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Abstract  

For several years it has been argued that neural synchronisation is crucial for cognition. The idea that 

synchronised temporal patterns between different neural groups carries information above and beyond 50 

the isolated activity of these groups has inspired a shift in focus in the field of functional neuroimaging. 

Specifically, investigation into the activation elicited within certain regions by some stimulus or task has, 

in part, given way to analysis of patterns of co-activation or functional connectivity between distal 

regions. Recently, the functional connectivity community has been looking beyond the assumptions of 

stationarity that earlier work was based on, and has introduced methods to incorporate temporal 

dynamics into the analysis of connectivity. In particular, non-invasive electrophysiological data 

(magnetoencephalography / electroencephalography (MEG/EEG)), which provides direct 

measurement of whole-brain activity and rich temporal information, offers an exceptional window into 

such (potentially fast) brain dynamics. In this review, we discuss challenges, solutions, and a collection 

of analysis tools that have been developed in recent years to facilitate the investigation of dynamic 60 

functional connectivity using these imaging modalities. Further, we discuss the applications of these 

approaches in the study of cognition and neuropsychiatric disorders. Finally, we review some existing 

developments that, by using realistic computational models, pursue a deeper understanding of the 

underlying causes of non-stationary connectivity.  

 

Keywords: dynamic functional connectivity, magnetoencephalography, dynamic functional networks, 

electroencephalography, MEG, EEG. 
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1. Introduction 

The field of functional neuroimaging has undergone a paradigm shift over the past quarter century, 

evolving away from mapping tasked evoked areas of activation and towards identifying and 

characterising, either at rest or during a task, patterns of co-activation among spatially separate brain 

regions. More specifically, two or more regions are considered functionally connected if their activity 

profiles exhibit some statistical interdependency. Functional connections can be task-induced, where 

their cognitive or behavioral roles can be explicitly attributed, or in the absence of task (Engel et al., 

2013), where their apparent function is more ambiguous. Since a breakthrough study by Biswal and 

colleagues (1995), where the blood oxygenation level dependent (BOLD) response of the bilateral 80 

primary motor cortices was found to be highly correlated, a robust set of large scale functional networks 

have been identified (e.g. Beckmann et al., 2005; Brookes et al., 2011b; Cole et al., 2014; de Pasquale 

et al., 2012; Fox et al., 2005; Luckhoo et al., 2012; Raichle et al., 2001; Shulman et al., 1997; Smith et 

al., 2009; Stevens, 2016). These networks are of significant clinical interest in view of the mounting 

evidence that they are compromised in neurological disease (e.g. Friston, 1998; Kessler et al., 2014; 

Nugent et al., 2015; Palaniyappan and Liddle, 2012; Schnitzler and Gross, 2005). As the field of 

functional connectivity continues to mature, and we better characterise these networks, we introduce 

an opportunity to discover why network connections are perturbed in pathology. Exploiting these 

findings gives us the opportunity to move connectivity analysis from a tool for neuroscientists, into a 

biomarker for diagnosis, providing an objective measure of illness severity (Brookes et al., 2016), or 90 

even tracking the response to clinical intervention (Carbo et al., 2017). However to achieve this goal, 

further work is required to generate a true understanding of the interaction between network 

connections and the behaviour that they support. 

 

A large body of previous work has successfully characterised the spatial features of neural connectivity 

(Bastos and Schoffelen, 2015; Fox and Raichle, 2007; Friston, 2011; O'Neill et al., 2015a; Schoffelen 

and Gross, 2009), however many of these studies have ignored the temporal dimension of the data, 

i.e. when and how the strength of connectivity between regions varies across the experiment. It is 

generally accepted that modulations in communication between neuronal populations lie at the very 

heart of human cognition (Fries, 2015), with communication assumed to be mediated by neuronal 100 

oscillations (i.e. communication through coherence). Since neural oscillations modulate very quickly 

(Pfurtscheller and Aranibar, 1977; Pfurtscheller and Lopes da Silva, 1999), it therefore follows that 

connectivity should also change rapidly, especially in response to sensory and cognitive cues. An 

adequate description of dynamic connectivity will thus be crucial if we are to elucidate the nature of how 

cognitive processes are supported by networks. For example, time-locked oscillatory responses in 

typical experiments usually last on the order of several hundred milliseconds to a few seconds. The 

occurrence of these responses in relation to a stimulus is a crucial aspect to labelling these responses 

as, for example, top-down or bottom-up, or as feedforward or feedback processes. Static connectivity 

approaches have been applied widely to analyse the coordination of brain regions during a specific 

cognitive demand (Hampson et al., 2006; Lamme, 2003; Liddle et al., 2016; Peled et al., 2001). 110 

However, in contrast to dynamic measures, these static approaches are not time-resolved and therefore 

cannot disentangle the pipeline of information processing in the brain. Therefore a dynamic approach 

to connectivity could bring fundamental insight into the spatial integration of feedback and feedforward 

processes in the brain. 

 

Most research on functional connectivity has been performed using functional Magnetic Resonance 

Imaging (fMRI) due to the maturity and relatively widespread availability of this technology. However, 

the BOLD response is only a proxy for brain activity, and the sluggish nature of this haemodynamic 

signal can obfuscate rapid neuronal dynamics. fMRI has been used to study the dynamics of functional 

connectivity (Hutchison et al., 2013; Preti et al., 2016), but the time windows within which connectivity 120 

can be calculated with a reasonable degree of certainty are typically a minimum of thirty seconds, and 

are therefore not adequately time-resolved to address the question of network dynamics (Allen et al., 

2014). However, thanks to their excellent temporal resolution and good spatial coverage, 
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electrophysiological modalities open up an opportunity to measure neuronal oscillations and assess 

directly the fast fluctuations in neuronal coherence which lies at the very heart of dynamic 

communication in the brain. More specifically, electrocorticography (ECoG; Penfield and Jasper, 1954), 

magnetoencephalography (MEG; Cohen, 1972) and electroencephalography (EEG; Berger, 1929) are 

in a unique position to interrogate the shortest temporal scales of functional connectivity, with the 

encephalographic measures in particular being able to cover much of the cerebral cortex. Invasive 

electrophysiological recordings have managed to capture time-dependent correlations between 130 

oscillations in the mouse brain since before the turn of the millennium (MacDonald et al., 1996). 

However, it is only relatively recently that we have been able to reliably do this non-invasively with 

whole-cortex coverage in humans (de Pasquale et al., 2010; Liu et al., 2010). In summary, by 

investigating the dynamics of connectivity in the brain at the time fast scales that are accessible in 

electrophysiological data and commensurate with cognition, we have a unique opportunity to access 

how these connections evolve in time and how they may be perturbed by disease. 

  

In this review, we look at the current state of dynamical electrophysiological connectivity research in 

both sensory/cognitive tasks and the resting state, with a particular emphasis on non-invasive 

MEG/EEG measures, although these methods should also be applicable (or easily adaptable) to 140 

invasive data. The paper is organised as follows: Section 2 is a summary of some of the methodology 

required to measure functional connectivity in the static domain. Section 3 introduces a simple and 

popular method for capturing connectivity dynamics, the sliding window. We cover methodological 

considerations, as well as neuroscientific and clinical applications of this framework. However, the 

sliding window has significant limitations and so in Section 4 we look at current alternative methods to 

overcome such issues, along with examples of experimental findings. Finally, simply measuring 

dynamic connections, whilst powerful, cannot capture the biophysical processes underlying 

connectivity, so we need to use these observations in conjunction with computational models to explain 

our findings. Section 5 therefore looks at the current state of the modelling literature with respect to 

generating connectivity dynamics and explains how these findings are beginning to inform us about the 150 

underlying mechanisms of neural communication.  
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2. Measurement of static connectivity: a recap 

2.1 Connectivity Metrics 

A functional connection in the brain is defined typically as the ‘temporal correlation between remote 

neurophysiological events’ (Friston, 1994). However, the rich temporal structure of electrophysiological 

data warrants an expansion of this definition to include other types of ‘statistical interdependencies’ 

between two or more sources. The number of approaches to assess static connectivity has been 

steadily growing, with many studies assessing their strengths and weaknesses (Brookes et al., 2011a; 

Colclough et al., 2016; Garcés et al., 2016; Hassan et al., 2017; Liuzzi et al., 2016; Pereda et al., 2005; 

