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 16 

ABSTRACT 17 

Most fMRI studies map task-driven brain activity using a block or event-related paradigm. Sparse 18 

Paradigm Free Mapping (SPFM) can detect the onset and spatial distribution of BOLD events in 19 

the brain without prior timing information; but relating the detected events to brain function 20 

remains a challenge. In this study, we developed a decoding method for SPFM using a 21 

coordinate-based meta-analysis method of Activation Likelihood Estimation (ALE). We defined 22 

meta-maps of statistically significant ALE values that correspond to types of events and 23 

calculated a summation overlap between the normalized meta-maps and SPFM maps. As 24 

a proof of concept, this framework was applied to relate SPFM-detected events in the 25 

Sensorimotor Network (SMN) to six motor function (left/right fingers, left/right toes, 26 

swallowing and eye blinks). We validated the framework using simultaneous 27 

Electromyography-fMRI experiments and motor tasks with short and long duration, and 28 

random inter-stimulus interval. The decoding scores were considerably lower for eye 29 

movements relative to other movement types tested. The average successful rate for short and 30 

long motor events was 77 ± 13% and 74 ± 16% respectively, excluding eye movements. We 31 

found good agreement between the decoding results and EMG for most events and subjects, 32 

with a range in sensitivity between 55 and 100%, excluding eye movements. The proposed 33 

method was then used to classify the movement types of spontaneous single-trial events in the 34 

SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, 35 

this paper discusses methodological implications and improvements to increase the 36 

decoding performance. 37 

 38 

 39 

 40 

Keywords: Functional MRI, decoding, meta-analysis, Activation Likelihood Estimation, Paradigm 41 

Free Mapping.  42 

 43 

 44 
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INTRODUCTION 46 

 47 

Resting state functional MRI (fMRI) data has been shown to contain signatures of brain activation 48 

relating to ‘spontaneous events’ or uncued tasks performed by the subject and recently various 49 

techniques have been developed to detect these activations (Liu et al., 2013, Smith et al., 2012, 50 

Gaudes et al., 2011, Petridou et al., 2013, Caballero Gaudes et al., 2013, Karahanoglu et al., 51 

2013, Cisler et al., 2014, Chen et al., 2015, Allan et al., 2015). It remains a major challenge to 52 

interpret spontaneous events in terms of brain function. Brain decoding enables us to relate 53 

detected brain activity to a specific mental state (Tong and Pratte, 2012). In recent years, 54 

machine learning algorithms have been applied to fMRI brain decoding (O'Toole et al., 2005, 55 

O'Craven and Kanwisher, 2000, Haxby et al., 2001, Cox and Savoy, 2003, Haynes and Rees, 56 

2005, Kamitani and Tong, 2005, Horikawa et al., 2013, Schrouff et al., 2012b). However, such 57 

algorithms typically require the acquisition of a training dataset involving similar experimental 58 

conditions to those that are to be subsequently decoded.  59 

 60 

An alternative approach is to decode fMRI data based on meta-analyses formed from prior fMRI 61 

studies, combining data across different experimental methodologies and parameters (Poldrack, 62 

2006), a process known as reverse inference. This approach has the advantage that it can 63 

provide information on a large range of brain functions, which is particularly important when 64 

decoding spontaneous events of unknown origin. It has been argued that such reverse inference 65 

can have predictive power for a given mental process if a brain region is actively engaged 66 

(Poldrack, 2006, Poldrack, 2011), by also taking account of task-setting in which the brain 67 

activation occurred as well as existing meta-analysis databases (Hutzler, 2014). However, 68 

reverse inference of spontaneous events is particularly challenging since the prior probability of 69 

these events is unknown, i.e. decoding is difficult if we have no prior information about what 70 

occurred during the data acquisition.  71 

 72 

The aim of this study was to decode task-induced and spontaneous events using Sparse 73 

Paradigm Free Mapping (SPFM) and meta-analysis. We used SPFM to detect short (3 s) and 74 

long (10 s) events in fMRI data without prior information on the timing of any movement or task 75 

by using a regularized estimator that deconvolves the fMRI voxel time series assuming a 76 

canonical haemodynamic response function (Caballero Gaudes et al., 2013, Petridou et al., 77 

2013). We then derived a decoding score relating detected patterns of motor activity to Activation 78 

Likelihood Estimation (ALE) obtained from meta-analysis of task-based fMRI studies (Turkeltaub 79 

et al., 2002, Laird et al., 2005). We validated the method by decoding events associated with 80 

known responses to a set of six motor movements of short and long duration collected with 81 

concurrent electromyography (EMG) recordings. We then used this method to determine the type 82 
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of spontaneous movements (within a predefined set of possible movements) undertaken during 83 

the period of a resting state fMRI acquisition acquired in the same experimental session.  84 

 85 

THEORY 86 

 87 

The following section outlines the use of Sparse Paradigm Free Mapping to detect events, and 88 

the formation of meta-maps and subsequent decoding of the fMRI data. 89 

  90 

(i) Sparse Paradigm Free Mapping (SPFM) for fMRI analysis 91 

Events can be detected within an fMRI dataset using Sparse Paradigm Free Mapping (SPFM), 92 

which requires no prior information on their timings. SPFM deconvolves the fMRI signal based on 93 

a linear haemodynamic model of the BOLD events using L1-norm regularized regression to give 94 

an SPFM activation map for each time frame in the fMRI data series (Caballero Gaudes et al., 95 

2013, Petridou et al., 2013). 96 

 97 

(ii) Formation of meta-maps 98 

A meta-map characterizes convergence between the results of different studies and provides a 99 

probabilistic atlas of brain function in response to a particular task, which allows us to infer 100 

whether activation in a given voxel is likely to be related to a particular task.  101 

 102 

Meta-maps can be formed using the Activation Likelihood Estimation (ALE) method implemented 103 

in GingerALE Version 2.3 (available at http://brainmap.org/ale/index.html) (Eickhoff et al., 2012, 104 

Eickhoff et al., 2009, Turkeltaub et al., 2012). The coordinate of brain activation due to a 105 

particular task, reported in a particular study considered in the meta-analysis, is known as a 106 

‘focus’ (Laird et al. 2005). To allow for the uncertainty in the position of the focus due to factors 107 

such as inter-subject variability and imperfect anatomical alignment, the probability distribution of 108 

the location of the focus is modelled as a 3D Gaussian distribution centered on the focus. Let Fi 109 

be the event that any of the foci of activation in response to a particular task from the i
th

 study 110 

included in the meta-analysis occurs in the j
th

 voxel, such that P(Fi)j is the probability that a focus 111 

from the i
th

 study occurs in voxel j. If X studies are now considered in the meta-analysis, the 112 

probability that a focus from any of the studies occurs in the j
th

 voxel is known as the Activation 113 

Likelihood Estimation (ALE) value and is given by the union of all the P(Fi)j, assuming that the 114 

results of all the studies are independent (Laird et al., 2005). For example, if there is one focus of 115 

activation and the ALE value for the j
th

 voxel is P(F)j)=0.01, there is a 1% chance that the focus 116 

from any of the studies included in the meta-analysis lay within the j
th

 voxel. A larger ALE value 117 

implies that there is a greater chance that one of the foci from the contributing studies lay in that 118 

voxel, and so one can infer a higher degree of association between that voxel and the relevant 119 

task.  120 
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 121 

In this study, we defined a meta-map as a map of statistically significant ALE values for a 122 

particular task, normalized to allow comparison between different tasks. The number of meta-123 

maps considered, M, determined the number of tasks that could be decoded. Table I shows the 124 

M = 6 movement task meta-maps considered in this study, together with the total number of 125 

voxels with significant ALE values and the range of significant ALE values for each meta-map. 126 

Table II shows the overlap between the different meta-map regions. Since the number of studies 127 

used to generate each meta-map differed, each meta-map had a different maximum ALE value. 128 

