 2C provide 160

further quantitative evidence. They demonstrate that the slopes obtained from 161

individual cells are concentrated close to 1 and exhibit a significantly smaller variability 162

for the IG compared to the IP and IIG. To further corroborate these findings, we 163

analysed data from cells exposed to a lower concentration of carbachol (10µM). Figures 164

2B and D illustrate that again the IG distribution captures the ISI statistics most 165

closely. In addition to Kolmogorov-Smirnov plots, we also tested our data with a 166

quantile-quantile plot (see S1 Fig and Materials and Methods). As with the 167

Kolmogorov-Smirnov plot the correct ISI distribution leads to data points that 168
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Fig 1. Heterogeneous Ca2+ responses. Cellular Ca2+ responses to a step-change
in agonist concentration. (A) Cultured HEK293T cells were seeded in micro-channels,
loaded with Fluo-5F AM (inset, scale bar: 10 µm) and perfused with imaging buffer. A
step-change in flow rates between solution containing carbachol (100 µM) plus AF594 (2
nM) and buffer alone results in delivery of agonist (and AF594 indicator) to stimulate
the cells. Mean (black) ± SEM (red) AF594 fluorescence from ROIs centred on cells
within the microfluidics channel, showing onset of agonist exposure. (B) Normalised
Fluo-5F fluorescence intensity traces show typical Ca2+ responses from four
representative cells. (C) Raster plot of the pattern of Ca2+ spikes detected in the entire
cell population. The Ca2+ spike sequences follow no particular order.

accumulate around the 45◦ line. Panels A and B in S1 Fig show that this is the case for 169

the IG, but not for the IP and IIG, hence confirming our results from the 170

Kolmogorov-Smirnov plot. The box plots in panels C and D of S1 Fig show that again 171

the slopes obtained from single cells for the IG model are much closer to one and exhibit 172

less variability than those for the IP and IIG. Taken together, these results indicate that 173
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the patterns of Ca2+ spikes observed across the population of cells can most accurately 174

be reproduced with an IG distribution. This approach will therefore be used as the 175

basis of our analysis.

Fig 2. Determining Ca2+ spike ISI statistics. Kolmogorov-Smirnov plots for
Ca2+ spike sequences in HEK293T cells stimulated with (A) 100µM and (B) 10µM
carbachol when the ISI statistics is assumed to be an IIP (blue), IP (red) and IG (grey)
distribution. Box and whisker plots summarising the Kolmogorov-Smirnov plots for (C)
100µM and (D) 10µM carbachol stimulation for the IP, IIG and IG models. The results
in (A) and (C) are based on the data shown in Fig. 1. In (C) and (D), the box extends
from the first quantile (Q1) to the third quartile (Q3) with the red line at the median.
The lower whisker corresponds to the smallest data point that is bigger than
Q1−1.5×IQR, while the upper whisker extends to the largest value that is smaller than
Q3+1.5×IQR, where IQR denotes the interquartile range Q3-Q1. We used 42 cells in
(A), (C) and 21 cells in (B), (D).

176

It is worth noting that when testing the different ISI distributions, we also obtain an 177

estimate for the intensity function x(t). As illustrated by Eq. (11), the probability for a 178

specific ISI depends on x(t). Therefore, all ISI distributions in this study have to be 179

understood as being conditioned on x(t). In the next section, we show how to estimate 180

x(t) from measured Ca2+ spike sequences. 181

Performance of Ca2+ spike rate estimation 182

In addition to the ISI distribution, we also need to know the intensity function x(t) to 183

fully describe Ca2+ spike sequences. In the following, we will use three different 184

approaches to estimate x(t): peri-stimulus time histograms (PSTHs), kernel smoothing 185

(KS), and Gaussian processes (GPs) combined with Bayesian inference. An illustration 186

of a GP is shown in Fig. 3. In contrast to a deterministic curve, a GP generates 187

infinitely many curves (3 possible candidates are shown), and the statistics of these 188

curves is the organising principle. At each time point, the values of a GP are Gaussian 189

distributed, and the mean and standard deviation can change over time. To guarantee a 190

controlled comparison between PSTHs, KS and GPs, we will fix an intensity function, 191
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generate surrogate Ca2+ spike sequences from it and then estimate how well the above 192

methods recapture the original intensity function (see Materials and Methods for 193

details).

Fig 3. Gaussian Process. Three realisations of a GP (red, green, purple) around a
time-dependent mean (black line). The blue area delineates the 95% confidence interval.
Note the changes in width, which reflect a time-dependent standard deviation.

194

Before proceeding it is worth noting that the intensity function that we need to 195

estimate is identical to the Ca2+ spike rate that we find from using either PSTHs or 196

KS [36]. In other words, if we can obtain a high quality estimate for the Ca2+ spike rate 197

from either PSTHs or KS, we have a very good estimate for x(t). However, this usually 198

requires a large number of Ca2+ spike sequences, which is an issue that we will address 199

below. Since we can identify the Ca2+ spike rate with the intensity function, we will use 200

both terms interchangeably. Note, however, that this Ca2+ spike rate is different from 201

the conditional intensity function defined in Eq. (15), which is often used in generating 202

spike trains. 203

A major objective of this model is to reproduce Ca2+ signalling patterns during 204

complex stimulation conditions. For example, physiological patterns of hormone or 205

neurotransmitter release are time-varying, rather than the step-changes used in typical 206

experiments (such as Fig. 1). We therefore tested the performance of candidates for x(t) 207

for reproducing dynamically-changing signals – specifically sinusoidal oscillations. As a 208

first choice, we considered a regularly oscillating intensity function xdet(t) = 0.5 cos(t) + 209

0.5 cos(0.5t) + 1. Figure 4A shows Ca2+ spike sequences generated from xdet, and 210

Fig. 4C reveals that both PSTH and KS capture the original intensity function very 211

well. 212

By using a specific functional form for x(t) as in xdet(t), we make strong 213

assumptions about the intensity function. A more flexible and versatile approach is 214

based on GPs. In Fig. 4B we plot Ca2+ spike sequences generated from one xGP 215

candidate, while Fig. 4D depicts the estimation of xGP from a PSTH and KS. As with 216

xdet we find very good agreement between the original and estimated Ca2+ spike rate. 217