Wang et al., 2014). As choosing the correct metric from such a wealth of options may be cumbersome, 160 

we here propose a few simple criteria to guide the selection of the best-suited metric for a given data 

and research question. First, do we intend to assess relations between the phase, or the amplitude of 

neural activity? Second, are we assuming a linear relation between the time courses or an approach 

which can also account for non-linearity? Third, are we interested in directionality of information flow 

between the sources? Table 1 lists some popular metrics to assess connectivity, and specifies their 

place in relation to these criteria. Other measures such as phase-amplitude coupling (Canolty et al., 

2006; Florin and Baillet, 2015; Samiee and Baillet, 2017) and generalised synchronisation (Stam, 2004) 

are also interesting for the analysis of dynamic connectivity but they do not necessarily fit this simple 

categorisation. Particularly in MEG/EEG investigations, we also strongly recommend that functional 

connectivity analysis is performed at the source, rather than sensor level, as this removes many of the 170 

ambiguities associated with sensor level analysis (Schoffelen and Gross, 2009). In addition, sensitivity 

of functional connectivity detection may be improved by reconstructing multiple sources at the same 

location in multiple orthogonal orientations (i.e. a vector reconstruction; Huang et al. 2004). This is 

because typically selecting a single source orientation is usually based on the orientation of maximal 

signal variance (Johnson et al., 2011) and this is not necessarily the orientation of maximum 

connectivity. Some studies have adopted this multi-orientation approach and demonstrated improved 

measurements of connectivity (e.g. Marzetti et al., 2013). 

 

2.2 Controlling for signal leakage 

A problem of source reconstruction in MEG/EEG is that the sources may not be fully spatially resolved, 180 

but rather are smeared out across a relatively large brain volume. This problem arises primarily from 

inaccurate forward models and the ill-posed nature of the inverse MEG/EEG problem, which projects 

data from relatively few sensors to many possible source locations. This can result in two uncorrelated 

sources having their reconstructed time courses erroneously correlated. If ignored, this can artificially 

inflate the level of connectivity between two sources. The way leakage propagates across the source 

space is non-trivial, and solutions need to be implemented to reduce this effect on functional 

connectivity. Multiple solutions exist, though all are currently based on the same principle: leakage 

propagates instantaneously due to inverse reconstruction being time independent, so any zero-lagged 

relationship between two sources must be discounted or removed from the data entirely. Obviously, 

this does come at the expense of removing genuine zero-lag connectivity, which has been shown to be 190 

relevant in the invasive literature (Singer, 1999). 

 

The simplest method to reduce the influence of leakage on the estimation of connectivity is to use a 

leakage-invariant metric. For example, Imaginary Coherence (Nolte et al., 2004) uses only the 

imaginary part of the cross spectral density, ignoring zero and π-phase relationships and thereby 

removing zero-lag effects. The Phase Lag Index (PLI; Stam et al. 2007), builds upon the popular Phase 

Locking Value metric (Lachaux et al., 1999) by looking at the asymmetry of the distribution of phase 

differences, which can only be explained by non-zero phase lags. Other metrics use more involved 

processing to effectively minimise the effect of leakage. For example, Transfer Entropy (Schreiber, 

2000) uses conditional probabilities to regress out zero-lag relations. A few other metrics with automatic 200 

control for leakage are also listed in Table 1. 
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Nevertheless, many common metrics are sensitive to leakage and require a correction prior to their 

application. The simplest method to reduce leakage is to orthogonalise the data by performing a 

pairwise linear regression between a seed and test signal (Brookes et al., 2012b; Hipp et al., 2012). 

The orthogonalisation method can be extended into the multivariate domain to correct for leakage 

between two clusters of voxel timecourses, or multidimensional source timecourses generated from 

vector source reconstruction (Brookes et al, 2014, O’Neill et al 2015). For all-to-all connectivity analysis 

(where connectivity is assessed in a pairwise manner between each and every region pair), it is possible 

to use a systematic approach of sequential pairwise regressions between all nodes such that all signals 210 

are made orthogonal (Brookes et al., 2016; Hunt et al., 2016; Maldjian et al., 2014). However, such 

methods still result in so-called secondary leakage or ghost connections (Palva and Palva, 2012), where 

a genuine connection between two nodes spreads in space due to leakage from these nodes to other 

proximal regions. An elegant solution to this problem was proposed by (Colclough et al., 2015) where 

the entire set of regions of interest are orthogonalised symmetrically in one single computation using 

Löwdin Orthogonalisation (Löwdin, 1950). However, it is important to note the maximum number of 

timecourses which can be orthgonalised this way is limited to the rank of the data. Typically, this would 

correspond to the number of recordings (sensors or electrodes) from an experiment, but software 

processing such as Signal Space Separation (Taulu et al., 2004) can reduce this figure further.  

 220 

It is important to note that these leakage reduction methods do not ameliorate all effects on functional 

connectivity entirely. The limitations of these methods, in particular orthogonalisation, come from some 

of the technical assumptions required in the implementation. First, they require the raw data prior to 

correction to be Gaussian distributed (Brookes et al., 2014), which is not necessarily true. Secondly 

they also assume a constant signal to noise ratio (SNR) across time and frequency. The effects of 

varying SNR across frequency has not (to our knowledge) been investigated systematically. However 

in practice, the effectiveness of leakage reduction can be maximised by performing leakage reduction 

after bandpass filtering the data into the band of interest.  

 

Finally, it is possible to correct for leakage prior to the generation of source time courses by modifying 230 

the forward and inverse solutions. There are methods to calculate cross-talk functions (CTFs; 

(Farahibozorg et al., 2017; Hauk and Stenroos, 2014; Hauk et al., 2011) between sources and modify 

the inverse solution accordingly (DeFLeCT; Hauk and Stenroos 2014). Wens and colleagues (2015) 

take this idea one step further by correcting the forward solutions, ensuring that zero-lagged 

relationships of reconstructed sources in the immediate vicinity of the test region of interest are removed 

entirely. (Wens et al., 2015). In summary, there are a number of different methods for leakage reduction. 

These methods have been shown to be critical when computing static connectivity and they prove 

equally critical in estimating dynamic connections. 
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Connectivity Metric Type Relation Directed? Assumes Linearity? Leakage Control? 

Amplitude Envelope Correlation (Liu et al., 2010) Amplitude Coupling Marginal or Partial No Yes No 

Leakage controlled (orthogonalised) Amplitude Envelope 
Correlation 
(Brookes et al., 2012b; Colclough et al., 2015; Hipp et al., 
2012) 

Amplitude Coupling Marginal or Partial No Yes Yes 

Coherence (Nunez et al., 1997) Spectral Coherence Marginal or Partial No Yes No 

Imaginary Coherency (Nolte et al., 2004) Spectral Coherence Marginal or Partial No Yes Yes 

Phase Locking Value (Lachaux et al., 1999) Phase Coupling Marginal No No No 

Phase Lag Index (Stam et al., 2007) Phase Coupling Marginal No No Yes 

Weighted Phase Lag Index (Vinck et al., 2011) Phase Coupling Marginal No Yes Yes 

Phase Slope Index (Nolte et al., 2008) Phase Coupling Marginal Yes Yes Yes 

Phase Difference Derivative (Breakspear et al., 2004) Phase Coupling Marginal No Yes No 

Mutual Information (Paluš, 1997) Amplitude or Phase Coupling Marginal No No No 

Transfer Entropy (Schreiber, 2000) Amplitude or Phase Coupling Marginal Yes No Yes 

Granger Causality (Granger, 1969) Autoregressive Modelling Marginal Yes Yes Disputed 

Partially Directed Coherence (Baccala and Sameshima, 
2001) 

Autoregressive Modelling Partial Yes Yes Disputed 
 

Synchronisation lilekihood (Stam and van Dijk, 2002) Generalised synchronization Marginal  No No No 

 240 

Table 1: Some conventional connectivity metrics used on electrophysiological data which could be used in a dynamic and their associated 

properties.  Tabled adapted with permission from Colclough et al (2016).
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3 Measurement of dynamic connectivity  
There are numerous approaches to generating time evolving connectivity estimates from experimental 
data. However, they all have the same basic requirement: to infer how connected two ROIs are, multiple 
time points of data must be considered. How many time points are required is still an ongoing area of 
research which is discussed later, but in short there are two approaches to aggregating data to infer 
connectivity. The first, is to use multiple successive timepoints, whether that is using a temporal window 
(as in Section 3.1) or using other techniques (Section 4), this type of analysis is used extensively in 
experiments with no trial locking (such as resting state paradigms). Alternatively, if using multiple task 250 
trials, it is possible (in some cases) to infer connectivity across trials by aggregating across the same 
time point of multiple trials to generate connectivity dynamics. Whether that is by using a single sample 
from each trial (assuming it is the same point in time relative to a trial onset) or windows of data is 
dependent to the metric at hand.  
 