This arbitrary difference between ALE values must be overcome in order to use the meta-maps 129 

for decoding. Therefore, we normalized each meta-map by the sum of all voxel values within it, to 130 

yield a normalized ALE value:   131 

 �����,� =	 
����,�
∑ 
����.�

�

 [Equation 1] 

   132 

where J is the total number of voxels in the m-type meta-map and	
����,� is the ALE value of 133 

voxel j in the m-type meta-map. This normalized ALE value ensured that the probability across a 134 

meta-map summed to unity, and could be interpreted as the conditional probability of a focus 135 

location being in voxel j given there was a focus in meta-map m.  136 

 137 

(iii) Decoding of events 138 

The normalized meta-maps could be used to decode events detected with SPFM at each time 139 

frame by estimating a decoding score (Dm) that quantified the spatial overlap between an SPFM 140 

activation map and the meta-map associated with the m
th

 movement type, where the 141 

abbreviations used to indicate each movement type are indicated in parentheses in Table I. For 142 

each fMRI time frame, a non-conservative region of interest (ROI) was defined by applying a low 143 

z-threshold to the SPFM activation map. For each of the m meta-maps the normalized ALEs 144 

were summed within that ROI to give an Overlap Summation score Sm:  145 

 ������ =� �����,�
�
���	

 [Equation 2] 

 146 

where K was the total number of voxels in the ROI at a SPFM z-threshold ��. This process was 147 

repeated for sequentially increasing values of �� within a typical range of SPFM activation z-148 

scores, to obtain values of Sm as a function of SPFM z-threshold. The maximum possible value 149 

of Sm would be 1 (Equation 1), which can be interpreted as the probability of a focus from meta-150 

map m being fully contained within the ROI.  151 

 152 

The decoding score for each meta-map, Dm, was then defined as the area under the curve of Sm 153 

plotted against ��: 154 
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 �� = � ������	���
�����
����

 [Equation 3] 

 155 

where �� ! and �"#$" were minimum and maximum limits of typical SPFM activation z-scores.  A 156 

large Dm indicated a large overlap between the SPFM ROI and areas of significantly high ALE 157 

value (convergence of foci on the m
th

 meta-map), and thus the SPFM event was likely to involve 158 

the task related to that meta-map. Integrating Sm in this way overcame the need to choose a 159 

particular threshold, whilst ensuring that a high Dm occurred when the SPFM map overlapped the 160 

meta-map across a reasonable range of thresholds. Dm was then converted to a normalized 161 

decoding z-score: 162 

 163 

 %� = 	�� − '(�
)(� 	 [Equation 4] 

   

where '(� and )(� were the mean and standard deviation of Dm across all time frames for the m 164 

meta-map. False Discovery Rate (FDR) correction was then performed (q < 0.05), where the 165 

total number of hypotheses was the number of time points multiplied by the number of meta-166 

maps.  167 

 168 

This process resulted in M FDR-corrected, time series of decoding z-scores Zm (m = 1,P,M). 169 

Significant values of Zm could then be ranked, with the highest rank value of Zm corresponding to 170 

the most likely task type (if any) at each time point.  171 

 172 

METHODS  173 

 174 

The study was approved by the local Ethics Committee, and all subjects gave informed consent. 175 

Nine subjects participated, but datasets from two subjects were discarded due to incomplete data 176 

collection. The scan session included (i) short and long motor task fMRI paradigms for validation 177 

of the decoding method; (ii) resting state data for spontaneous event decoding assessment.  178 

 179 

Paradigm 180 

Motor tasks were used to validate the decoding method due to the high specificity of the 181 

Sensorimotor Network (SMN) resulting from the nature of its cortical organization (Penfield and 182 

Rasmussen, Penfield and Boldrey, 1937). These tasks involved six motor movements: 183 

movement of right or left toes (contraction of all toes of the foot), movement of right or left fingers 184 

(thumb brushed against the tips of the rest of the fingers from little finger to first finger with the 185 

hand palm facing down), eye blinks and swallowing. Subjects were instructed to perform these 186 

movements with minimal head motion. 187 
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 188 

Each MR session consisted of two paradigms: RUN1 (resting state and short task scan) and 189 

RUN2 (long task scan), chosen to test the algorithm in different conditions and illustrated in 190 

Figure 1(a). RUN1 consisted of a 5 minute resting state period followed by 10 minutes in which 191 

short motor movements were performed. During the resting state period, a blank screen was 192 

displayed and the subjects were instructed to keep their eyes open. Fifteen seconds before the 193 

motor movement task paradigm began a “GET READYP” text was displayed on the screen. A 194 

simple text instruction was then displayed indicating which movement was to be performed (e.g. 195 

“R FOOT”).  This was followed by a 3 second countdown display and then a red dot flashed 3 196 

times at 1 second intervals. Subjects were instructed to perform each movement task with every 197 

flash of the dot, except for the swallowing condition for which one movement was performed 198 

within the 3 second interval. A white fixation-cross then appeared for a random inter-stimulus 199 

interval of 18-24 seconds before the next movement instruction was displayed. This cycle was 200 

repeated twenty-four times (four trials of each movement type) within the 10 minute period. 201 

RUN2 consisted of 1 minute when a fixation cross was displayed, followed by 4 minutes of long 202 

motor movement tasks and then a further 1 minute of fixation cross. In RUN2 each movement 203 

type was performed continuously for a longer 10 second period (red dots flashed 10 times at 1 204 

second interval) and swallowing movements were performed twice within the 10 second interval. 205 

Only a single repeat was performed for each movement type in RUN2, and the inter-stimulus 206 

interval varied randomly between 28-32 seconds.  207 

 208 

Surface electromyography (EMG) was recorded throughout to detect muscle activity during the 209 

tasks. MR-compatible electrodes were placed on the arms (on left and right extensor digitorum) 210 

and legs (across the lower peroneus longus); these electrodes formed bipolar pairs, which were 211 

fed into a MR-compatible bipolar amplifier [ExG amplifier, Brain Products, Munich, Germany], a 212 

ground electrode was placed on the right elbow. A MR-compatible unipolar amplifier [MR-plus 213 

amplifier, Brain Products, Munich, Germany] was used to measure muscle movement in the neck 214 

and head simultaneously. Electrodes were placed above and below the center of the subject’s 215 

pupil (frontalis and lower orbital orbicularis- right eye only (Blumenthal et al., 2005)), on the jaw 216 

(masseter) and the right of neck midline to detect swallowing (approximately on the infrahyoid 217 

(Vaiman et al., 2004)), with the reference electrode placed on the nose and the ground electrode 218 

on the right mastoid bone. The electrodes were positioned to monitor the movements defined in 219 

the meta-maps (see Table I). EMG data were recorded at a sample rate of 5 kHz with a 220 

hardware filter set to record in the range 0.016-250 Hz with a roll-off of 30dB/octave at high 221 

frequency. All electrodes impedances were kept below 25 kΩ and all electrode leads were 222 

twisted to minimize wire loops and the consequential differential effect of the magnetic field on 223 

the leads (van Rootselaar et al., 2007). The bipolar amplifier monitoring limb movement was 224 

placed at the foot of the scanner bed, whilst the unipolar amplifier monitoring head movements 225 
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was placed at the head of the scanner bed. Activity of platysma muscles on the neck could be 226 

detected by the electrode on the neck (Vaiman et al., 2004), whilst swallowing movements could 227 

be distinguished by their distinctive EMG waveform.  228 

 229 

MR Data Acquisition 230 

Data was acquired on a Philips 7 Tesla Achieva scanner [Best, Netherlands] using a 32-channel 231 

head coil [Nova Medical]. fMRI data was acquired using axial gradient echo EPI (FOV=208 x 192 232 

x 84 mm, voxel size =2 x 2 x 3 mm
3
, 28 slices, TE=25 ms, TR=1.5 s, flip angle=64

o
, SENSE 233 

factor 3). To minimize head movements, foam pads were used to constrain the subjects’ heads 234 

within the head coil. During each fMRI scan, a Vectorcardiogram (VCG) and peripheral pulse unit 235 

were used to record the cardiac trace (whichever signal had best quality was used in analysis) 236 

and a pneumatic belt placed around the chest was used to record respiratory signals. These 237 

signals were collected to allow for physiological noise correction of the fMRI datasets and surface 238 

electromyography traces. Following the fMRI data acquisition, a three-dimensional, 1 mm 239 

isotropic high resolution T1-weighted MPRAGE scan and T2*-weighted spoiled-FLASH scan were 240 

acquired. 241 

 242 

Data Analysis 243 

EMG data were analyzed using BrainVision Analyzer2 [Brain Products, Munich, Germany]. 244 