This strategy supposes that all Ca2+ spike sequences can be combined into a single 218

large dataset, but in a physiological context this will not always be true. To be a more 219

useful tool, the model should be able to simulate the diversity of responses expected in 220

a more complex environment, where the stimulus varies in both space and time. Under 221

these circumstances, the number of cells that receive an equivalent stimulus would be 222

more limited, and so it is important to assess how the number of spike sequences 223
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Fig 4. Ca2+ spike sequences. (A-B) Raster plots of 40 out of 100 Ca2+ spike
sequences simulated from xdet and xGP, respectively. (C-D) Estimations of xdet and
xGP from all generated Ca2+ spike sequences based on a PSTH (beige) and KS (solid
blue). The true values of xdet and xGP are shown as a dashed red line. Ca2+ spike
sequences were generated using inverse sampling. Parameter values are (A,C) γ = 5.9
and (B,D) µ = 2.1, σf = 1.5, κ = 0.5 and γ = 6.2. Time is measured in units of 100 s.

available for parameter estimation affects the accuracy of predicting the Ca2+ spike rate. 224

Consequently, we randomly picked groups of 1, 2, 4 and 7 Ca2+ spike sequences and 225

computed the Ca2+ spike rate based on a GP and KS. 226

In Fig. 5 we show results for xGP. Since the Ca2+ spike rate estimation obtained 227

from KS depends on the bandwidths σ (see Eq. 17), we employed different σ values. For 228

a single Ca2+ spike sequence (Fig. 5A) the estimated Ca2+ spike rates differ visibly 229

from the theoretical one, and the smallest bandwidth leads to spurious oscillations. As 230

we increase the number of Ca2+ spike sequences the estimated Ca2+ spike rates capture 231

the true Ca2+ spike rate more faithfully. The light blue area in each panel delineates 232

the 95% confidence interval, which we obtain as a by-product from the GP optimisation. 233

Overall, all estimates lie within this confidence interval except the one for σ̂ in Figs. 5A 234

(see Materials and Methods for the definition of σ̂). We obtain similar results for xdet(t) 235

as illustrated with S2 Fig. 236

We quantified the accuracy of predicting the Ca2+ spike rate by computing the 237

normalised L2 norm of the difference between the known and estimated Ca2+ spike rate 238

(see Materials and Methods). Figure 6 shows that for a given method, the L2 norm 239

decreases as we increase the number of Ca2+ spike sequences, which corresponds to 240

better predictions. When we fix the number of Ca2+ spike sequences, GPs yield a better 241

estimate. The improvement is particularly evident when comparing the Ca2+ spike rate 242

estimation based on σ̂ at small numbers of Ca2+ spike sequences. We further tested 243

that our results did not depend on the particular choice of Ca2+ spike sequences nor on 244

the details of the surrogate generator. For the latter, we compared three different 245

approaches: inverse sampling, a Bernoulli process and time rescaling. We generated a 246
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Fig 5. Ca2+ spike rate estimation. Spike rate estimations for data shown in
Fig. 4B for 1 (A), 2 (B), 4 (C) and 7 (D) randomly chosen Ca2+ spike sequences (black
dots) using KS with σ = 35 (grey), 52 (orange), 70 (purple), and σ̂ (blue). The black
line denotes results from a GP(black). The dotted red line indicates the original Ca2+

spike rate. The light blue areas delineate the 95% GP estimation confidence interval.
Time is measured in units of 100 s.

number of Ca2+ spike sequences with each method and then estimated the Ca2+ spike 247

rate using the same methods as in Fig. 6, i.e. KS with different bandwidths and GPs. 248

S3 Fig shows box plots of the normalised L2 norm between the estimated and the true 249

Ca2+ spike rate xdet. We find that for all three methods, the normalised L2 norm is 250

generally smallest for GP estimates. To test the statistical significance of this result, we 251

computed the corresponding p-values as shown in S1 Table using the non-parametric 252

Mann-Whitney test. Based on the common assumption that a finding is statistically 253

significant if p < 0.05, estimates using GPs perform statistically better than KS since 254

the largest p value was 0.0375. We repeated the analysis for xGP and report the 255

normalised L2 norm in S4 Fig. While the GP performs clearly better than KS with 256

bandwidths of σ̂ and 35, the distributional results for bandwidths of 52 and 70 look 257

similar to those of the GP. This is also confirmed by the p-values shown in S1 Table, 258

where some exceed the threshold of 0.05. This indicates that KS can approach the 259

performance of GPs. However, since there are no a priori estimates for this optimal 260

bandwidths for a given scenario, GPs provide the more robust estimation method. 261

Estimation of Ca2+ spike rates in HEK293T cells 262

The results so far provide strong evidence that an intensity function derived from a GP 263

allows accurate prediction of Ca2+ spike patterns even when the estimate is based on 264

small numbers of Ca2+ spike sequences. We next applied our Bayesian approach to a 265

more complex experimental system, designed to reproduce some of the stimulus 266

heterogeneity expected in vivo. 267

We used a microfluidics chamber to deliver sinusoidal changes in carbachol 268
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Fig 6. Comparison of Ca2+ spike rate estimations. Normalised L2 norm for the
estimates of xdet (A) and xGP (B) from the results in Fig. 5 and S2 Fig.

concentration to HEK293T cells (see Materials and Methods). The concentration of 269

carbachol varied in both space and time. Figure 7A shows a complex concentration 270

surface throughout the chamber at a fixed time point and illustrates how the sharp 271

interface between high and low agonist concentration on the left side of the chamber 272

widens as the flow progresses through the chamber. In Fig. 7B we plot agonist 273

concentration time courses sampled at four positions along the transverse direction of 274

the microfluidics chamber, which demonstrates the stimulation heterogeneity that cells 275

experience depending on their position within the chamber. We also include the 276

corresponding Ca2+ spike sequences, which again display significant variability. The 277

goal of this experiment was to generate an environment in which a population of cells is 278

exposed to agonist in a manner that varies with the cells’ distance from the stimulus 279

source and with a dynamic mechanism of delivery (by analogy to a circulating hormone 280

diffusing from a blood vessel to underlying cells, for example). 281

This scenario is the context in which a Bayesian framework is most useful, as it can 282

predict spiking Ca2+ responses to a complex but physiologically meaningful stimulus 283

profile. In Figs. 7C–E, we show clustered stimulus curves, the corresponding Ca2+ spike 284

sequences and the estimated intensity functions, respectively. We grouped cells that 285

experienced similar agonist concentration profiles to allow for a meaningful comparison 286

of the resultant intensity functions. To determine how similar stimulus traces are, we 287

computed the weights of the three leading principal components (see Materials and 288