3.1 The sliding window approach 

The simplest way to assess dynamic connectivity is by using ‘static’ connectivity measures, similar to 

those in Table 1, within a sliding window framework. As illustrated in Figure 1, the time series of activity 

is segmented into time windows of width 𝑑, such that a window centered on time point t has window 

boundaries at 𝑡 ± 0.5𝑑. The window is then moved forward in time a certain step 𝑠, connectivity is 260 

assessed in this new window, and the process is repeated so that we can generate a time course of 

connectivity. The power of the sliding window is, that due to its fundamental similarities to a static 

analysis, most ‘conventional’ connectivity metrics in Table 1 should be compatible with it with little 

alteration, making it a flexible approach. However, one parameter selection which is not trivial, is the 

window length, with different connectivity metrics requiring differing lengths to adequately assess 

connectivity (e.g, it has been shown that phase lag metrics typically require more data to show 

consistent results than amplitude metrics; Colclough et al, 2016). That said, the sliding window is a 

popular and simple method that has been used in both the fMRI (Allen et al., 2014; Chang et al., 2013; 

Elton and Gao, 2015; Hutchison et al., 2013; Kucyi and Davis, 2014; Preti et al., 2016; Tagliazucchi et 

al., 2012) and MEG/EEG literature (Baker et al., 2012; Betti et al., 2013; Brookes et al., 2011a; Brookes 270 

et al., 2014; Brovelli et al., 2017; Carbo et al., 2017; de Pasquale et al., 2010; de Pasquale et al., 2016; 

Doron et al., 2012; Lee et al., 2017; O'Neill et al., 2015b; O'Neill et al., 2017; Yang et al., 2012).  
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Figure 1: A cartoon describing the sliding window method to assess connectivity dynamics. 

Connectivity is assessed over a 𝒅 = 𝟎. 𝟐 s wide window (top panel, red dashed rectangle). 

Connectivity (in this case, correlation) can be assessed between the two windowed timecourses 

and the result is represented on the bottom panel as the asterisk at 𝒕 = 𝟎. 𝟏 s. The window is 

allowed to move in steps of 𝒔 =  𝟎. 𝟏 and the process is repeated to generate a timecourse of 280 

connectivity. Here this reveals a period of strong anticorrelation between the timeseries, 

followed by strong positive relation.  

 

3.2 Leakage correction revisited  

It is usual practice to control for leakage on the entire data set in a single step (see the static reduction 

flowchart in Figure 2A). However, as shown by O'Neill and colleagues (2015b) both analytically and in 

simulation, if the variance of the source time courses changes between windows, so does the effect of 

leakage. Figure 2B-C shows simulation results from O’Neill et al. (2015b); which show that in a null 

simulation where no zero-lagged relations between the seed region (blue dot) and the test regions (red 

volume) should exist, leakage is not entirely ameliorated if you do not control for leakage on the temporal 290 

scale at which connectivity is assessed on. In view of these results, we conclude that leakage needs to 

be reduced within every window in which connectivity is assessed rather than over the entire data set, 

as illustrated in the dynamic correction flowchart in Figure 2A. 

 

3.3 Identification of repeating patterns of connectivity/co-varying network patterns 

When studying dynamic connectivity, one typically assesses connectivity between all possible regions 

of interest and within many time windows. This means that thousands of connectivity matrices are 

typically estimated, calling for an automatic method to aid analysis of the results. Many methods have 

been proposed to find patterns in the set of connectivity matrices that are interpretable and functionally 

meaningful. Many of these methods are based upon the assumption that connectivity manifests itself 300 

in recurrent or repeating (spatial or temporal) patterns.  
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Figure 2: The dynamics of signal leakage. A) A flowchart illustrating the pipelines of sliding 

window connectivity analysis with no (red), static (green) and dynamic (blue) leakage reduction. 

B) A simulation in which a source is placed in the left hemisphere (blue dot) and the extent of 

the zero-lag relation between it and locations in the red test volume in the opposite hemisphere 

is measured. C) The results of the simulation, showing clear temporal structure to the leakage 

which is only completely eliminated when dynamic leakage reduction is applied. Panels B and 

C are adapted with permission from O’Neill et al (2015). 310 

 

K-means clustering (MacQueen, 1967) looks for groups or clusters of data points (typically adjacency 

matrices) that are proximal to each other in a multivariate space. In this case, a cluster will contain 

connectivity maps with similar topologies (or repeating spatial patterns of connectivity) across time. K-

means allows for each “snapshot” of connectivity to be categorized into one of a (user-defined) number 

of ‘states’, where each state corresponds to a set of connection patterns. This at first may appear 

unintuitive to collapse down an entire experiments worth connectivity results into a handful of networks 

if we want to investigate their dynamics. However, each state is accompanied with a binary timecourse, 

and as seen in Figure 3A, if we were to average these timecourses across trials, we can generate a 

probabilistic timecourse, which describes the likelihood of any given network ‘occurring’ at a specific 320 

point in a trial (Figure 3B). This method has often been used in fMRI analyses since a study by Allen et 

al. (2014), and has also been shown to work in both MEG (O’Neill et al, 2015) and EEG (Mheich et al, 

2015; Hassan et al, 2015). In a similar vein, Hutt and colleagues introduced a variant of k-means 

designed to work on cyclic data, such that clustering can be performed on phase information extracted 

from neuronal oscillations instead of using the connectivity profiles (Hutt et al., 2003). K-means 

approaches have some limitations however, the first being an a-priori knowledge of the number of states 

is required. Secondly k-means assumes that all of the connectivity profiles it is presented with (i.e. all 

windows) can be catagorised, which may not be the case and finally, it assumes mutual exclusivity of 

the states (i.e only one network is ‘active’ at a given point in time). 

 330 



11 
 

 
 

Figure 3: Binary timecourses in connectivity. A) Timecourses from (for example) k-means 

clustering which gives a binary representation of whether a state was ‘active’ or ‘inactive’. These 

results themselves are not easily interpretable, but if each time series is averaged across trials 

(as in panel B) it can reveal dynamics in connectivity in the trial average. In this case it reveals 

a functional connection is most likely to occur when a cue is initiated. 

 

Another popular approach, Independent Component Analysis, has been used extensively to find 

functional networks based on common activation time courses in MEG/EEG (Brookes et al., 2012a; 340 

Brookes et al., 2011b; Hall et al., 2013; Knyazev et al., 2016; Koelewijn et al., 2017; Koelewijn et al., 

2015; Luckhoo et al., 2012; Nugent et al., 2015). In the case of dynamic connectivity, instead of applying 

independent component analysis to activation time courses, one could also apply it to a set of 

connectivity time courses (e.g. from sliding windows) to identify networks based on common 

modulations in connectivity between regions. The number of ‘unique’ connectivity timecourses in a 

dynamic connectome will likely be lower than the number of connections measured. ICA exploits this 

by extracting common connectivity timecourses across multiple connections between nodes. In this 

type of analysis, each independent component timecourse represents the temporal evolution of 

connectivity (O’Neill et al 2017) whilst the ICA mixing matrix describes a set of connections which 

modulate in a similar way and hence represents a network in which all connections share a similar 350 

behaviour. This allows for identification of networks which overlap spatially to be unmixed if each 

topography has a different temporal signature (O’Neill et al 2017).  

 

Other methods based on signal decompositions include (but are not limited to) principle component 

analysis (Leonardi et al., 2013), dictionary learning (Grandjean et al., 2017), tensor decomposition 

methods (Escudero et al., 2015) and dynamic community detection (Bassett et al., 2013; Mucha et al., 

2010). The latter two methods, tensor decomposition approaches and dynamic community detection, 

have recently been applied in the field of complex networks (Gauvin et al., 2014). Tensor decomposition 

approaches, such as non-negative tensor factorization, can be regarded as higher order variants of 

principal component analysis, where instead of vectors, algorithms are fed with tensors (e.g. 360 

concatenated time varying connectivity matrices). Likewise, this results in different subnetworks 

characterised by their activity time course. This approach has been applied to fMRI data and to models 

of phase oscillators, which allows us to extract similar time evolving subnetworks as ICA (Ponce-Alvarez 

et al., 2015). Community detection is the extension of the widely applied community detection algorithm 

in static networks (Newman, 2010), which has also been shown to reveal similar subnetworks as 

resting-state networks obtained from independent component analysis (Crossley et al., 2013; Meunier 

et al., 2009). The idea is to optimise a graph theoretic function, called modularity, which quantifies within 
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community connections relative to connections between communities (Basset et al., 2013; Mucha et al 

2010). This results in an assignment of every node in the network to a community. However, the open 

question remains whether all these different approaches to extract reoccurring patterns of connectivity 370 

capture similar or complementary spatiotemporal information. Are all approaches sensitive to network 

changes occurring at the same time-scale or do we need a set of pattern identification approaches to 

detect network modulations occurring at different timescales? These questions will need to be 

addressed in future research. 