Gradient and pulse artefact corrections were performed using the average artefact subtraction 245 

technique (Allen et al., 2000, Allen et al., 1998). The gradient artefact was corrected on all 246 

channels using a sliding window containing 61 volume averages. Pulse artefact correction was 247 

performed for the electrodes on the head and neck. The VCG was used to identify the R-peak of 248 

the cardiac cycle (Debener et al., 2008, Mullinger et al., 2008, Allen et al., 2000, Allen et al., 249 

1998) and a sliding window of 21 averages was employed in the pulse artefact correction. 250 

Absolute differences between active electrode pairs placed on arms, legs, the frontalis and lower 251 

orbital orbicularis (for eye movements), and jaw and neck (for swallowing movements) were 252 

computed to obtain a single EMG recording to monitor each limb, eye movements and 253 

swallowing. The EMG traces were converted to z-scores in MATLAB, and data points with 254 

amplitude more than twice the standard deviation of the mean (z-score ≥ 4) were inspected to 255 

ensure that they had the appropriate waveform for an EMG trace (to exclude residual gradient 256 

artefacts, etc.). The swallowing trace was analyzed by visual inspection since a particular 257 

waveform corresponded to swallowing (as opposed to head movement). Markers were manually 258 

placed on peaks that reflected both task-related and potential non-task related movements. The 259 

final results were visually inspected to discount false positives that could arise from spikes in the 260 

traces due to global movements.  261 

 262 
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Figure 1 (b) summarizes the fMRI data analysis steps. fMRI datasets were realigned [SPM8] 263 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), physiological noise corrected using 264 

RETROICOR (Glover et al., 2000), spatially smoothed with a 4 mm isotropic Gaussian kernel, 265 

and low frequency drift corrected up to and including third order fitted polynomials. The effects of 266 

signal changes due to sudden head movements were excluded by generating null regressors of 267 

those time points with |d’|>0.5 mm/scan where |d’| is the absolute derivative of the net 268 

displacement vector from the translational parameters of the realignment procedure (Lemieux et 269 

al., 2007).   270 

 271 

To increase computational efficiency, each participants’ fMRI data was analyzed in four sections: 272 

R1 (5 minute rest (resting state), scan dynamics 1-200 of RUN1), M1 (first 5 minutes of short 273 

movement task, scan dynamics 201-400 of RUN1), M2 (second 5 minutes of short movement 274 

task, scan dynamics 401-642 of RUN1) and M3 (long task, all scan dynamics of RUN2). Voxel-275 

wise mean correction was performed to compute percentage signal change. Voxels with variance 276 

in the top 0.5 percentile were excluded from further analysis, since these voxels tend to be 277 

related to draining veins. SPFM was performed on the datasets, using the 3dPFM function in 278 

MATLAB (now available in AFNI (NIH/NIMH), 279 

http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dPFM.html), using L1-norm Dantzig selector 280 

regularization path with Bayesian Information Criterion (BIC) for model selection. This produced 281 

an Activation Time Series (ATS) indicating time points corresponding to events for every voxel. 282 

Realignment parameters along with their Volterra expansion and null regressors (if any) were 283 

included as additional covariates (Caballero Gaudes et al., 2013). ATS outputs from SPFM were 284 

converted into a time course of maps of Z-scores. The SPFM output was then visually inspected 285 

to exclude any time frames that showed strong artefacts at the edges of the brain and brief whole 286 

brain activations (assumed to be motion or residual respiratory artefacts not removed by previous 287 

procedures). 288 

 289 

Creating Meta-maps and Decoding 290 

Meta-maps for each of the six movement types were created from a meta-analysis of 77 fMRI 291 

studies of the eye (n=24) mouth (n=18), hand (n=21), and foot (n=14) movements (Table I) using 292 

the BrainMap Sleuth Version 2.0 (BrainMap, http://www.brainmap.org/sleuth/) (see Supporting 293 

Information Tables I-IV). Voxel-wise ALE values were computed for each movement type, and 294 

these ALE maps were then thresholded using cluster-level inference correction (Eickhoff et al., 295 

2012). First, a cluster-forming threshold was chosen (uncorrected p=0.001). For this threshold, a 296 

null distribution of cluster sizes was simulated from 5000 experiments selected at random from 297 

the BrainMap database, with the same smoothness as the movement being considered (same 298 

number of subjects, and same number of foci). ALE values were computed on the foci from this 299 

random set of experiments and the cluster-forming threshold was applied. The resulting cluster 300 
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 10 

sizes were recorded and the process was repeated to produce a null distribution of cluster sizes. 301 

All cluster size values were used in each randomization run. A cluster-level inference threshold of 302 

p=0.01 was then chosen to determine whether each cluster in the ALE maps was obtained by 303 

chance. All ALE computations and cluster level inference correction were performed using 304 

GingerALE Version 2.3 software (BrainMap, http://www.brainmap.org/ale/) (Eickhoff et al., 2012, 305 

Eickhoff et al., 2009, Turkeltaub et al., 2012). The meta-maps were then normalized (see Theory 306 

section). The Supplementary Motor Area (SMA) is commonly active in all meta-maps involving 307 

sensorimotor tasks, and so to increase functional specificity between the six movement meta-308 

maps, the SMA was masked-out from the ROIs using the SMA mask from the Harvard-Oxford 309 

cortical atlas available in FSL (FMRIB, http://fsl.fmrib.ox.ac.uk/fsl/). 310 

 311 

The decoding z-score Zm (see Equation 4 in Theory section) was calculated for each meta-map 312 

m, at each time point, using trapezoidal numerical integration implemented in MATLAB between 313 

SPFM z-threshold limits in steps of z=0.1. We chose a non-conservative minimum limit zlow=0.1 314 

and zhigh=6 since these values were within the typical range of SPFM activation z-scores. Values 315 

of Zm > 6 resulted from residual movement artefacts and time frames with such artefact were 316 

excluded from analysis. The resulting Zm timecourses for each movement type m were FDR-317 

corrected (q=0.05). Significant decoding z-scores were used to rank the movements in terms of 318 

probability of each having occurred at each time point, with the decoded movement type being 319 

classified as that with the highest rank.  320 

 321 

For task-based paradigms, task stimulus timings and EMG traces were used to validate whether 322 

the actual movement took place (task or spontaneous movements). A True Positive (TP) was 323 

defined as occurring when the meta-map corresponding to the highest ranked Zm matched the 324 

movement type of the stimulus and was confirmed by the EMG trace. A False Negative (FN) 325 

occurred when the decoding method reported the incorrect movement type (FNwrong), or when Zm 326 

failed to decode any event (FNnull). It is not possible to know whether events detected 327 

without simultaneous activation in the EMG were actual False Positives since the EMG 328 

could only ever record a limited number of movements (restricted by the number of 329 

electrodes applied) so we defined these as potential False Positives (Table III). Decoding 330 

sensitivity was calculated as TP/(TP+ FN)%. For resting state data, the decoding z-score of 331 

detected spontaneous events was compared in a similar way to potential movements identified in 332 

the EMG trace.  333 

 334 

RESULTS 335 

 336 

EMG data 337 
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Upon visual inspection, EMG traces identified task movements cued by visual stimuli during the 338 

entire recordings in all subjects, except for Subject 4 and Subject 6. In Subject 4, contact 339 

between electrodes with skin surface at the eye, right foot and left foot became lose halfway 340 

through the short task experiment, so for those periods the time at which the stimulus cue 341 

occurred was used for validation purposes. In Subject 6, no significant EMG spikes were 342 

detected for the first left foot movement and second left hand movement, suggesting that this 343 

movement was omitted by the subject during the experiment.  344 

 345 

Motor Validation Task Data 346 

Figure 2 shows example SPFM maps detected at a time corresponding to a short task movement 347 