Methods). Results are shown in Fig. 8, where we employed k-means [39] to detect 289

possible clusters. Data points that belong to the same group are plotted in the same 290

colour, and these colours correspond to those used in Figs. 7C–E. Overall, 4 distinctive 291

groups represented the data best, containing 10, 13, 13 and 3 cells, respectively. It is 292

worth noting that while clustering was performed on the stimuli time courses the Ca2+ 293

spike sequences show a consistent pattern in that they are generally more similar within 294

a given group than between groups. 295

The black lines in Figs. 7C and 7E denote the mean stimulus and mean intensity 296

function, respectively. We observed that the intensity functions broadly mirror the 297
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Fig 7. Dynamically stimulated HEK293T cells (A) Simulation of complex
concentration surface generated inside the microfluidics chamber after transiently
varying relative flow rates of agonist and buffer input streams (COMSOL Multiphysics,
COMSOL Ltd, Cambridge, UK). (B) Agonist concentration (indicated by AF594
fluorescence; red lines) and normalised Fluo-5F fluorescence intensity traces (black lines)
from ROIs centred on 4 cells across the width of the channel upon applying a single
sine-wave stimulation regime. Stimulus fluorescence (C), raster plots (D) and GP Ca2+

spike rate estimations (E) for each cluster in Fig. 8. Black lines denote the mean
stimulus (C) and the mean Ca2+ spike rate (E) in each group, respectively.

global behaviour of the stimulus. The mean intensity function for all responses showed a 298

single peak with a similar time course to the stimulus. The amplitude of stimulus and 299

intensity function are also well matched. However, there are also observable differences. 300

For example, individual cells showed intensity functions with a more complex time 301

course than the mean (such as multiple peaks). Furthermore, while the mean stimulus 302

was symmetrical, the mean intensity functions could exhibit notable asymmetries. For 303

example, for weak stimuli, the rising phase of the intensity function may be markedly 304

slower than the falling phase (Figs. 7C, E; yellow and green traces). This most likely 305

reflects the excitable character of intracellular Ca2+ signalling [30,40]. For weaker 306

stimulation, it takes longer to reach the threshold for generating a Ca2+ spike, hence 307

the intensity function grows more slowly. The quicker decrease results from the stimulus 308

dropping below the Ca2+ spike generating threshold quickly after reaching its 309

maximum, hence prohibiting further Ca2+ spikes. The faster increase of the intensity 310
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function for stronger stimuli (grey traces) lends further support for this interpretation, 311

as the Ca2+ spike generating threshold is reached more quickly.

Fig 8. Clustering of dynamic stimuli and cell positions. (A) Weights of the
three leading principal components of the stimulus data for the experiment of Fig. 7.
(B) Position of cells in the microfluidics chamber are shown by a plus sign. Cells that
were included in the analysis, i.e. those that spiked more than 10 times, are identified
by a circle. Stimuli (and hence cell positions) belonging to the same group as identified
by the k-means algorithm are coloured identically and with the same colour as in Fig. 7

312

To illustrate the value of the mean intensity functions shown in Fig. 7E, we generated 313

surrogate Ca2+ spike sequences from them using the IG distribution and plotted them 314

in Fig. 9C. For ease of comparison, we also show the measured Ca2+ spike sequences in 315

Fig. 9B. We first note that the simulated Ca2+ spike sequences resemble the measured 316

ones. This is also confirmed by the histrograms in Fig. 9D, which exhibit large overlaps 317

between the experimental and theoretical Ca2+ spike sequences. To quantify how 318

similar the two histograms are, we computed the histogram distance given by 319

H(R,S) =

∑
i min (Ri, Si)

max (
∑
iRi,

∑
i Si)

, (1)

where Ri and Si denote the histogram count in the ith bin of the recorded and 320

simulated data, respectively. The histogram distance is bounded between 0 and 1, and 321

the closer it is to 1 the more similar the histograms are. The histograms coincide if 322

H = 1. We found that H = 0.86, 0.94, 0.91 and 0.89 (from top to bottom), which 323

confirms our visual inspection that the histograms vary little between recorded and 324

simulated Ca2+ spike sequences. Moreover, Ca2+ spike sequences generated from one 325

intensity function exhibit a certain degree of heterogeneity, which is consistent with our 326

experimental findings. Taken together, these results show that without explicitly 327

including any information about the stimulus into the estimation of the intensity 328

functions, our approach yields intensity functions that reflect the characteristics of the 329

stimulus and that are consistent with experimentally recorded Ca2+ spike sequences. 330

Discussion 331

A key task for all cell types is to faithfully respond to external stimuli. For signalling 332

pathways that rely on the dynamics of the intracellular Ca2+ concentration, sequences 333

of Ca2+ spikes have long been recognised as the likeliest encoding mechanism of 334

extracellular cues. Detailed numerical simulations have provided a mechanistic 335

understanding of how cells generate Ca2+ spike sequences and have demonstrated the 336

emergence of ISI fluctuations from subcellular processes such as Ca2+ puffs. 337

Conceptually, such modelling falls into the class of bottom-up approaches. In the 338

PLOS 12/26



Fig 9. Surrogate Ca2+ spike sequences from experimentally determined
Ca2+ spike rates. (A) Mean intensity functions as shown in Fig. 7E. The colours
correspond to the ones used in Fig. 7. (B) Raster plot of recorded Ca2+ spike sequences
as shown in Fig. 7D. (C) Surrogate Ca2+ spike sequences generated from the mean
intensity function depicted in (A). (D) Histograms of recorded and simulated Ca2+

spike sequences.