 

3.4 Statistical inference 

Perhaps the greatest difficulty when assessing the dynamics of functional connectivity is determining 

quantitatively whether or not a change in connectivity between windows is due to a genuine 

nonstationary process, or simply a result of stochastic noise on the measurement. Indeed, it has been 

shown that a stationary connection can be artefactually deemed dynamic because of changes in the 380 

SNR of experimental data (Betzel et al., 2016; Hindriks et al., 2016; Lindquist et al., 2014). Therefore, 

adequate statistical testing needs to be applied to assess which changes in connectivity are truly 

meaningful. Statistical testing of dynamic data has extra computational complications over its static 

counterpart due to the number of time points we need to test.  

 

In task data, the solution proposed by Maris and Oostenveld (2007) to test for significant changes in 

power in MEG/EEG can be adapted to accommodate dynamic connections. The idea is to perform 

significance testing on the trial-averaged connectivity time course, such that a time-evolving non-

parametric null distribution can be generated using pseudo-trials. For example, generating pseudo-trial 

averages based on random trial onset times allows us to test whether the start of a trial or onset of a 390 

cue significantly deflects levels of connectivity and when significance occurs. This can also be applied 

to other null-hypotheses, such as testing for differences in connectivity between groups, where each 

permutation of the null distributions involves randomly assigning each trial or participant to one of two 

conditions. If connectivity time courses are extracted using ICA, a similar non-parametric method based 

on “sign flipping” can be implemented (Hunt et al., 2012; O'Neill et al., 2017; Winkler et al., 2014). The 

idea is to generate a surrogate time course by randomly selecting portions of an independent 

component (e.g. corresponding to half the participants), multiplying that section by -1 and then looking 

at the trial averaged component. By repeating this process multiple times, we can again generate a null 

distribution which evolves over time. The reasoning behind this idea is that, if there is a change in 

connectivity at a given point of the trial which is not present across all subjects, then the surrogate time 400 

courses would have the same magnitude as the real trial-average. Conversely, if the effect were 

genuine, the surrogate time course would have a significantly diminished magnitude (from timecourses 

cancelling out) and so the genuine timecourses would exceed the null threshold.    

 

For situations where trial averaging or time locking cannot be implemented (such as in resting-state 

analysis), testing the confidence in a time varying connectivity estimation from (for example) sliding 

windows becomes more difficult. What you can test for is whether the fluctuations seen in a connectivity 

timecourse are spurious measurements or are a genuine observation.  Here one would test against the 

null hypothesis, that connectivity across the entire experiment is static, and apparent connectivity 

dynamics can be explained by an inability to precisely measure this when using a portion of the time 410 

series. To test this hypothesis, one has to construct surrogate data with the same covariance structure 

(i.e. maintaining the same level of static connectivity) and measure a given statistic of the surrogate 

connectivity time series, for example variance (such as in Hindriks et al., 2016), or perhaps the 

connectivity level in a given window. Should the respective test statistic of the original connectivity 

timecourse exceed the null, then the null hypothesis can be rejected. Whist there is no universal 

permutation method to generate surrogate data, there currently two popular ways which have been 

used in respect to connectivity dynamics.  Phase randomization (Prichard and Theiler, 1994) of the 

original test data (Betzel et al., 2016; Brookes et al., 2014; Hindriks et al., 2016) is one such method. 

This has been shown to be effective for choosing a significance threshold in MEG data (Brookes et al 
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2014), but phase randomization necessarily assumes Gaussianity in the original data, unless specific 420 

adjustments are made as in Betzel et al. (2016).  Alternatively, one can model each time course of 

activity with a Vector Autoregressive Model (VAR) and, from there, generate a surrogate dataset which 

can have a coloured spectra (Chang and Glover, 2010; de Pasquale et al., 2016; Zalesky et al., 2014), 

however one has to ensure the model order is carefully chosen so tests do not return false positives or 

negatives. Crucially, what we are not testing for here is whether a connectivity timecourse is stationary 

or not in the strict statistical sense, but merely a confidence in the observations. As shown in a recent 

paper Liégeois and colleagues (2017), rejecting the null hypothesis in this way does not unequivocally 

prove that connectivity is non-stationary, but could also be due to nonlinear and/or non-Gaussian data. 

The field of testing for connectivity fluctuations in the resting state and interpreting the findings is not 

trivial, but the aforementioned paper by Liégeois et al. (2017) serves as a helpful primer on these topics. 430 

This remains one of the most critical areas for future investigation. 

 

3.5 Findings using sliding window approaches 

Sliding window approaches for dynamic connectivity have been applied in basic neuroscientific and 

clinical studies. For example, de Pasquale et al (2010) used sliding windows to measure connectivity 

in the default mode network (DMN) at rest. First, they found the correlation between nodes would 

strongly fluctuate throughout the course of an experiment. There would be epochs where the entire 

DMN would be connected, followed by periods where only a subset of regions were connected. As a 

result, they found that network topography could be better resolved when selecting windows exhibiting 

the strongest correlations during a recording rather than using a static window representing the entire 440 

experiment. In a follow up study, de Pasquale and colleagues (2012) investigated whether other resting 

state networks shared the same dynamic properties. They found that when the DMN nodes exhibited 

high intra-network connectivity, it would be seen to strongly connect to nodes of other networks typically 

seen in resting state paradigms (de Pasquale et al., 2012). This behaviour of the DMN cross-interacting 

with other networks supports the idea that that the DMN is a cortical hub which functional processing is 

routed through. Pushing this one step further, dynamic connectivity matrices from a sliding window 

analysis, when subject to a graph theoretical analysis, revealed three distinct hubs (default mode, dorsal 

attention and motor networks) which can dynamically allow between-network communication through 

them at rest (de Pasquale et al., 2016). A recent study went beyond quantification of hubs and quantified 

the dynamics of the participation coefficient, local clustering and efficiency of temporal EEG networks 450 

using a sliding window approach based on PLV (Kabbara et al., 2017), this study also showed that the 

communication and integrations of these hubs could also be reliably detected using windows which 

were sub-second in width.   

 

Sliding window approaches have been applied in some experiments aiming to understand primary 

sensory processes, i.e. in auditory, sensorimotor, and visuomotor studies (Baker et al., 2012; Betti et 

al., 2013, Brovelli et al., 2017; O'Neill et al., 2015b; Yang et al., 2012). In a recent visuomotor MEG 

study, participants were asked to perform a finger movement based on a visual cue (Brovelli et al., 

2017). The authors used a sliding window approach and a dynamic community detection algorithm in 

order to quantify three temporally-evolving subnetworks that showed peak activations at different time 460 

points in relation to stimulus onset. These were a visual-parietal subnetwork emerging before finger 

movement, followed by a subnetwork comprising sensorimotor and fronto-parietal regions, and by a 

large subnetwork with strong sensorimotor activation. In another visual MEG study (Yang et al., 2012), 

the authors analysed the neural processing of motion perception of an object moving towards a subject 

versus an object moving away from a subject. Using a sliding window approach in conjunction with 

mutual information, the authors demonstrated the presence of a different temporally resolved top-down 

connectivity for the two conditions. Another investigation into the dynamics of the visual cortex by Betti 

and colleagues (2013) found that not only was there a reduction amplitude envelope coupling in the 

visual network during movie watching, but transient reductions in connectivity were time locked to 

psychophysical event boundaries in the movie (Betti et al., 2013).  Studying the sensorimotor network, 470 

Brookes et al (2011a) showed significant fluctuations in the strength of functional connectivity between 
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motor cortices in a sliding window analysis in the resting state. This result was extended by Baker et al 

(2012), who found that the motor network exhibits bi-stable dynamics, where periods of high 

connectivity were interspersed in between near-zero levels of connectivity. In a more recent study using 

K-means clustering (O'Neill et al., 2015b), the authors showed that could untangle the sensorimotor 

network into a set of smaller subnetworks that rapidly form and dissolve during a self-paced motor task. 