(visually cued swallowing also detected in EMG - Figure 2 (a)), and with no movement (no task 348 

stimulus and no EMG spike detected - Figure 2 (b)). The SPFM activation clusters detected 349 

during the swallowing task overlapped areas of significant Activation Likelihood Estimation (ALE) 350 

values for mouth movements in the corresponding meta-map. During the period of no movement, 351 

no activation was detected in the mouth movement meta-map ROIs (or indeed other motor 352 

ROIs), although a small area of activation can be seen posterior to the motor areas. Figures 2 (c) 353 

and 2 (d) plot the corresponding Overlap Summation score Sm (Equation 2) for the 6 movement 354 

meta-maps and also list the decoding scores Dm, based on the area under each of the curves 355 

(Equation 3). For short movement task, large activated regions with high z-scores were detected 356 

by SPFM, resulting in high Sm values that persisted at higher SPFM z-threshold, particularly 357 

when there was large overlap between the activation map and meta-map. In contrast, for the 358 

period of no movement the values of the overlap summation Sm were small at low SPFM z-359 

threshold and decreased rapidly with higher SPFM z-threshold for all movement types, since less 360 

activation was detected by SPFM.  361 

 362 

Figure 3 shows the time course of the decoding z-score Zm for each meta-map and the 363 

corresponding EMG z-score traces for the short motor tasks for Subject 1. Task-induced motor 364 

movements were detected by EMG at the time of the visually-cued stimuli (indicated by dotted 365 

red lines). Other spikes were detected sporadically in the EMG traces due to spontaneous (non-366 

task) movements or possible residual movements related to tasks due to close proximity of leads 367 

leading to the EMG breakout box. Swallowing events are not as apparent in the EMG traces as 368 

other movements, but they were detected by their distinctive waveforms, rather than by peaks in 369 

the EMG amplitude. Peaks in the appropriate decoding z-score timecourse were generally 370 

observed at the time of the visually cued stimulus for hand (LH and RH), foot (LF and RF) and 371 

mouth (Mo) movements. For eye blinks (E), the decoding score ZE failed to detect any task-372 

based movements. Two non-task-based swallowing movements were detected in the EMG 373 

traces during the left foot and left hand motor tasks at scan dynamics 110 and 137 respectively 374 

(green crosses). At these time points ZLF and ZLH had higher amplitudes than ZMo. Figure 4 375 
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compares all decoding score with all tasks for all subjects. It can be seen that, excluding eye 376 

movements, the highest ranked decoding score correspond to the correct (task) movement type. 377 

Peaks in the decoding z-score were also found that were neither task-related nor associated with 378 

EMG, for example at time points 184 (LF), 240 (M) and 390 (M) for Subject 1.  379 

 380 

Table IV summarizes the validation results from all subjects for RUN 1 (short motor task). This 381 

table shows that generally events were successfully decoded for hand, foot and mouth 382 

movements across all subjects. Table IV (a) indicates how often the maximum meta-map 383 

decoding score corresponded to a correct movement type. The average successful decoding 384 

rate was 66 ± 7 % averaging across all subjects and movement types (77 ± 13% when eye 385 

movements were excluded). The decoding rate was only 11 ± 18 % for eye movements across 386 

all subjects, for which all false negatives were due to no event being decoded (FNnull) (no 387 

significant overlap between meta-map and activation). From Table IV (b), it is also apparent that, 388 

besides Subject 3, most of False Negatives were FNnull, but hand movements had a higher 389 

misclassification rate (FNwrong greater than FNnull). Importantly for Subject 6, no significant EMG 390 

spikes were detected for the first left foot movement and second left hand movement, suggesting 391 

that this movement was not performed, the decoding results supported this finding since no foot 392 

movement was decoded at these time points. Table IV (e) also shows the number of null 393 

regressors included and suggests a relationship between decoding accuracy and lack of 394 

movement artefacts.  Spontaneous (non-tasked) movements were also detected by EMG (trace 395 

not shown in Figure 4), and some of these were successfully decoded for Subject 3 (24%) and 396 

Subject 4 (8%), Table V. There were also a number of decoded events that were not associated 397 

to any stimuli or EMG traces (excluding eye movements), shown in Table IV (d), which could be 398 

interpreted as false positives for the decoding but may be related to activity not detected by 399 

EMG. It is not possible to calculate Positive Predicted Value [TP/(TP + FP)] since we 400 

cannot confidently label detected events not associated with task or EMG as false 401 

positives (FP), since the EMG is unable to detect all possible movements. However, 402 

assuming that all potential false positives are actual false positives, the minimum Positive 403 

Predicted value would be 77% (range 64-100%). 404 

  405 

Figure 5 and Table VI summarize the results for RUN2 (long motor task). For Subject 1, at time 406 

point 41 there was an increase in decoding score for all movement types, indicating possible 407 

head movement that was not excluded by the null regressors (the absolute derivative of the net 408 

displacement vector of translational head motion at that time point was |d’|=0.41 mm/scan). The 409 

average successful decoding rate for the long task was 74 ± 16% excluding eye movements. In 410 

contrast to the short movement task, most False Negatives in the long movement task were 411 

attributed to misclassification (FNwrong). The minimum Positive Predicted value would be 47% 412 

(range 30-83%). 413 
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 414 

For the resting state dataset, SPFM detected spontaneous events in the Sensorimotor Network 415 

(SMN) that were not attributed to any given task. Asterisks indicate events that were found by 416 

decoding and confirmed by EMG. Figure 6 illustrates the variation in the types and durations of 417 

movement detected on EMG and decoded events between subjects in the resting state. The 418 

meta-maps overlaid on the SPFM maps for corresponding decoded events, corresponding to 419 

particular movements detected by EMG at rest for Subject 1 are also shown at the top of Figure 420 

6. Table VII (a) shows the fraction of spontaneous events for which the decoding agreed with the 421 

movement simultaneously detected on EMG. Table VII (b) summarizes spontaneous events that 422 

were detected at rest with significant decoding score, but which were not associated with any 423 

event detected by EMG.  424 

 425 

DISCUSSION 426 

We have demonstrated a method for decoding movement events in fMRI data with no prior 427 

knowledge of the nature of the movement and without using training data sets. Instead, we used 428 

Activation Likelihood Estimation and coordinate based meta-analysis. The decoding ranks the 429 

potential decoded movements at each time point, with the highest rank taken as the most 430 

probable movement type. We have validated the method on both long and short movement 431 

tasks, and have also shown that it can decode spontaneous activity occurring in resting state 432 

data.  433 

There has been substantial development in fMRI brain decoding in recent years involving visual 434 

perception, visual features, visual objects, novel visual scenes, attention processes, imagery and 435 

working memory, episodic memory, semantic knowledge and phonological representations (Tong 436 

and Pratte, 2012). Most of these methods use machine learning algorithms such as Support 437 

Vector Machines (SVM) to train a classifier to recognize spatial patterns in order to decode. 438 

Several studies have applied machine learning algorithms to decode non-task brain activity by 439 

building a classifier based on tasks. Schrouff et al. utilized machine learning (Gaussian 440 

Processes classifier) trained on three mental imagery tasks to access activity during rest periods 441 

before and after tasks (Schrouff et al., 2012a, Schrouff et al., 2012b). Although the results 442 

suggested that classification of resting state sessions can be performed by applying previously 443 

trained classifiers, this method is limited to the number of categories the decoder is trained for. 444 