present study, we have adopted a top-down perspective in that we have developed a 339

modelling framework that directly describes the stochastic timing of Ca2+ spikes at the 340

cellular level. Importantly, our data-driven approach implicitly accounts for subcellular 341

details through the introduction of the intensity function x(t). 342

Our modelling approach is based on the idea of representing Ca2+ spike sequences as 343

realisations of a point-process. In contrast to earlier applications of this concept, 344

consecutive Ca2+ spikes in the current study do not necessarily exhibit the same 345

statistics, i.e. the ISI distribution may become time-dependent. This is a direct 346

consequence of the time-varying stimulation. However, through appropriately 347

transforming the times of Ca2+ spikes and by using the time-dependent intensity 348

function x(t), it is possible to describe Ca2+ spike ISIs with one distribution for the 349

entire Ca2+ spike sequence. 350

We therefore began our investigation by testing different ISI distributions: 351

inhomogeneous Poisson (IP), inhomogeneous Gamma (IG) and inhomogeneous inverse 352

Gaussian (IIG). The IP process is a common choice as it is the simplest stochastic 353

process and the only one for which the conditional intensity function q(t|yk, x) coincides 354

with the intensity function x(t) (see Eq. (15)). This greatly facilitates the mathematical 355

analysis, which can draw on a large body of already established results. However, the IP 356

process often fails to describe experimental spike trains, see e.g. Barbieri et al. [37]. We 357

therefore turned to the more general IG process, which includes the IP process as a 358

special case. In addition, we employed the IIG distribution. Our results in Fig. 2 show 359

that the IG distribution captures experimental ISIs very well, whereas both the IP and 360

IIG distribution poorly represent the Ca2+ spike data. While these results all pertain to 361

whole cell Ca2+ spikes, they also shed further light on the details of the subcellular 362

processes that generate these Ca2+ spikes. The IG distribution with shape parameter γ 363

results from sampling an IP process every γth spike. In other words, the ISI 364

distribution for an IG is the same as if one measured the ISIs for γ successive spikes 365

generated from an IP and then added all γ ISIs up to obtain a single ISI. Interestingly, 366

one proposed mechanism for the generation of Ca2+ spikes is wave nucleation, where a 367

critical number of Ca2+ puffs has to occur [19,41]. Under the assumption that Ca2+ 368
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puffs are described by an IP process, the above arguments entails that γ can be linked 369

to the number of Ca2+ puffs to trigger a Ca2+ spike. From a more general perspective 370

Ca2+ wave nucleation can be considered as a first passage time problem, since we are 371

interested in the first time that a critical number of Ca2+ puffs occurs. Importantly, the 372

concept of first passage times is also at the heart of Ca2+ puff generation [42–44]. 373

Assuming a continuous representation for Ca2+ spike generation, one of the simplest 374

first passage time problems describes Brownian motion with positive drift to reach a 375

fixed level for the first time [45]. The associated probability distribution is the IIG 376

distribution, which we chose as our third candidate. The failure of the IIG distribution 377

to capture the behaviour of Ca2+ spikes may point towards more complex subcellular 378

dynamics than random motion and positive drift. 379

We used two different tests to determine the most likely ISI distribution, a 380

quantile-quantile plot and a Kolmogorov-Smirnov plot. If we correctly identified the ISI 381

distribution that is consistent with experimental data, the measured ISIs can be 382

transformed to obey an exponential ISI distribution. Both the quantile-quantile plot 383

and the Kolmogorov-Smirnov plot interrogate how closely the transformed ISIs are 384

described by an exponential distribution. The fact that the two tests focus on different 385

aspects of the distribution [46, 47] and that both identified the IG as the most plausible 386

ISI distribution provides strong support for our findings. While our analysis suggests 387

that the IG distribution describes the measured data best, we cannot rule out that 388

other distributions that we have not tested, e.g. a log-normal distribution or a 389

generalised exponential distribution, might yield equally good or even better results. If 390

future work reveals another probability distribution than the IG distribution that is 391

consistent with the data, the discussion will turn towards the stochastic processes that 392

generate these distributions and how they reflect the physiology of Ca2+ signalling. We 393

will touch on this point later in the discussion. 394

Our modelling framework rests on two pillars: an ISI distribution and a Ca2+ spike 395

rate. While the ISI distribution may shine light on potential mechanisms that generate 396

Ca2+ spikes, the Ca2+ spike rate encodes the speed of Ca2+ spike formation. To 397

estimate the Ca2+ spike rate, we used the fact that it coincides with the intensity 398

function x(t). Given that there are numerous ways to generally estimate intensity 399

functions from experimental data, we tested three approaches with particular emphasis 400

on Ca2+ spikes: Bayesian inference with GPs, KS and PSTHs. As Fig. 4 illustrates, 401

both KS and PSTHs yield excellent results when we have a large number of Ca2+ spike 402

sequences that are all generated from the same intensity function. One of the reasons 403

for these good estimates is that by pooling all Ca2+ spike sequences, the statistics 404

become effectively Poissonian [31,48] and that in this case an optimal bandwidth for 405

KS [49,50] and an optimal bin size for the PSTH [49,51] is known. However, no a priori 406

estimates for a bandwidth or bin size exist when only a small number of Ca2+ spike 407

sequences with a few spikes each is available. As Fig. 6 shows the relative error in 408

estimating the true Ca2+ spike rate strongly depends on the bandwidth when Ca2+ 409

spikes are generated from an IG process and estimates are based on only a few Ca2+ 410

spike sequences. This severely limits the use of KS and PSTHs in estimating Ca2+ spike 411

rates from experimental recordings since firstly the ISI statistics are not Poissonian, and 412

secondly combining Ca2+ spikes from a large number of cells might not be possible as 413

we will discuss below. We therefore turned to Bayesian inference using GPs. 414

Importantly, the Bayesian approach already works for a single Ca2+ spike sequence. By 415

using a prior distribution p(θ) for the hyperparameters θ, i.e. the parameters that 416

describe the shape of the ISI distribution and that control the behaviour of the GP, we 417

explicitly represent the uncertainty associated with each hyperparameter. This 418

alleviates the need for fixing parameter values prior to the estimation of the Ca2+ spike 419

rate as is the case for PSTHs and KS. Figure 6 shows that GPs yield better results than 420
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KS. Moreover, we also obtain confidence intervals from the GP optimisation (Fig. 5), 421

which allows us to judge the quality of the Ca2+ spike rate estimation a posteriori. 422