In particular a bilateral primary motor subnetwork was shown to have a high probability of ‘activating’ 

around the time of the button press, followed by a separate bilateral primary somatosensory network. 

This study illustrated that the sensorimotor network, while appearing as a single network in a static 

connectivity framework, is instead composed of different subnetworks with their own spatial and 480 

temporal dynamics.  

 

The importance of transient functional networks has also been demonstrated during more demanding 

cognitive tasks, such as working memory and language processing tasks. A study by O’Neill et al (2017) 

showed large scale networks being recruited dynamically to individual stages of a Sternberg working 

memory paradigm. Large scale networks were derived from ICA on connectivity time courses. Networks 

identified included the visual network during presentation of the stimuli, a language network 

incorporating Wernicke’s and Broca’s areas during the recall phase, multiple parietal to occipital 

connections which occurred during encoding and recall phases, and somatosensory networks when a 

button was pressed confirming matching stimuli. In a separate study, using sensor level MEG data, 490 

lexicon stimuli were presented to the participants and dynamic network configurations were analysed 

in relation to the “word” vs “pseudoword” conditions (Doron et al., 2012). The authors used a sliding 

window approach using the amplitude envelope correlation as connectivity metric in combination with 

a dynamic community detection method in order to separate subnetworks in a time-resolved fashion. 

They showed that modulations in subnetworks were associated with changes in inter-hemispheric 

coordination.  

 

The use of dynamic functional connectivity may have some potential applications for clinical research. 

For example, a recent study by Lee et al. (2017) used sliding window functional connectivity when 

investigating the effects of anesthesia. They found that measuring the entropy of the phase locking 500 

timecourses generated throughout the experiment revealed that the complexity of frontal network 

connections reduced significantly fell during deeper stages of anesthesia, implying that connectivity 

enters a configuration where network behavior becomes more predictable. We would also like to 

highlight some early electrophysiological studies in the psychiatric and neurological field where a sliding 

window approach was successful in finding disease-induced effects. Starting with neurology, the 

additional value of dynamic network approaches to static network approaches has recently been 

demonstrated in a patient cohort undergoing resective neurosurgery (Carbo et al., 2017). Carbo and 

colleagues tracked participation communication of subnetworks being mediated by smaller hubs in both 

a static and dynamic network framework a year after surgery. They found that the dynamics of hubs in 

occipital and default mode networks could predict whether patients had undergone a decline in verbal 510 

memory. Crucially, dynamics were key to relating network behavior to pathology, as the time-averaged 

hub properties were not significantly related to verbal memory impairments (Carbo et al., 2017). In 

another recent study on dynamic networks in epilepsy (Khambhati et al., 2017), the authors revealed 

similar subnetworks, using non-negative matrix factorization, in interictal and ictal data. Interestingly, by 

using these subnetworks obtained from interictal data, they were able to predict to some extent seizure 

onset regions. With respect to psychiatry, classification of patients with depression was the goal in a 

MEG study (Lu et al., 2013) where the authors probed dynamic effective connectivity between visual, 

cingulate and insula cortices during a visual task and reached a classification accuracy of 88%. In an 

fMRI/MEG study on schizophrenia by Cetin and colleagues (2016), connectivity data were classified 

using machine learning methods. The authors demonstrated that a dynamic connectivity approach led 520 

to a higher classification of individual subjects than a static connectivity approach. In summary, despite 

the fact that the sliding window approach in electrophysiological network analysis is relatively new, 
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already a number of important findings have emerged regarding the nature of network connectivity and 

its perturbation by disease. This technique is likely to be fruitful for future research in this area. 
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4 Beyond sliding windows 

4.1 Limitations of the sliding window 

Whilst clearly productive, the sliding window approach also has important limitations. The first issue is 

how to choose the window width 𝑑; if 𝑑 is too short, results are likely to be driven by noise; on the 

contrary, long windows may fail to capture rapid changes in connectivity. Ideally, one would choose a 530 

window width that matches the timescale of the underlying fluctuations of connectivity, but these 

timescales are a-priori unknown and may likely vary over the course of an experiment. At least, a 

window width for dynamic connectivity analysis should be frequency-specific, and should depend on 

the number of degrees of freedom in a windowed time series, which itself depends on the frequency 

band of interest. Fourier theory shows that the temporal degrees of freedom of a timeseries is defined 

as 𝜂 = 2𝐵𝑤𝑑, where 𝐵𝑤 is the spectral bandwidth of the data and 𝑑 is the window width. To give 

examples, meaningful results have been obtained in MEG/EEG data using relatively short windows 

ranging from ~10 s to below 1 s1. It is important to note here that these windows are far shorter than 

those possible using fMRI data, meaning the temporal scale of connectivity fluctuations probed can be 

much shorter. For example, if a window width of 5 s was applied to beta band (13-30 Hz) filtered data, 540 

𝜂 = 170, and the uncertainty in the correlation measure would be ~1/√𝜂 = 0.08 (Bendat and Piersol, 

2011). To match the same number of degrees of freedom with fMRI data, where the fastest acquisition 

sequences give a whole-head coverage with a sample rate of 2 Hz, you would need a window which is 

42.5 s wide, considerably longer. Selection of window width aside, sliding window timecourses have 

reduced temporal resolution compared to the underlying data. For example, if a window was 3 seconds 

wide and there was an instantaneous increase in connectivity between two regions at 𝑡 = 0 𝑠, then it is 

possible that this event would be detected at any window centered between −1.5 𝑠 ≤ 𝑡 ≤ 1.5 𝑠. If a 

window is sufficiently large relative to the task it surrounds, this could obfuscate in time when a 

connection changed. Again, shorter window widths offered by electrophysiological data mean this 

temporal uncertainty is much lower than what would be found with fMRI data.  550 

 

4.2 Higher temporal resolution measures of connectivity 

It is possible to dispense with the sliding window entirely in estimating the connectivity dynamics. Some 

connectivity metrics offer the ability to infer connectivity on an (almost) sample-by-sample level without 

using windows at all. For example, continuous wavelet transforms offer a computationally light estimate 

of instantaneous phase and power across the time series; these can be exploited to reveal coherence, 

partially directed coherences and Granger Causality time courses in a spectra and time-resolved 

manner (Dhamala et al., 2008). Applying the Hilbert transform on a wideband signal also provides an 

estimation of instantaneous canonical phase and amplitude per time point, which allows us to build 

simpler methods that can exploit such high temporal resolution, such as the phase difference derivative 560 

(PDD; Breakspear et al., 2004). This metric captures similar information to conventional phase 

coherence (i.e. the stability of a phase difference over trials) but also quantifies its stability over time. 

The idea is that if a stable phase relationship exists between two time courses for a given period, then 

the instantaneous derivative of their phase difference is close to zero, yielding a high value of phase 

locking. PDD can take any value between one and zero, although it is more often used to generate 

binary representations of connectivity (where one refers to coupling and zero to no coupling). Whilst in 

principle this offers connectivity metrics on a sample-by-sample basis, usually one requires that a fixed 

phase relationship lasts for at least cycle of an oscillation of interest to increase robustness. PDD can 

be used in both rest and task. In rest, we can average multiple successive PDD metrics to generate a 

fractional level of locking during an epoch. Alternatively, for time locked responses during a task, we 570 

can then average across trials to generate a connectivity time course at the scale of the experimental 

recordings (much like assessing state activations, as depicted in Figure 3).  

 

                                                
1 A list of the window widths utilised in all of the electrophysiological studies mentioned in this paper 
can be found in the supplementary material. 
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In contrast to sliding window approaches, instantaneous measures of connectivity allow tracking of 

transient networks evolving at the millisecond timescale. This advantage has been exploited in 

neuroscientific experiments. For example, a study by Martini and colleagues (2012) on the neural basis 

of unpleasant picture viewing used the time-resolved phase-locking value as a connectivity metric 

(providing a connectivity estimate for each time point). The authors showed that unpleasant picture 

viewing induced stronger gamma band synchronization between interhemispheric regions of temporal 

and frontal cortex in the early stages of the experiment (Martini et al., 2012). A dynamic reconfiguration 580 

of functional networks was observed during a picture naming task (Hassan et al., 2015) using phase 

lag calculations between nodes calculated for individual timepoints. Six networks were identified using 

k-means clustering, which showed strong phase locking at different times after the stimulus. Each of 

these networks became the dominant configuration at distinct periods over the space of a 500 ms trial, 

revealing the individual stages of visual processing, recognition, semantic processing and articulation. 