Although our method is also limited to the number of meta-maps considered, it is easier to 445 

extend it by generating meta-maps for more categories from a large database of literature, 446 

compared to reconstructing new experiments to train the decoder. The concept of decoding 447 

using meta-analysis is supported by the availability of large-scale automated meta-analysis of 448 

fMRI data. Neurosynth (NIH, http://neurosynth.org/) (Yarkoni et al., 2011) measures similarity 449 

between a spatial activation map (such as T-map obtained using General Linear Models 450 
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analysis) and patterns associated with ‘cognitive maps’ available in its database using a spatial 451 

correlation (Pearson correlation). To our best knowledge, no method has been developed to 452 

decode spontaneous events quantitatively by means of voxel-wise coordinate-based meta-453 

analysis measures and without prior experiments undertaken by the subject being investigated.  454 

Depending on computational resources available, the method described is potentially time 455 

consuming to implement and run, but has the potential to provide unique information about 456 

behavior in the resting state, and separating of distinct behaviors from other brain activity. This 457 

could be useful in many ways, for instance, in clinical research studying somatic pain in 458 

conditions such as irritable bowel syndrome, or in psychological research in naturalistic 459 

paradigms or into emotional congruence. 460 

Validation 461 

We validated the technique using task-based data where the movement was confirmed by EMG. 462 

The decoding method was validated against 24 short task movement trials (3 seconds duration 463 

with 1 movement performed per second for each trial), and also against spontaneous events 464 

(which are inevitably quite sparse).  We found good agreement between decoding results and 465 

EMG for most events and subjects, with a range in sensitivity between 55 and 100% excluding 466 

eye movements. The sensitivity was lowest for Subject 3, probably related to the fact that this 467 

subject showed more motion. Across all subjects, only 11% of short eye movement tasks were 468 

successfully detected (high FNnull), probably because of the smaller BOLD signal in response to 469 

eye movements, which may be because eye blinks are very common movements that involve a 470 

smaller muscle volume compared to many other movements. Furthermore, there is a lack of 471 

fMRI literature on eye blinks, so that the studies included in the eye movement meta-map were 472 

predominantly eye saccades, which will not have been ideal for decoding eye blinks. This 473 

illustrates that decoding can only be achieved reliably if appropriate metamaps are available. 474 

During any tasked movement, the decoding score was largest for the meta-map corresponding to 475 

the movement being undertaken, but also tended to increase for other movement types. This 476 

may be due to overlap between the meta-maps (shown in Table II) or because activation was not 477 

confined to the region of a single meta-map during a particular movement. This could indicate a 478 

lack of selectivity in the brain’s response to a particular behavior, or functional connectivity within 479 

the SMN that is activated as a whole during a given movement (Biswal et al., 1995), although the 480 

SMA was masked out during the analysis to increase specificity to different motor activations. 481 

Alternatively, it could be due to imperfect registration of meta-maps to the subject’s data space or 482 

subject anatomical variability.  483 

 484 

Events may not have been decoded successfully, either because no activation was detected by 485 

SPFM or because the activation did not adequately overlap the appropriate meta-map. One 486 
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problem with the validation was that although we detected unexplained events (peaks in the 487 

decoding traces that were not detected by EMG - potential false positives), it was impossible to 488 

determine if these were actual false positives and hence specificity. Some such peaks are 489 

always expected since the EMG electrodes were placed at specific muscle locations, and thus 490 

not sensitive to all types of movements included in the meta-analysis; the proposed decoding 491 

method might provide the only means of interpreting such spontaneous activations. Nonetheless 492 

for Subject 6 where no EMG events were detected corresponding to tasked short movements, 493 

the method also decoded no movements, strongly suggesting that no movement was actually 494 

performed by the subject. The EMG setup was carefully designed to minimize artefacts due to 495 

the MRI environment, in particular limiting movement of the electrode leads when the subjects 496 

performed a movement. Nonetheless, visual inspection of the thresholded EMG traces showed 497 

that some residual lead movements were still picked up by nearby EMG channels (Figure 3). 498 

Further validation work would be simplified if movements could be automatically detected in the 499 

EMG trace, either by detecting non-periodic perturbations in the traces, or by pattern recognition 500 

of waveform patterns in a sliding window approach.  501 

Spontaneous events 502 

Although the term “resting state” is usually interpreted as no task being undertaken, in reality the 503 

brain is always actively performing tasks involving internal or external thoughts, or movements 504 

(Binder et al., 1999). Here we confirmed our previous finding that some spontaneous events in 505 

the Sensorimotor Network are in fact spontaneous movements as detected by EMG (Petridou et 506 

al., 2013). We have previously suggested that functional connectivity is somewhat driven by such 507 

spontaneous BOLD events (Allan et al., 2015, Petridou et al., 2013). To what extent these 508 

spontaneous events may cause differences in connectivity due to inter-subject or inter-group 509 

behavior variability is of great interest but still unknown.  510 

Non-tasked movements that occur at rest are often shorter and smaller than task-induced 511 

movements, generally causing weaker fMRI activations of smaller spatial extent, and thus 512 

insignificant decoding scores. Similarly non-tasked movements also produce lower EMG scores 513 

particularly since the EMG was probably not set up to detect the exact spontaneous movement 514 

being undertaken. These reasons will have led to, spontaneous events being less likely to 515 

be detected, decoded, and confirmed by EMG. However, we expect that faster sampling of 516 

fMRI data, for instance using simultaneous multi-slice imaging (Feinberg et al., 2010, Moeller et 517 

al., 2010), will provide significantly increased sensitivity to improve decoding. Furthermore, the 518 

underlying SPFM algorithms are designed to enforce sparsity in the number of events, but 519 

this might be relaxed particularly since the final statistical test for the decoding is much 520 

more stringent since it is based on the pattern of activation rather than a single voxel time 521 

course. Some spontaneous events were detected in resting state data with significant decoding 522 

score, but were not associated with any event detected by EMG. At this stage it is impossible to 523 
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know whether these events relate to spontaneous movements, reflect such lack of sensitivity in 524 

EMG, or reflect some other underlying spontaneous activity in the SMN, such as motor imagery 525 

or planning of action (Mizuguchi et al., 2014). 526 

In principle, this approach could be extended to study non-motor brain functions by including 527 

metamaps for a wider range of tasks, but this will pose a number of challenges. Firstly, the 528 

signals are sometimes smaller in the non-motor networks making detection and decoding more 529 

difficult. Secondly, the validation will be more complicated if there is no overt response involved, 530 

this might be addressed controlling the state of a subject (e.g. in naturalistic paradigms such as 531 

watching a movie) (Hasson et al.). 532 

Methodology 533 

This section discusses the methodology implications and improvements that can be 534 

made to increase the decoding performance in more detail. The TR was 1.5s, limiting the 535 

temporal resolution of the data set. Therefore, the 3 events occurring in the short paradigm or the 536 

10 events occurring in the long paradigm could not be separated, although the individual events 537 

were apparent in the EMG trace. Despite the temporal blurring of the hemodynamic response, 538 

we predict that increased temporal resolution, for instance by using simultaneous multi-slice 539 

imaging (Feinberg et al., 2010; Moeller et al., 2010), would help to differentiate between 540 

individual movements within blocks, in addition to enhancing the performance of the SPFM 541 

deconvolution, and consequently the decoding accuracy. This can be pursued in future as fast 542 

fMRI sequences become more routinely available. 543 

The proposed technique depends on the success of SPFM in detecting events. The combination 544 

of the L1-norm (sparse regression) and Bayesian Information Criteria model selection in SPFM 545 

controls the number of false positives for event detection (Caballero Gaudes et al., 2013). 546 