Spike rates are often estimated from pooled data. This practice is well founded if 423

cells generate spikes with the same mechanism. When cells are stimulated, this 424

approach also assumes that each cell experiences the same stimulus time course. For 425

ligand-dependent signalling pathways, the last condition is usually met experimentally 426

by exposing cells to a constant stimulus. However, this might not be the situation in 427

vivo. We therefore used a microfluidics chamber to challenge HEK293T cells with a 428

time-varying concentration of carbachol. As Fig. 7 illustrates, different cells experience 429

different concentration profiles of carbachol. Importantly, when computing the average 430

over all stimuli time courses, not a single cell experiences this specific stimulation. To 431

identify cells that are stimulated in a similar manner and hence can be compared with 432

each other, we computed the weights of the three leading principal components of each 433

stimulus time course, and then used a k-means algorithm. We then determined the 434

most likely Ca2+ spike rate for each cell and computed the mean Ca2+ spike rate for 435

cells within a given group (Fig. 7). Overall, there is substantial variability in the Ca2+ 436

spike rates with respect to their mean. This results from the variation in the Ca2+ spike 437

sequences, which is illustrated by a comparison between the first and the third group. 438

This variability in the Ca2+ spike rates leads to intriguing questions. On the one hand, 439

the fluctuations could arise from the intrinsic stochasticity of Ca2+ spike generation. It 440

is known that cells challenged repeatedly with the same stimulus (and allowing for 441

recovery between successive stimulation) respond randomly (see e.g. [16]). Hence, the 442

observed Ca2+ spike sequences constitute a sample of the possible cellular responses 443

given a particular stimulus. On the other hand, the variability could stem from the 444

composition of the Ca2+ signalling apparatus in each cell. At the subcellular level, a 445

Ca2+ spike often corresponds to a travelling Ca2+ wave that is shaped by Ca2+ release 446

from intracellular storage compartments such as the endoplasmic reticulum and Ca2+ 447

sequestration by Ca2+ pumps [30,52–54]. The spatial arrangement of Ca2+ releasing 448

channels, Ca2+ pumps and Ca2+ buffers strongly affects Ca2+ waves and therefore 449

Ca2+ spikes [11]. Given that even genetically identical cells express different numbers of 450

the components of the Ca2+ signalling toolkit and arrange them in different spatial 451

patterns, the variability in the Ca2+ spike rates could reflect single cell variability at the 452

molecular level. The two sources for the variability of Ca2+ spike rates are not mutually 453

exclusive, and a mixture of both is most likely to occur in vivo. 454

To bring order to such disparate Ca2+ spike sequences, recent studies have shown 455

that when cells are challenged with a constant stimulus, a linear relationship exists 456

between the mean and the standard deviation of ISIs [12,15]. The slope of this 457

relationship was shown to be robust to interventions at the molecular level (blocking 458

Ca2+ pumps, energising Ca2+ release channels) as well as being cell type and agonist 459

specific. A theoretical analysis revealed that the slope could be determined by a 460

recovery timescale from global cellular inhibition after a Ca2+ spike. Therefore, one 461

expects that each cell type and each agonist can be characterised by this timescale. In 462

the present study, each cell possesses its own intensity function x(t). The organising 463

principle that will lead to a cell type and stimulation specific description of Ca2+ 464

spiking is given by the parameter values that describe the statistics of x(t), i.e. the 465

hyperparameters of the GP. Put differently, for a given cell type stimulated with a 466

specific agonist and application protocol, we expect one set of parameter values for the 467

GP. Heterogeneous cell responses then originate from different realisations of the GP. 468

To illustrate this concept, assume for the time being that the intensity function is 469

constant. In a population, there will be a spread of Ca2+ spiking behaviour, with some 470

cells only generating a few Ca2+ spikes, while others exhibit high Ca2+ spiking activity. 471

Consequently, the intensity function for slow spiking cells is low, while it is large for 472
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high frequency cells. For independent cells, as is the case in this study, it is reasonable 473

to assume that the values of the intensity function are normally distributed. This is 474

equivalent to saying that the intensity function of each cell is a realisation of a GP. The 475

assumption of one set of hyperparameters for a given experiment and cell type will allow 476

us to quantitatively compare different experiments and answer questions such as how 477

different cell types respond to the same stimulus, or how different stimuli shape Ca2+ 478

spike sequences in a given cell type. We expect that similar responses will be mirrored 479

in small differences between hyperparameter sets. 480

The last point raises the question of how transferable results are from one cell type 481

to another and from one stimulation scenario to another. In addition, the ultimate goal 482

of the modelling framework presented here is to apply it to physiologically relevant 483

tissues. For example, gap junctional coupling between cells, or paracrine signalling, 484

could potentially influence population heterogeneity. This would require an extension of 485

the modelling framework towards network dynamics, which may be a formidable 486

challenge, as predicting the network behaviour from single node dynamics is nontrivial, 487

let alone inferring single cell dynamics from within a connected tissue. 488

Conclusion 489

In this work we have developed a mathematical framework to quantitatively describe 490

the heterogeneous timing of Ca2+ spikes in a cell population subject to time-varying 491

stimulation. At the heart of this new approach is the use of Bayesian inference to 492

determine the most likely intensity function and hence the most likely Ca2+ spike rate 493

for a given stimulus. As part of this estimation process, we found that the statistics of 494

Ca2+ ISIs are best captured by an IG distribution. Importantly, knowledge of the 495

intensity function and the ISI statistics suffices to completely describe Ca2+ spiking. 496