In a recent study on sensory gating (i.e. weakening of a neural response in reaction to a second identical 

stimulus), participants were given a paired pulse to the tibial nerve (Wiesman et al., 2017). Using a 

phase-locking value averaged across trials, the authors showed a sample-to-sample connectivity time 

course for their experiment. They showed a somatosensory gating phenomenon, where a second 

stimulus elicits a lower amplitude oscillatory response compared to the first. Further the extent of task 590 

related phase-locking modulation is also diminished by the second stimulus compared to the first. A 

study by Gao and colleagues (2015) sought to investigate the dynamics of information flow during 

mechanosensation by using temporally-resolved partially directed coherence. They showed a 

dynamical reorganization of directed connectivity between the contralateral primary somatosensory 

cortices and bilateral secondary somatosensory cortices, characterising dynamic top-down and bottom-

up processes within 350 ms of tactile stimulation. The time dependent role of networks has also been 

shown in a cognitive task. A study by Cocchi and colleagues (2011) used time resolved wavelet 

coherence (Grinsted et al., 2004) to find fluctuations in coherence between occipital and frontal regions 

that were modulated during spatial perception task, which itself was embedded within the maintainance 

period of a working memory paradigm. They found that coherence between these areas would rise and 600 

fall within the first 200 ms of the presentation of the spatial perception task, with the magnitude of the 

coherence increasing if the concurrent working memory load increased.  

 

Some studies have also demonstrated the additional value of instantaneous measures of connectivity 

in the clinical context. The PDD has been applied in a study aimed to understand the neural correlates 

of anxiety and aggression in children. Whilst static connectivity was insensitive, they demonstrated that 

the PDD was sensitive to the severity of anxiety (Lackner et al., 2014). In a study analyzing resting state 

connectivity in a cohort of children from 0.4-16 years old, PDD showed that the length of intervals over 

which constant phase locking across the brain occurred grew longer with age (Thatcher et al., 2009). 

Interestingly the same study also showed that these intervals surged in length in the subjects who were 610 

undergoing growth spurts. Another area where dynamic networks may have clinical relevance is 

epilepsy. It is believed that the network hubs play an important role in the generation or spread of 

epileptiform activity (van Diessen et al., 2013), and so dynamic connectivity can help us to understand 

the underlying processes. In a resting-state MEG study (Coito et al., 2015), interictal data were acquired 

in order to understand differences in network behavior during spiking. They showed that information 

flow was maximized during spiking compared to rest, with the largest drivers of information flow being 

the epileptogenic zones. Furthermore, they also showed in the networks detected during left and right 

temporal lobe epilepsy were not symmetric and topographically distinct to each other. An implication of 

this finding is that a single treatment approach for temporal lobe epilepsy may perhaps need to be 

instead separated into two drastically different treatments.  620 

 

4.3 Hidden Markov Models 

In Section 3.3, we discussed various methods to categorise multiple connectivity measurements into 

states to assess network behaviour. Here, we refer to an approach, the Hidden Markov Model (HMM; 

Baker et al., 2014; Rabiner, 1989; Vidaurre et al., 2016) that makes a direct use of the data in order to 
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find a discrete set of states. The essence of such decomposition, as illustrated in Figure 4, is that, 

instead of estimating connectivity for each window, it performs the estimation at the state level, in such 

a way that all the data corresponding to that state (i.e. using all the occurrences of the state in the entire 

time series) is effectively pooled together to characterise the network. This advantageously avoids the 

need of pre-specifying the sliding window width parameter. A state itself is characterised by the 630 

spatiotemporal properties of the source level signal, such as the mean and covariance. The HMM 

inference, when fed with empirical data, estimates the probability of each state being active at each 

time point of a multivariate time series together with the probability distribution that describes each state.  

 

Determining the optimal number of states needed for HMMs can be done in a variety of ways. A data-

driven approach, if we use Bayesian inference, is to use the free energy as a model selection criterion, 

which balances a term for the data likelihood (i.e. how well the model describes the data) with a term 

for the model complexity. Alternatively, non-parametric approaches can estimate the optimal number of 

states directly (Beal et al., 2002). In a neuroscience context, however, manual corroboration of the 

results in conjunction with automatic optimisation is recommended to ensure the states generated are 640 

at least interpretable. A notable challenge is how to scale the HMM inference up to work on very large 

numbers of time-points and/or subjects (e.g. many hundreds of subjects). Recent developments have 

shown that this can be achieved using approaches based on stochastic learning (Vidaurre et al., 2017a). 

 

The probability distribution describing each state is referred to as the observation model; different 

choices for the observation model probability distribution are possible, such that we can tailor the choice 

of this probability distribution to the particularities of the data modality at hand. For instance, Baker and 

colleagues (2014) modelled the power envelope of resting-state MEG data across the whole brain using 

a Gaussian observation model HMM. This version of the HMM describes each state using a mean 

(describing the average amplitude activation when the state is active) and a covariance matrix 650 

(describing the functional connectivity in terms of amplitude correlations). As a result of this analysis, it 

was shown that the classical ‘resting state networks’ rapidly form and dissolve with lifetimes averaging 

between 100-200 ms. A limitation of this approach is that it cannot model the phase information of the 

raw data. As a solution, Vidaurre et al. (2016) proposed a different version of the HMM where the states 

are represented by multivariate autoregressive models (HMM-MAR) acting on the raw time series 

instead of on the power envelopes, and thus, having access to phase information. Therefore, the states 

are described not only by power but also by phase coupling, acknowledging the specific phase 

differences between each pair of regions. Using this model, the data get spatially, temporally and 

(considering that these features are given as a function of frequency) spectrally resolved. As a proof of 

concept, the HMM-MAR was shown to characterise fast spectral changes in between the primary 660 

somatosensory areas in a simple button press experiment (Vidaurre et al., 2016). In this work, dynamic 

connectivity aspects of the movement-related beta synchronisation and desynchronisation responses 

were analysed, allowing to link typical time frequency spectrograms to connectivity modulations. A 

limitation of this method is its relative sensitivity to the choice of the MAR order parameter; despite 

existing data-driven ways to guide this choice, a too high order can easily overfit the data when the 

number of regions is large. Hence, given that the number of parameters scales quadratically with the 

number of regions, the HMM-MAR is typically more practical for modelling a few regions at a time.  

 

When confronted with whole-brain data, however, one possible alternative to reduce the model 

complexity is to dispense with the cross-region terms of the MAR model. The states would then be 670 

defined in terms of spectrally-defined power changes but not by connectivity. Another possibility is to 

use a novel version of the HMM based on a time-embedded transformation of the data combined with 

a simple Gaussian observation model; this can identify states with particular autocorrelation and non-

zero lag cross-correlations that approximate the state-specific power spectra and phase locking 

information accessible with the HMM-MAR, but using a less complex model and, therefore, bypassing 

possible overfitting issues (Vidaurre et al., 2017b). This approach has been used in whole-brain resting-

state MEG data, revealing frequency specific phase-locking networks much more clearly than is 
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possible using a static perspective. Further, this reveals an interesting fragmentation of the DMN into 

two spectrally well-defined components: an anterior theta/delta component with strong connectivity with 

the posterior cingulate cortex, and an alpha posterior component including parietal and temporal 680 

regions.  

  

 
Figure 4: Hidden Markov Modelling (HMM) network analysis (bottom) as opposed to sliding-window 

network analysis (top). Whereas the sliding window has a fixed width and ignores the data beyond 

its boundaries, the HMM automatically finds, across the entire data set, all the network occurrences that 

correspond to a given state, enhancing the robustness of the estimation (because it has more data than a 

window) and adapting to inherent network time in a data driven manner. In this example, the states 

themselves reflect unique spatial patterns of oscillatory envelopes and envelope couplings, that 

consistently repeat and different points in time. The non-marked segments of the data correspond to other 690 
states.   