However, fMRI datasets that are corrupted by large motion artefacts and physiological noise may 547 

still have residual noise even after standard motion and physiological noise corrections. In this 548 

study, we included six translational motion regressors with their Volterra expansion as regressors 549 

for SPFM (Lemieux et al., 2007), and omitted voxels that displayed high variance which were 550 

probably due to draining vein artefacts. We also excluded frames by using null regressors where 551 

the displacement vector was greater than 0.5 mm per scan and visually scrutinized the SPFM 552 

results to exclude time frames that were suspected of containing other artefacts. Alternatively, 553 

other methods based on ICA decomposition and the identification of artefactual independent 554 

components, such as FIX (Griffanti et al., 2014, Salimi-Khorshidi et al., 2014) or AROMA (Pruim 555 

et al., 2015a, Pruim et al., 2015b), or more sophisticated tissue-based nuisance regression such 556 

as ANATICOR (Jo et al., 2010, Jo et al., 2013) could be explored to further reduce artefacts and 557 

physiological noise from the fMRI data. For the long task (RUN 2), the decoded activations did 558 

not extend through the entire stimulus duration (Figure 5). In future work, more sophisticated 559 
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SPFM algorithms using a structured L1-norm regularization, such as Fused Lasso or Smooth 560 

Lasso (Caballero-Gaudes et al., 2012, Hernandez-Garcia and Ulfarsson, 2011) could provide a 561 

more accurate deconvolution for prolonged and intermixed stimuli than the Dantzig Selector, 562 

potentially improving decoding accuracy.  563 

The method also depends on the accuracy of meta-maps, how well they correspond to the tasks 564 

being undertaken, and the overlap between them. The failure to decode eye movements in this 565 

study highlights that it is essential for studies used in the meta-analysis to be as similar as 566 

possible to the movement type to be decoded. The proposed decoding methodology required 567 

maps of expected patterns of activation in response to particular behaviors and for this it uses 568 

meta-analysis of many fMRI studies, rather than subject-specific data, although ALE attempts to 569 

account for intersubject variance by modelling the location of the activation as a Gaussian 570 

distribution. Using datasets acquired from the subject under investigation would increase the 571 

sensitivity by providing better overlap between the SPFM and meta-maps matching the subject’s 572 

anatomy. This might particularly benefit the decoding of more subtle activations seen in the 573 

resting state. However, this would greatly reduce the usefulness of the technique, as it would 574 

require all activations of interest to be mapped prior to the decoding experiment for each subject, 575 

rather than building on the expanse of fMRI literature. Increasing the number of studies used in 576 

the meta-analysis might also increase the accuracy of ALEs. An alternative approach is to 577 

integrate SPFM results with Neurosynth (NIH, http://neurosynth.org/), a platform that synthesizes 578 

activation results from many different fMRI studies (Yarkoni et al., 2011).  579 

Meta-analysis works well in Sensorimotor Network due to the high selectivity of its cortical 580 

organization with limited overlap between activated regions for different motor tasks (Penfield 581 

and Rasmussen, Penfield and Boldrey, 1937, Schott, 1993). Here we developed a method of 582 

increasing selectivity by masking out the SMA region common to all movement tasks, and further 583 

masks could be applied to focus on smaller activated areas (e.g. to decode which finger was 584 

being moved (Sanchez-Panchuelo et al.)). Conversely, if the aim were to separate primary types 585 

of activation (e.g. visual and motor), then the mask over the SMA could be removed. Extending 586 

the decoding method to cognitive resting state networks may be challenging since there is less 587 

functional selectivity in the relevant activation maps, which might thus reduce the likelihood of a 588 

valid reverse inference (Hutzler, 2014, Poldrack, 2011).  589 

In developing this method, we explored several alternative methods of estimating the probability 590 

that an activation area was related to a task. Simple binary conjunction between activation maps 591 

and meta-maps did not take into account the difference in z-score magnitudes of the SPFM and 592 

ALE values. Similarly, spatial correlation between activation and meta-maps was not appropriate 593 

since meta-maps are built from Gaussian distributions around foci of activations, which do not 594 

take account of the underlying shape of the pattern of activation in the individual studies, which 595 

are reflected in SPFM maps. Multiplying activation maps (z-scores) and meta-maps (via p-values 596 
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converted to z-scores) together can produce a high product value either due to the activation, the 597 

ALE or both, and these situations cannot be distinguished. Building a multivariate distribution 598 

from both the ALE z-scores and SPFM z-distribution was not appropriate because the joint 599 

distribution was generally biased along the axis of the SPFM distribution, making it impossible to 600 

define a simple confidence interval ellipse to detect outliers.  601 

The ‘decoding z-score’ developed here is a measure of overlap of SPFM spatial activations with 602 

the ALE meta-maps. An advantage of this approach is that it does not require a fixed threshold to 603 

be applied to SPFM z-scores, which is important since SPFM z-scores can vary significantly 604 

between scans, depending on fMRI data quality and inter-subject differences in BOLD response 605 

amplitude. The meta-maps were normalized to allow fair comparison between them. This 606 

normalization process assumes that behaviors corresponding to each of the M meta-maps are 607 

equally likely to occur in any given time frame. This is reasonable since each time frame is 608 

analyzed independently, which is fundamental to the concept of detecting and decoding 609 

spontaneous events. If the prior probability of certain events were known for some 610 

circumstances, the proposed method could be adapted to consider this information. 611 

The decoding performance reported here is lower than that reported for decoding 612 

methods based on machine learning or Multivoxel Pattern Analysis (MVPA). However, to 613 

our knowledge, previous attempts at decoding based on MVPA have been constrained by 614 

the need to acquire training data at an individual level. The proposed method decodes 615 

data from one individual using a meta-analysis of fMRI data, i.e. acquired on other 616 

individuals and at other times and locations, trading decoding power for lifting the 617 

constraint of needing to acquired training data. Future work should investigate whether 618 

the combination of machine learning approaches with fMRI meta-analyses would give 619 

increased decoding power, although the overlap measures used here could still be used 620 

as a measure of the contribution of different behaviors to a particular event. 621 

 622 

CONCLUSION 623 

To conclude, this work provides a novel method to decode events detected in fMRI data using 624 

Sparse Paradigm Free Mapping in combination with brain decoding based on meta-analysis. 625 

After validation in tasked motor movements, the proposed method has determined the nature of 626 

spontaneous movements undertaken in the apparent resting state, and we have confirmed these 627 

finding using EMG. These results underline our assertion that functional connectivity analysis of 628 

resting state data is inevitably affected by spontaneous and unpredictable behaviors. The 629 

decoding technique proposed here provides a means of interpreting such spontaneous activity. It 630 

is now necessary to determine the sensitivity of these methods to more subtle behaviors and 631 

responses. 632 
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FIGURE LEGEND 800 

 801 

Figure 1 (a): Experiment paradigm of RUN1 and RUN2. RUN1 comprised a 5 minute rest period 802 

followed by 10 minutes of short motor movement task (twenty-four 3-second motor task trials 803 

performed separated by a random inter-stimulus interval (ISI) of 18-24 seconds). 3 movements 804 

were done in each short task trial, with four trial repetitions of each movement type except for the 805 

swallowing movement which was performed once. RUN2 comprised a 1 minute green fixation 806 

cross, followed by a 4 minute long motor movement task (six 10-second motor task trials with 807 

random ISI of 28-32 seconds), and then a further 1 minute of fixation cross. 10 movements were 808 

done in each long task trial, except for swallowing movement which were performed twice, with 809 

one trial repetition of each movement type. (b): Flow chart of decoding method. SPFM was 810 

performed on pre-processed data from RUN1 and RUN2. Six meta-maps were generated for 811 

each movement type using cluster-level inference in GingerALE. A decoding z-score, Zm was 812 

then computed for each meta-map m at each time point to quantify spatial overlap between 813 

SPFM activation time frames and the m
th

 meta-map. All decoding scores were FDR-corrected 814 

(q<0.05). 815 

 816 

Figure 2: (a) Example SPFM map (red-yellow) for Subject 1 produced at time frame 154 of the 817 

short task RUN1 during a swallowing condition of the movement task detected by EMG. The 818 