Since generating Ca2+ spike sequences from an ISI distribution and intensity function is 497

computationally significantly cheaper than solving partial differential equations for 498

cellular Ca2+ transport, this approach is ideally suited for numerically studying large 499

numbers of cells. 500

The estimation of inhomogeneous single cell behaviour also puts us in an ideal 501

position to ascertain whether or not there is signal processing at the cell population 502

level. Indeed, numerous examples exist where the average population behaviour is not 503

shared by any cell (see e.g. [55]). These incongruous dynamics also warrant 504

investigations into population invariances, where cell populations respond consistently 505

in the same manner, albeit with completely heterogeneous single cell behaviour [56, 57]. 506

By reliably estimating single cell Ca2+ dynamics, the present study provides a stepping 507

stone towards answering these questions for intracellular Ca2+ signalling. 508

Materials and methods 509

Intensity function and Ca2+ ISI probability distributions 510

We here follow the exposition in [37] for the definition of the intensity function. Assume 511

that Ca2+ spikes occur at times y1 < y2 < . . . < yN . Let p(v) denote the probability 512

density for a general renewal process on v ∈ (0,∞), i.e. p(v)dv is the probability for an 513

event in [v, v + dv], and subsequent events are independent. For ya > 0, let y 514

correspond to a time variable on (ya,∞) and X be a one-to-one mapping X(y) = v of 515

(ya,∞) to (0,∞). Conservation of probability then entails that 516

p(y) =

∣∣∣∣dvdy

∣∣∣∣ p(v) = |X ′(y)| p(X(y)) . (2)
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In other words, the probability density for a Ca2+ spike at yi can be computed from the 517

renewal probability density p if we know the mapping X. A convenient form of X is 518

X(y) =

∫ y

ya

x(u)du , (3)

which satisfies the conditions above and where x is called the intensity function, which 519

is the object that we need to estimate. Equation (3) can be interpreted as rescaling the 520

original time y such that Ca2+ ISIs become independent and identically distributed in 521

the new time [58]. Given two subsequent Ca2+ spikes times yi−1 and yi in the original 522

time, the ISI in the new time is 523

X(yi−1, yi) =

∫ yi

yi−1

x(u)du . (4)

Since it is only through the introduction of the intensity function x(t) that Ca2+ ISIs 524

become Markov, we introduce the notation p(yi, yi−1|x), which corresponds to the ISI 525

probability density given x(t). Note that formally the conditional ISI probability 526

density is defined as the joint conditional probability density for spikes at yi and yi−1 527

(and hence no spike in [yi−1, yi]) given an intensity function x(t). We will employ three 528

different choices for the ISI probability density: an inhomogeneous Gamma distribution 529

p(yi, yi−1|x) =
γx(yi)

Γ(γ)
[γX(yi−1, yi)]

γ−1
e−γX(yi−1,yi) , (5)

where γ > 0 denotes the shape parameter and Γ is the Gamma function; an 530

inhomogeneous inverse Gaussian distribution 531

p(yi, yi−1|x) =
x(yi)√

2πX3(yi−1, yi)
exp

{
− (X(yi−1, yi)− α)

2

2α2X(yi−1, yi)

}
, (6)

where α > 0 is the location parameter; and an IP distribution 532

p(yi, yi−1|x) = x(yi)e
−X(yi−1,yi) . (7)

Bayesian Inference 533

The time-dependent intensity function x(t) is modelled as a Gaussian Process 534

(GP) [34,59]. A GP is uniquely defined by its mean µ(t) and covariance function 535

Σ(t1, t2). While there are many possible choices for Σ [34,60], we employ the widely 536

used squared exponential (SE) kernel 537

Σ(t1, t2) = σ2
fe−

κ(t1−t2)2

2 + δ(t1 − t2)σ2
v , (8)

where κ measures the smoothness of the GP and σf controls its variance. The last term 538

allows us to model additional noise sources. We originally included σ2
v as a 539

hyperparameter in the optimisation. However, we consistently found small values for σ2
v 540

and hence decided to fix it at a presentative value of σ2
v = 10−4. We collect the spike 541

times in a sequence of N Ca2+ spikes in a vector y = {y1, . . . , yN}. For consistency, we 542

set y0 = 0. Through the introduction of an intensity function x(t), the joint probability 543

density for a spike sequence y given x(t) factorises and reads as [36] 544

p(y|x) = p1(y1|x)pT (T, yN |x)

N∏
i=2

p(yi, yi−1|x) . (9)
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Here, p1(y1|x) represents the conditional probability density of finding the first spike at 545

time y1. We also take into account that the observation time T usually exceeds the last 546

spike time through the term pT (T, yN |x), which denotes the conditional probability that 547

no spike occurs after yN . The statistics for p1 and pT are often based on an 548

inhomogeneous Poisson (IP) process, i.e. 549

p1(y1|x) = x(y1)e−X(0,y1) , pT (T, yN |x) = e−X(yN ,T ) , (10)

where X is given by Eq. (3). 550

For practical purposes, we discretise time with a time step ∆ such that T = n∆ [36]. 551

When working with experimental spike trains, we set ∆ equal to the inverse of the 552

recording frame rate. A spiking time yi can then be expressed as yi = li∆ for an 553

appropriate li ∈ N. By setting xi = x(i∆) and using Eq. (9) with e.g Eq. (5), we obtain 554

the probability density for a spike sequence for the inhomogeneous Gamma distribution 555

as 556

p(y|x, θ) = xl1e−X̂0,1e−X̂N,n
N∏
i=2

γxli
Γ(γ)

[
γX̂i−1,i

]γ−1
e−γX̂i−1,i , (11)

where X̂i,j = ∆
∑lj
k=li

xk and l0 = 0, ln = n. By introducing θ on the left hand side, we 557

make explicit the dependence of the probability density on the hyperparameters θ, 558

which in this case are θ = {γ, κ, σf}. 559

The most probable intensity function x∗(t) given a spike train y is determined by 560

x∗ = argmaxx≥0 p(x|y). Under the assumption that the nodal value x∗ is close to its 561

mean, we have 562

x∗ ≈
∫
x∗θp(θ|y)dθ =

1

Z

∫
x∗θF (y, x∗θ, θ)dθ , (12)

where 563

x∗θ = argmax
x≥0

p(x|y, θ) = argmax
x≥0

p(y|x, θ)p(x|θ) . (13)

To evaluate the first integral in Eq. (12) we note that 564

p(θ|y) =
p(θ)

p(y)