 

4.4 Future Developments 

A common assumption with many of the methods and studies covered in this review is that connectivity 

is assessed within a single frequency band. Given what we know of the complex spectral dynamics of 

electrophysiological oscillations, it stands to reason that we are failing to capture many of these 

connections. Multilayer network analysis (Boccaletti et al., 2014; Kivelä et al., 2014) provides a 

framework to allow for not only multiple within-band networks (captured as separate ‘layers’, as shown 

in Figure 5), but also cross-frequency coupling, which is modelled as between layer connections. This 

framework has been applied in the stationary connectivity domain (Brookes et al., 2016; Tewarie et al., 700 

2016), where it has been shown to find connectivity abnormalities in an occipital network in 

schizophrenia which scale with the severity of (negative) patient symptoms (Brookes et al 2016). In 

principle, it could be used in conjunction with a dynamic framework to generate time-evolving multilayer 

networks. In contrast to multilayer networks in the static domain, the additional assumption with respect 

to temporal networks is that the ordering of the layers in the multilayer network contains information 
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(Holme and Saramaki, 2012). A special case of multilayer networks, multiplex networks assume one-

to-one between-layer connections, and so it is possible to ignore inter-layer coupling. In a dynamic 

approach this would treat each time point of a network as individual layers. In this formulation, one could 

make use of the range of graph or network measures available to assess on temporal networks and 

graphs (Cozzo et al., 2016; Nicosia et al., 2013). Neuroimaging-focused toolboxes to analyse data in 710 

this way have recently been made available (Sizemore and Bassett, 2017), which include extended 

versions of graph theoretic metrics such as centrality, community structure, clustering and path length. 

However, a challenge that future studies will need to address before dynamic graph analysis can be 

employed at large is how to compare time varying functional networks between groups, without the bias 

of link density, network degree and average connectivity (Tewarie et al., 2015; van den Heuvel et al., 

2017; van Wijk et al., 2010).  

 

Whilst expanding analysis to incorporate multiple frequency bands of neuronal oscillations is an 

improvement over a single band, it can be argued that this is still too simplistic picture to characterize 

the electrophysiological connectome. Rather than seeing the brain as either an ordered (oscillatory) 720 

system or a random (disordered) system, we can alternatively use the entire broadband signal and treat 

the brain as a critical system (Haimovici et al., 2013) which straddles these two regimes. Critical systems 

are scale-free, meaning their behaviour can be characterized using power laws. Extracellular 

electrophysiological systems and their fluctuations in power have all been shown to follow power laws 

(He et al., 2010; Linkenkaer-Hansen et al., 2001; Miller et al., 2009; Poil et al., 2008), as does global 

functional connectivity (Botcharova et al., 2014; Ton et al., 2015). Furthermore, a recent study by Wen 

and Liu (2016) showed that fluctuations in EEG broadband power would better predict how the global 

resting state fMRI signal would modulate better than band limited power timecourses. Specifically, 

global hemodynamic changes would lag approximately 5 seconds behind broad band power changes, 

implying scale-free dynamics are a contributor to fluctuations seen in resting state networks. Recently, 730 

this combined approach of power law analysis was applied to fluctuations in phase synchronization in 

the clinical context of autistic children and children with reading difficulties (Dimitriadis et al., 2013; 

Tinker and Velazquez, 2014). Future studies should evaluate the use of this type of analysis not merely 

on bivariate or global synchronization, but on the formation and dissolution of networks, and whether 

spread of large scale activity and connectivity is also scale-invariant (Poil et al., 2012). 

 

Given that the fMRI community has also poured significant time into the field of dynamic functional 

connectivity (Hutchison et al., 2013; Preti et al., 2016), it is worth mentioning a few approaches from 

fMRI, which may be compatible but have not necessarily been applied to electrophysiological data. If 

the connectivity community continue to use sliding windows, we may be able to use the data to 740 

dynamically adjust the width of the sliding window, rather than assuming the width must be fixed, i.e. a 

data-driven window selection. Applications of this approach in the field of electrophysiology are scarce, 

but an example from the fMRI community is the dynamic connectivity detection approach (Xu and 

Lindquist, 2015). This approach seeks separable partitions in multivariate time courses, for which the 

mean and covariance are significantly different to neighbouring partitions. This approach has been 

applied in a facial recognition MEG study in depression. The authors employed their approach in 

combination with machine learning (support vector machines), and were able to classify patients with 

depression from healthy controls with an 83% accuracy (Bi et al., 2016). If one assumes that 

connectivity dynamics are characterised by short periods of network synchronisation alternated with 

periods of desynchronisation, one could just focus on detecting these transient periods of strong 750 

synchronisation. A method targeting these transient periods is point process analysis (Tagliazucchi et 

al., 2016; Tagliazucchi et al., 2012). Here, only data points for which the signal amplitudes cross a 

threshold are used for network analysis. Although this method uses only amplitude information to find 

the data points for which connectivity will be estimated, theoretical work suggests that amplitude and 

connectivity modulations are, often, closely related (Daffertshofer and van Wijk, 2011; Moon et al., 

2015). One final alternative approach to the sliding is the dynamic conditional correlation (DCC) model 

(Lindquist et al., 2014), which has been applied to fMRI. By calculating correlation between timeseries 
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as a function of their past correlations and standard deviations, this autoregressive-based model was 

able to detect changes in the correlations/covariance that were not induced by random noise. The 

particular strength of DCC is that in a null simulation (where there were no correlations modelled 760 

between the seed and test timeseries) DCC managed to closely follow the null where sliding windows 

would show highly fluctuating correlations. 

 

 

 

 
 

FIGURE 5: Example networks which may be applied into future studies of dynamic functional connectivity. 

LEFT: A Multilayer network, where each layer represents a different frequency band of neural oscillations. 

Within band connections are represented as solid black lines between nodes on the same layer, cross 770 
frequency relations are represented as dashed lines between layers. RIGHT: A special case of a multilayer 

network, where links between layers are ignored; this is known as a multiplex network. In this example, 

each time point is modelled as individual layer.
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5 Models for dynamic electrophysiological networks 

5.1 The need for computational modelling 

In basic sciences such as physics and chemistry, advances in knowledge are achieved by a continuous 

interaction between experimental findings and quantitative theories. Quantitative theories allow for 

understanding of a system of interest and enable us to make mechanistic predictions, e.g. the laws of 

classical mechanics allows one to predict the trajectory of a projectile in orbit given certain initial 

conditions. The interaction between quantitative predictions of a theory and experiments allows one to 780 

assess the error of the theoretical predictions. This interplay enables falsification, verification, or 

refinements of theories and has led to revolutions in the sciences, of which relativity is a good example.  

 

In the field of neuroimaging, quantitative theories are largely lacking, which prevents us from making 

any predictions of connectivity that can be verified using experiments. This hampers the advance in 

knowledge and understanding of the underlying mechanisms that drive modulations in connectivity. 

Importantly, due to a lack of quantitative theories we regularly have no clear explanation for 

experimental findings of connectivity. For example, in the clinical field, increases in connectivity in 

certain regions in a diseased group are often interpreted as compensatory effects, or as functional 

reorganisation (Schoonheim et al., 2015). However, increases in connectivity in diseased groups could 790 

just as easily be explained by disinhibition induced by pathology. The reason for changes of connectivity 

could lie in the duration and/or reoccurrence of the periods of synchronisation versus desynchronization 

(Stam et al., 2005). Therefore, elucidating the mechanisms that drive connectivity fluctuations will help 

the clinical field to understand these disease-induced alterations in connectivity. In addition, connectivity 

estimates in diseased populations are often correlated to structural MRI measures, such as atrophy or 

white matter integrity. The problem with these associations quantified from empirical data is that we 

cannot infer causality, whereas, quantitative theories could aid us in the context of causal relationships. 

Finally, a fundamental insight into the driving factors of connectivity fluctuations is also important from 

a purely neuroscientific perspective. This research has the potential of bridging the gap between 

microscopic and macroscopic activity and connectivity (Breakspear and Stam, 2005). Taken together, 800 

the field has to come to an understanding of the factors that drive modulations in connectivity in order 

to adequately interpret their experimental results.  

 

5.2 Available models 

We refer to Box 1 for the definition of some basic concepts that are used in this section. Computational 

models that have been used in the context of large-scale functional networks can be divided into 

biologically informed models and non-biologically informed models. In the context of biologically 

informed models, we could treat the brain as a large set of single cell neurons covering the entire brain 

and wired using white matter tract information from diffusion tensor imaging (DTI). However, such a 

large system can easily become unstable, and it is difficult to infer underlying principles in a system with 810 

such an immense parameter space (Izhikevich and Edelman, 2008). This complexity can be mitigated 

by, for example, studying connectivity between two neuronal populations. This has the advantage of 

studying a system with clear underlying biophysics and neurobiological realism (Jones et al., 2000). 