SPFM map is overlaid on the corresponding meta-map (green). (b) SPFM map (red-yellow) 819 

produced at time frame 10 of the short task RUN1 (no movement expected or detected by EMG) 820 

overlaid on corresponding meta-map (green). (c) Overlap Summation score Sm for all movement 821 

types for time frame 154. (d) Overlap Summation score Sm for all movement types for time frame 822 

10. The decoding score, Dm , which is the area under each curves for (c) and (d), is given in 823 

respective colors indicated in the legend. 824 

 825 

Figure 3: Decoding z-score Zm (top row) and EMG z-score trace (bottom row) during short task 826 

paradigm in Subject 1 for each movement type: eye (E), swallowing (Mo), left hand (LH), right 827 

hand (RH), left foot (LF) and right foot (RF). Vertical dotted red lines indicate the times of the 828 

visual-cue stimulus, and vertical dotted green lines indicate movement detected by EMG trace. 829 

Horizontal aqua lines in EMG traces indicate  |z| > 4. Spikes in mouth EMG traces are not as 830 

apparent compared to other EMG traces because swallowing movements are reflected as 831 

distinctive waveform patterns, rather than an amplitude of the signal. Two non-task-based 832 

swallowing movement were detected by the decoding z-score at scan dynamic 110 and 137 833 

(indicated by green cross), however ZLF  and ZLH  at these time points had higher magnitude than 834 

ZMo. 835 

 836 
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Figure 4: Decoding z-scores (FDR corrected, q=0.05) during short task for all subjects. The 837 

colored bands indicate the tasked stimulus given to the subject. The colored lines show the 838 

decoding z-scores for each meta-map type. The movement type with the highest decoding z-839 

score is indicated by a colored square. The decoded movement types generally corresponded to 840 

the correct task (matching colored bands and squares), except for eye movements. 841 

 842 

Figure 5: Decoding z-score (FDR-corrected, q=0.05) during long task RUN2 for all subjects and 843 

movement types. The colored bands correspond to the periods of the tasked stimuli and the lines 844 

indicate the decoding scores. The colors corresponding to movement types displayed in the 845 

legend. Peaks of the decoding z-score are denoted with squares in respective colors. The 846 

movement type with the highest decoding score generally corresponded to visual-cued 847 

movement condition (matching colored bands and squares), except for eye movements.  848 

 849 

Figure 6: Decoding z-score (FDR-corrected, q=0.05) for all movement types during 5 minutes 850 

resting state for Subject 1 to 7. Spatial maps showing SPFM activations in z-score (red-yellow) 851 

overlay on meta-maps for time frames for n=7, 59, 88, 116, and 195 for Subject 1 are also shown 852 

at the top of the figure. The colored bands indicate movement detected in EMG traces with the 853 

movement type shown by the color in the legend. The colored lines show the decoding z-scores 854 

for each meta-map type. The movement type with the highest decoding z-score is indicated by a 855 

colored square. Asterisk (*) denotes decoded events that coincided with movements detected on 856 

EMG traces.  857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 
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Table I: Details on meta-map for each of the six movement tasks: eye (E), mouth (M), left and right hand (LH and 

RH), and left and right foot (LF and RF). The number of studies used to form each meta-map is listed, together 

with the total number of significant ALE voxels, and maximum and minimum ALE range in each meta-map. 

Meta-map 

 
Movement 

Type 

Eye 

(E) 

Mouth 

(Mo) 

Left Hand 

(LH) 

Right Hand 

(RH) 

Left Foot 

(LF) 

Right Foot 

(RF) 

No. of studies 24 18 21 14 

No. of 

significant ALE 

voxels 

6208 6411 3870 3877 2014 2012 

Maximum ALE 

(at centre of 

cluster) 

0.063 0.050 0.054 0.005 0.046 0.044 

Min ALE 1.7 10
-8

 1.5 10
-9

 4.0 10
-10

 3.3 10
-9

 3.7 10
-9

 3.7 10
-9

 

 

 

Table II: Percentage overlap between meta-maps calculated as the overlap area divided by the number of 

voxels in region (b). The SMA was excluded from all calculations.  

 PERCENTAGE OVERLAP BETWEEN META-MAPS, [(a)∩(b)]/(b) 

            (a) 

(b) 

Eye Mouth Left Hand  Right Hand Left Foot  Right Foot  

Eye 100.0 11.3 11.4 10.4 0.0 0.0 

Mouth 8.9 100.0 7.2 7.0 1.2 1.3 

Left Hand 17.7 14.2 100.0 0.0 2.1 0.0 

Right Hand 15.4 13.3 0.0 100.0 0.0 4.2 

Left Foot 0.0 6.3 5.6 0.0 100.0 8.6 

Right Foot 0.0 5.9 0.0 10.2 7.4 100.0 
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Table III: Summarizing the classification of different events for the example of hand movements. 

  No movement decoded in area expected 

from task or EMG 

Movement decoded in area expected 

from task or EMG 

EMG: No 

movement 

Potential True Negative (pTN): Cannot be 

sure since EMG only monitors certain 

muscle locations 

Potential False Positive (pFP): Cannot be 

sure since EMG only monitors certain 

muscle locations 

EMG: 

Movement 

False Negative: Decoding method either did 

not predict an event (FNnull), or decoded it 

incorrectly (FNwron) 

True Positive (TP) 
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Table IV: Events decoded in short movement task (RUN1). (a) Number of events where the highest decoding z-

score rank corresponded with the visually-cued tasked movement and EMG, (*except Subject 4, where 

validation was used visually-cued tasked movement only for left and right foot). (b) Total number of false 

negatives due to a misclassification (FNwrong) or no event detected (FNnull). (c) Success rate of decoded events 

averaged over all movement types, which describes the sensitivity of the decoding method. An event is 

successfully decoded when its highest rank of meta-map channel matches the visually-cued tasked movement 

and is confirmed by EMG. (d) Number of decoded events which were not associated with stimuli or EMG traces 

(potential false positives). (e) Total null regressors (time frames that had more than 0.5mm/scan displacement) 

that were included in the SPFM analysis. For subject 2, time frames n=203 to 208, which were during periods of 

rests, were also excluded due to artefacts. 

 

  

SHORT TASK PARADIGM (TASK-BASED MOVEMENTS) 

Subject (a)  

Number of events detected by decoding  

as a fraction of number expected by task and 

confirmed by EMG 

Excluding eye movements 

(e) 

Total Null 

Regressors 

(b) 

Total  

False 

Negative 

(FNwrong | 

FNnull) 

(c) 

%  decoded 

task 

events 

(sensitivity) 

(d) 

Number 

of decoded 

events not 

associated 

with stimuli 

or EMG (pFP) 

Eye Mouth 
Left 

Foot 

Right 

Foot 

Left 

Hand 

Right 

Hand 

1 0/4 3/4 4/4 4/4 2/4 4/4 3(1|2) 85 5 0 

2 2/4 4/4 4/4 4/4 4/4 4/4 0 100 5 5 

3 0/4 0/4  4/4 4/4  1/4 2/4 9(8|1) 55 4 15 

4 0/4 3/4  3/4* 2/4* 4/4 2/4 6(2|4) 70 8 5 

5 0/4 2/4 3/4 3/4 3/4 4/4 5(1|4) 75 7 0 

6 0/4 4/4 1/3 3/4 3/3 3/4 4(2|2) 77 0 10 

7  1/4 3/4 3/4 2/4 4/4 4/4 4(0|4) 80 5 5 

Total 

False 

Negative 

(FNwrong | 

FNnull) 

25 

(0|25) 

9 

(3|6) 

6 

(1|5) 

6 

(0|6) 

6 

(4|2) 

5 

(4|1) 

 

 

  

 % success 

rate 

averaged 

over all 

subjects 

11 68 77 82 79 82 
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Table V: Spontaneous (non-task) events were decoded in the short movement task (RUN1) (highest ranked 

decoding z-score Zm corresponds with correct spontaneous movement type in EMG trace). This table shows the 

number of events successfully decoded out of total number of events detected via EMG, excluding eye 

movements, and provides the best estimate of sensitivity for spontaneous events.  