∫
p(y|x, θ)p(x|θ)dx =

F (y, x∗θ, θ)

p(y)
, (14)

with F (y, x∗θ, θ) = p(θ)p(y|x∗θ, θ)p(x∗θ|θ)/
√
|Λ∗ + Σ−1| and Λ∗ = −L2

x log p(y|x∗θ, θ), 565

where we used Laplace’s approximation for the integral as shown in S1 Appendix. We 566

further introduced the notation L2
xf to denote the Hessian of f with respect to x(t) and 567

Z =
∫
F (y, x∗θ, θ)dθ = p(y)/(2π)n/2. 568

Time rescaling, quantile-quantile and Kolmogorov-Smirnov 569

plots 570

Let q(t|yk, x), t > yk denote the conditional intensity function, i.e. q(t|yk, x)dt is the 571

probability for a spike in [t, t+ dt] given an intensity function x(t) and the last spike at 572

yk. We can express q(t|yk, x) in terms of the ISI probability density as [31] 573

q(t|yk, x) =
p(t, yk|x)

1−
∫ t
yk
p(s, yk|x)ds

. (15)

The time rescaling theorem then states that the rescaled ISIs [31,47,61,62] 574

τk =

∫ yk

yk−1

q(s|yk−1, x)ds , (16)
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are independent and identically distributed exponential random variables with mean one 575

if y is a realisation from a point process with conditional intensity function q(t|yk, x). 576

Suppose there are K rescaled ISIs. For a quantile-quantile plot [46], we order the τk 577

in ascending order giving rise to the new ISIs τ̃n. We then plot the quantiles of the 578

distribution of the τ̃n against the quantiles of an exponential distribution with unit rate, 579

which are given by τ̂n = − ln(1− sn) with sn = (n− 0.5)/K. 580

For the Kolmogorov-Smirnov, plot [62], we define the random variable uk = 1− e−τk 581

and then plot the ordered set of the uk against the cumulative distribution function of 582

the uniform distribution, i.e. F (x) = x for 0 ≤ x ≤ 1, sampled at sn. 583

Kernel smoothing and L2 norm 584

The Ca2+ spike rate is estimated from m spike sequences via kernel smoothing (KS) 585

through [49,63] 586

r =
1

m

m∑
j=1

Nj∑
i=1

f(t− yji , σ) , (17)

where yji denotes the ith spike time in the jth Ca2+ spike sequence yj , and Nj is the 587

total number of spikes in yj . The function f represents the kernel, and we chose a 588

Gaussian of the form 589

f(t, σ) =
1√

2πσ2
exp

(
− t2

2σ2

)
. (18)

The parameter σ is referred to as the bandwidth of the kernel. In case we work with a 590

large number of independent Ca2+ spike sequences yj , we can use an optimal 591

bandwith [49,50]. To evaluate how well a given method (e.g. Bayesian inference or KS) 592

approximates the true Ca2+ spike rate used to generate surrogate data, we evaluated 593

the normalised L2 norm as 594

L2 =

[∫ t

0

(r̂(t)− r̃(t))2 dt

]1/2 [∫ t

0

r̃(t)dt

]−1
, (19)

where r̃ and r̂ denote the known and estimated Ca2+ spike rate, respectively. 595

Principal component analysis and clusterting 596

We arrange the stimuli experienced by individual cells in a matrix X such that each row 597

corresponds to a single stimulus time course. We then compute the singular value 598

decomposition of X, i.e. X = UΣV t, where t denotes transposition. The columns of V 599

correspond to the eigenvectors of XtX, and Σ is a diagonal matrix that holds the 600

singular values of X. The weights of the principal components of the stimuli time 601

courses are the rows of XV = UΣ. 602

The k-means algorithm requires the number k of clusters as input and then 603

determines the members of each cluster by minimising the error function [64] 604

E =

k∑
i=1

∑
x∈Ci

‖x− µi‖2 . (20)

Here, x are the data points, C1, . . . , Ck are the k disjoint clusters and µi is the centroid 605

of the ith cluster. We varied k and visually inspected the clustering. For consistency, we 606

also clustered the data using other algorithms such as mean shift, spectral clustering 607

and density-based spatial clustering of applications with noise. While there were minor 608

differences between the suggested clusters, the overall clustering structure remained the 609

same. 610
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Determining Ca2+ ISI distribution 611

To see which is the most likely ISI statistics, we apply the following protocol to every 612

single cell from the experiment shown in Fig. 1: 613

1. Choose one of the candidate ISIs (IP, IG, IIG) and estimate the most likely 614

intensity function x∗(t) using Bayesian inference as described above. 615

2. Compute the conditional intensity function based on x∗(t), q(t|yk, x∗), from 616

Eq. (15), and use it to plot the quantile-quantile and Kolmogorov-Smirnov 617

diagrams. 618

Performance of Ca2+ spike rate estimation 619

To test the performance of Ca2+ spike rate estimation, we generated surrogate data 620

from an IG for the two different intensity functions xdet(t) and xGP(t) using inverse 621

sampling, a Bernoulli process based on the conditional intensity function in Eq. (15) 622

and time rescaling [47,65,66]. 623

A key factor in estimating Ca2+ spike rates from PSTHs and KS is the choice of a 624

bin width and bandwidth, respectively. For a large number of Ca2+ spike sequences, 625

optimal estimates exist [49–51], and we use them for Fig. 4. In case of only a few Ca2+ 626

spike sequences with a small number of spikes per sequence, as in Fig. 5, no estimates 627

for a bin width or bandwidth exist. We therefore employed a bandwidth that was 628

approximately equal to the optimal bandwidth determined in Fig. 4 as well as 629

bandwidths 1.5 and 2 times larger than this. In addition, we used the same formal 630

expression as for the optimal value, which resulted in the bandwidth σ̂. Note that σ̂ 631

differs from the optimal bandwidth in Fig. 4, since it explicitly depends on the number 632

of Ca2+ spike sequences. 633

Calcium imaging of cells during dynamic stimulation 634

A bespoke perfusion system connected to a 3-port microfluidics device [67] was used to 635

expose cultured HEK293T cells to varying concentrations of the muscarinic receptor 636

agonist, carbachol. The HEK293T cell line was a gift from Dr N. Holliday, University of 637

Nottingham, that had been frozen after passage 28 of the original stock. After thawing, 638

cells were used for up to a further ten passages. Cells were seeded at a density of 105 639

cells/ml in the central micro-channel of the microfluidic devices, in DMEM D6429 640

growth media (Invitrogen, Paisley, UK) containing 10% fetal calf serum. Cells were 641

loaded inside the microchannels with 1 µM of the Ca2+ indicator Fluo5F-AM for 30 642

min, followed by washout with imaging buffer (135 mM NaCl, 3 mM KCl, 10 mM 643

HEPES, 15 mM D-glucose, 2 mM MgSO4 and 2 mM CaCl2) for at least a further 30 644

min. To stimulate the cells, the flow rates of two inlet channels into the microchannel 645

were varied, allowing the interface between the two solutions to be shifted laterally 646

across the chamber. One inlet stream contained the agonist (100 µM carbachol) and 647

Alexa Fluor 594 (AF594, 2 nM; to allow monitoring of agonist concentration in 648

proportion to AF594 fluorescence). The second inlet contained buffer alone. The 649

interface formed between the two solutions due to laminar flow was shifted across the 650

width of the microchannel by controlled changes in the fractional flow rates for each 651

stream, with total flow being constant. In combination with the shifting interface 652

position, the concentration gradient formed by diffusional collapse of the interface as the 653

co-flow progresses through the channel length results in a spatiotemporal gradient in 654

agonist concentration throughout the channel. This method enables the exposure of 655

cells to pre-defined, time-varying changes in agonist concentration, from simple 656

step-changes to complex waveforms. During dynamic stimulation with agonist, AF594 657
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and Fluo-5F AM indicators were excited sequentially (100 ms exposure, 1 Hz frame 658

rate) using a pE2 LED system (excitation peaks 470 nm and 565 nm; CoolLED, 659

Andover UK). Emission was detected at 535± 50 nm and 565± 20 nm with an 660

ORCA-R2 camera (Hamamatsu, Welwyn Garden City, UK). 661

Image analysis 662

A time-series analyser plugin to ImageJ (Wayne Rasband, National Institutes of Health, 663

Bethesda, MD, available at http://rsb.info.nih.gov/ij) was used to manually define 664

circular regions of interest (ROI) centred on each cell. Mean Fluo-5F emission intensity 665

of pixels falling within each ROI was quantified and expressed as the ratio of 666

fluorescence at time t divided by mean intensity from a 25 s window prior to the first 667

increase in stimulus concentration (F/F0). The baseline window is selected as the 668

window with minimum standard deviation from sliding 25 s windows taken from 0 to 669

120 s (before increase in stimulus concentration). Fluorescence of AF594 was quantified 670

as the mean fluorescence intensity of pixels falling within each ROI being quantified; 671

therefore each cell has a Ca2+ response measure and an associated stimulation profile. 672

Supporting information 673

S1 Fig. Determining Ca2+ spike ISI statistics. quantile-quantile plots for Ca2+ 674

spike sequences in HEK293T cells stimulated with (A) 100µM and (B) 10µM carbachol 675

when the ISI statistics is assumed to be an IIP (blue), IP (red) and IG (grey) 676

distribution. Box and whisker plots summarising the the quantile-quantile plots for (C) 677

100µM and (D) 10µM carbachol stimulation for the IP, IIG and IG models. The results 678

in (A) and (C) are based on the data shown in Fig. 1. The box extends from the first 679

quantile (Q1) to the third quartile (Q3) with the red line at the median. The lower 680

whisker corresponds to the smallest data point that is bigger than Q1−1.5×IQR, while 681

the upper whisker extends to the largest value that is smaller than Q3+1.5×IQR, where 682

IQR denotes the interquartile range Q3-Q1. We used 42 cells in (A), (C) and 21 cells in 683

(B), (D). 684

S2 Fig. Ca2+ spike rate estimation. Ca2+ spike rate estimations for data shown 685

in Fig. 4A for 1 (A), 2 (B), 4 (C) and 7 (D) randomly chosen Ca2+ spike sequences 686

(black dots) using KS with σ = 35 (grey), 52 (orange), 70 (purple), σ̂ (blue) and a 687

GP(black). The dotted red line denotes the original Ca2+ spike rate. The light blue 688

areas delineate the 95% GP estimation confidence interval. 689

S3 Fig. Statistical analysis of Ca2+ spike rate estimation for xdet. Ca2+ 690

spike sequences were generated using inverse sampling (A), a Bernouilli process (B) and 691

time rescaling (C), and we computed the L2 norm between the true Ca2+ spike rate and 692

the estimated Ca2+ spike rate based on the methods shown along the x-axis in each 693

panel. For details of the box plot, see Fig. 2. N = 100 for all three panels. 694

S4 Fig. Statistical analysis of Ca2+ spike rate estimation for xGP. Ca2+ 695

spike sequences were generated using inverse sampling (A), a Bernouilli process (B) and 696

time rescaling (C), and we computed the L2 norm between the true Ca2+ spike rate and 697

the estimated Ca2+ spike rate based on the methods shown along the x-axis in each 698

panel. For details of the box plot, see Fig. 2. We generated 100 calcium spike sequences 699

with each generator for the statistical analsysis. 700
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S1 Table Significant test for Ca2+ spike rate estimation. Based on the data 701

reported in S3 Fig and S4 Fig, we computed p values using the non-parametric 702

Mann-Whitney test. Significant results (p < 5× 10−2) are in bold. 703

S1 Video. Stimulated HEK293T cells. HEK293T cells cultured in microfluidics 704

chamber and loaded with Fluo-5F AM indicator. The green channel is Fluo-5F 705

fluorescence emission, and the red channel is AF594 fluorescence emission. Time stamp 706

is in seconds (frame rate of movie 20 f/s). Note delivery of carbachol (in same solution 707

as AF594) at 150 s, by displacement of solution interface during laminar flow. This cell 708

population is the same as shown in Fig. 1 of the manuscript. 709

S1 Appendix. Laplace’s integral approximation. 710
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