Subject 

Number of successfully decoded events as 

a fraction of number of events detected via 

EMG (excluding eye movements) 

1 0/3 

2 0/3 

3 4/17 (1 mouth, 3 Right Foot) 

4 1/13 (1 mouth) 

5 0/1 

6 0/3 

7 0/2 
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Table VI: Events decoded in long movement task (RUN2). (a) Number of events successfully decoded in long 

task paradigm, which was verified using both stimuli markers and EMG. The expected total number of tasks 

perform per movement type is 1.  (b) Total number of false negatives due to a misclassification (FNwrong) or no 

event detected (FNnull). (c) Success rate of decoded events excluding eye movements (sensitivity). (d) Number of 

decoded events which were not associated with stimuli or EMG traces (potential false positives). (e) Total null 

regressors (time frames that had more than 0.5mm/scan displacement) that were included in the SPFM 

analysis. *For subject 1, 10 time frames were manually excluded from analysis due to residue artefact detected 

upon visual inspection (scan dynamic=24 to 27, 58 to 65). These time frames occurred during rest periods.  

 

 

 

LONG TASK PARADIGM 

Subject 

(a) 

Number of events decoded  

as  a fraction of number expected by task and 

confirmed by EMG 

Excluding eye movements  

(e) 

Total Null 

Regressors 
Eye Mouth 

Left 

Foot 

Right 

Foot 

Left 

Hand 

Right 

Hand 

(b) 

Total 

False 

Negative 

(FNwrong | 

FNnull) 

(c) 

%  

decoded 

task 

events 

(sensitivity) 

(d) 

Number 

of decoded 

events not 

associated 

with stimuli 

or EMG (pFP) 

1 0/1 1/1 1/1 0/1 1/1 1/1 1(1|0) 80 5 11* 

2 0/1 1/1 1/1 1/1 0/1 1/1 1(1|0) 80 9 10 

3 0/1 0/1 1/1 1/1 1/1 0/1 2(2|0) 60 6 9 

4 0/1 0/1 1/1 0/1 1/1 0/1 3(0|3) 40 3 23 

5 0/1 0/1 1/1 1/1 1/1 1/1 1(0|1) 80 3 0 

6 0/1 1/1 1/1 1/1 1/1 1/1 0 100 1 0 

7 0/1 1/1 1/1 0/1 1/1 1/1 1(0|1) 80 5 0 

Total 

False 

Negative 

(FNwrong | 

FNnull) 

7 

(0|7) 

3 

(1|2) 
0 

3 

(1|2) 

1 

(1|0) 

2 

(1|1) 

 

  

 

% success 

rate 

averaged 

over all 

subjects 

0 57 100 57 86 71 
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Table VII: Events decoded in resting state (RUN1). (a) Number of successfully decoded events (highest ranked Zm 

correspond with correct movement type in EMG trace) divided by the total number of movements detected in 

EMG. (b) Number of decoded spontaneous events which were not associated with stimuli or EMG traces. Eye 

movements were excluded for all tabulations.  (c) Total null regressors (time frames that had more than 

0.5mm/scan displacement) that were included in the SPFM analysis. *For subject 7, 6 time frames were 

manually excluded from analysis due to residue artefact detected upon visual inspection (scan dynamic, n =49 

to 54). 

MOVEMENTS DURING RESTING STATE (excluding eye movements) 

Subject 

(a) 

Number of spontaneous 

movements decoded and confirmed 

by EMG 

as a fraction of number expected by 

EMG 

(b) 

Number of 

decoded events 

not associated 

with EMG trace  

(c) 

Total Null 

Regressors 

1  4/19 (3 mouth, 1 left hand) 8 9  

2  1/2 (1 right hand) 5 0 

3 
4/32 (2 right foot, 1 left foot, 1 

mouth) 
1 

0 

4  2/12 (1 right hand, 1 mouth) 8 0 

5  1/4 (1 mouth) 9 0 

6  1/7 (1 right hand) 7 5 

7  2/12 (1 right foot, 1 right hand) 3 0 * 
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Figure 1 (a): Experiment paradigm of RUN1 and RUN2. RUN1 comprised a 5 minute rest period followed by 
10 minutes of short motor movement task (twenty-four 3-second motor task trials performed separated by 
a random inter-stimulus interval (ISI) of 18-24 seconds). 3 movements were done in each short task trial, 
with four trial repetitions of each movement type except for the swallowing movement which was performed 
once. RUN2 comprised a 1 minute green fixation cross, followed by a 4 minute long motor movement task 
(six 10-second motor task trials with random ISI of 28-32 seconds), and then a further 1 minute of fixation 

cross. 10 movements were done in each long task trial, except for swallowing movement which were 
performed twice, with one trial repetition of each movement type. (b): Flow chart of decoding method. SPFM 

was performed on pre-processed data from RUN1 and RUN2. Six meta-maps were generated for each 
movement type using cluster-level inference in GingerALE. A decoding z-score, Zm was then computed for 
each meta-map m at each time point to quantify spatial overlap between SPFM activation time frames and 

the mth meta-map. All decoding scores were FDR-corrected (q<0.05).  
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Figure 2: (a) Example SPFM maps for Subject 1 produced at time frame 154 of the short task RUN1 during a 
swallowing condition of the movement task detected by EMG. (b) SPFM map produced at time frame 10 of 

the short task RUN1 (no movement expected or detected by EMG). (c) Summation Overlap for all movement 

types for time frame 154. (d) Summation Overlap for all movement types for time frame 10. The decoding 
score, Dm , which is the area under each curves for (c) and (d), is given in respective colors indicated in the 

legend.  
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Figure 3: Decoding z-score Zm (top row) and EMG z-score trace (bottom row) during short task paradigm in 
Subject 1 for each movement type: eye (E), swallowing (Mo), left hand (LH), right hand (RH), left foot (LF) 
and right foot (RF). Vertical dotted red lines indicate the times of the visual-cue stimulus, and vertical dotted 

green lines indicate movement detected by EMG trace. Horizontal aqua lines in EMG traces indicate  |z| > 4. 
Spikes in mouth EMG traces are not as apparent compared to other EMG traces because swallowing 

movements are reflected as distinctive waveform patterns, rather than an amplitude of the signal. Two non-
task-based swallowing movement were detected by the decoding z-score at scan dynamic 110 and 137 
(indicated by green cross), however ZLF  and ZLH  at these time points had higher magnitude than ZMo.  
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Figure 4: Decoding z-scores (FDR corrected, q=0.05) during short task for all subjects. The colored bands 
indicate the tasked stimulus given to the subject. The colored lines show the decoding z-scores for each 

meta-map type. The movement type with the highest decoding z-score is indicated by a colored square. The 
decoded movement types generally corresponded to the correct task (matching colored bands and squares), 

except for eye movements.  
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Figure 5 : Decoding z-score (FDR-corrected, q=0.05) during long task RUN2 for all subjects and movement 
types. The colored bands correspond to the periods of the tasked stimuli and the lines indicate the decoding 
scores. The colors corresponding to movement types displayed in the legend. Peaks of the decoding z-score 

are denoted with squares in respective colors. The movement type with the highest decoding score generally 
corresponded to visual-cued movement condition (matching colored bands and squares), except for eye 

movements.  
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Decoding z-score (FDR-corrected, q=0.05) for all movement types during 5 minutes resting state for Subject 
1 to 7. Spatial maps showing SPFM activations in z-score (red-yellow) overlay on meta-maps for time 
frames for n=7, 59, 88, 116, and 195 for Subject 1 are also shown at the top of the figure. The colored 

bands indicate movement detected in EMG traces with the movement type shown by the color in the legend. 
The colored lines show the decoding z-scores for each meta-map type. The movement type with the highest 
decoding z-score is indicated by a colored square. Asterisk (*) denotes decoded events that coincided with 

movements detected on EMG traces.  
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