Yet, most studies on large-scale electrophysiology employ reduced models, such as neural mass or 

neural field models (Coombes et al., 2014a; Coombes et al., 2014b; Deco et al., 2008), which are more 

tractable and at the same time support various types of behaviour. Neural mass models come in various 

forms, they describe the mean activity of a distinct neuronal population, typically ignoring the variance 

of the activity. However, variance can be incorporated into an extended model such as in Buice et al. 

(2010). These neural mass models are usually formulated in terms of ordinary differential equations; 

thus, their state variables only vary as a function of time and not as a function of space. Spatial 820 

information at the network scale is usually modeled by sampling a set of neural masses over the cortex 

and connecting them through DTI-based tracts. One can subsequently decide whether or not to include 

axonal conduction delays for connections in the network (Deco et al., 2009). Neural fields on the other 

hand are formulated in terms of partial differential equations or in integro-differential equations and thus 

naturally incorporate space. These models usually treat the cortex as a 2D continuous sheet and can 
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support various spatiotemporal periodic patterns, travelling waves and standing waves (Coombes, 

2005). Some partial differential equation neural field models can be reduced to neural mass like models 

by, for example, setting the Laplace operator to zero (Hindriks and van Putten, 2013; Robinson et al., 

2002). 

 830 

In contrast to biologically informed models, one could also opt to use non-biologically informed models 

to study large-scale functional networks. The rationale for using non-biologically informed models for 

large scale networks is that at a phase transition for global connectivity, the details of the model become 

less relevant (Haimovici et al., 2013). Examples are the Kuramoto model (Breakspear et al., 2010), 

coupled Stuart-Landau oscillators (Deco et al., 2017), linear threshold models (Misic et al., 2015; O'Dea 

et al., 2013), network diffusion models (Abdelnour et al., 2014) and epidemic spreading models (Meier 

et al., 2017; Stam et al., 2016). The Kuramoto model of coupled phase oscillators is used to study 

network synchrony. The original model is based on an all-to-all connectivity pattern, which can be 

updated in the context of brain networks to empirically determined DTI networks. Stuart-Landau 

oscillators are oscillators whose working point can be tuned around a Hopf-bifurcation (see Box 1). 840 

Similar to neural mass models, these oscillators can be studied in a network context by allowing the 

oscillators to interact using a structural network derived using DTI (Deco et al., 2017). Network diffusion 

models and epidemic spreading models were developed in the field of complex networks. This type of 

interaction models has recently been applied to predict MEG and fMRI network patterns from the 

underlying structural network (Abdelnour et al., 2014; Stam et al., 2016; Meier et al., 2017). The network 

diffusion model simulates diffusion on a network. The equations are very similar to the heat diffusion 

equation, but the Laplace operator in the diffusion equation is translated into the graph Laplacian. 

Epidemic spreading models are a class of models that were originally designed simulate epidemic 

spreading over a population. A well-known example is the susceptible-infected-susceptible model (SIS): 

nodes in this network can either be infected (active) or susceptible (inactive, but potentially excited by 850 

its neighbours). This model has recently been used to analyse how effective connectivity patterns with 

a posterior-anterior gradient in the alpha band, measured using transfer entropy from resting-state MEG 

data, emerge from the topology of the structural network (Meier et al., 2017).     

 

5.3 Insights from computational models 

The first modelling studies on electrophysiology aimed to understand the particular nature and 

characteristics of bivariate synchronisation that are observed in EEG signals (Breakspear, 2004). 

Special interest was placed in understanding the existence of nonlinear synchronisation in human EEG 

data (Breakspear, 2004; Breakspear and Terry, 2002a; Le Van Quyen et al., 1999; Stam et al., 2003). 

Modelling studies showed that, by tuning a global coupling parameter in a network of conductance-860 

based neuronal oscillators, one can switch between a regime with independent oscillations to a regime 

with chaotic synchronization, between which a weakly stable state exists that is considered consistent 

with empirically observed synchronization (Breakspear and Terry, 2002b; Breakspear et al., 2003). 

Largely due to the appearance of numerous fMRI-based connectivity studies, the modelling field 

switched to analysing large-scale static fMRI networks (Breakspear, 2017; Deco et al., 2011), and, more 

recently to large-scale dynamic fMRI networks (Hansen et al., 2015; Ponce-Alvarez et al., 2015).  

 

Although we refer the reader to recently published reviews on dynamical models applied to fMRI based 

networks (Breakspear, 2017; Deco et al, 2011) for more comprehensive descriptions, we briefly mention 

some of the working hypotheses that are relevant to the electrophysiological literature. Concepts from 870 

nonlinear dynamics and complex network theory have both been used to elucidate how functional 

networks emerge from the underlying anatomical wiring (Goñi et al., 2014; Meier et al., 2016; Robinson 

et al., 2014). One hypothesis is that empirically observed static functional networks are explained by 

models that include noise and whose working point is near a bifurcation, which separates a linear regime 

and a multi-stable regime (i.e. presence of multi-stable attractors, or states; see Box 1), and where the 

role of noise is to allow for switching between attractors (Deco and Jirsa, 2012). The repertoire of these 

converging brain states or attractors is considered to partly emerge from the topology of the anatomical 
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network, for example, rich-club organisation supports diversity of attractors (Senden et al., 2014). Apart 

from multistability, models with metastable working points are also consistent with empirically observed 

functional connectivity (Breakspear, 2002). Unfortunately, these explanatory studies for static large-880 

scale electrophysiological networks have been few and far between. The first studies on static MEG 

networks were based on simulations of alpha band activity (Nakagawa et al., 2014; Tewarie et al., 

2014). A spiking-neuronal network showed that the inclusion of axonal conduction delays significantly 

improved the fit to empirical MEG networks, based on amplitude envelope correlations (Nakagawa et 

al., 2014). Another modeling study on static MEG networks employed a network of neural masses. They 

demonstrated that the structural degree product of the underlying structural network, and an operating 

point for global coupling strength near a phase transition for synchrony allowed for simulation of phase 

based network patterns similar to empirically observed alpha band networks (Tewarie et al., 2014). 

  

Complex network studies have also helped in elucidating how static functional electrophysiological 890 

networks emerge from structure, explaining the presence of strong functional connections in the 

absence of a direct structural link (Goñi et al., 2014; Saggio et al., 2016; Stam et al., 2016; Tewarie et 

al., 2014). These explanations include polysynaptic walks in the structural network that contribute to 

electrophysiological connectivity strength (Meier et al., 2016; Robinson, 2012), and, relatedly, the 

contribution of detours along the shortest paths in the structural network (Goñi et al., 2014). However, 

when analysing shorter time scales, these structure-function mappings based on the weighted 

adjacency matrices fail (Honey et al., 2007; Ton et al., 2014), and, as a consequence, we need to rely 

on realistic computational models to explain time varying connectivity patterns. The first study in the 

context of dynamic MEG networks showed that the standard deviation of broadband envelope 

correlations could be explained by metastability induced by delayed interactions between nodes in a 900 

Kuramoto model (Cabral et al., 2014; see Figure 6). If electrophysiological networks are characterised 

by the formation and dissolution of networks or states, future computational studies will also need to 

investigate whether the formation and dissolution of empirically observed networks can emerge in 

neuronal models from merely multistability or metastability, or whether additional constraints are 

required. Multistability or metastability as working points will very likely show time-varying networks, but 

it remains an open question as to whether these simulated time-varying networks emerge with the same 

spatiotemporal signatures as we observe in empirical electrophysiological data (for example as found 

by Hidden Markov Model approaches). A recent theoretical study introduced a new mathematical 

framework based on the Kuramoto model that can potentially explain time-varying patterns of 

synchronisation observed in empirical electrophysiological data (Petkoski et al., 2016).  910 
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Figure 6.  An example study on computational modelling and how it aids the understanding of empirical 

findings, in this case, comparing amplitude envelope correlations from real MEG data to those generated 

by coupled Kuramoto oscillators. A) The pipelines to generate the functional connectivity results based on 

MEG recordings (top row) and computational models (bottom). B) The correlation between the empirical 

data and model, revealing that the model bears strongest resemblance to the empirical findings when 

temporal delays of ~16 ms are incorporated into the model with intermediate coupling strengths (dashed 

oval region). C) Standard deviation of the model’s intrinsic synchrony over time, the high standard 920 
deviation in the oval region implies that when the model is metastable (or when synchrony strongly 

fluctuates over time) it best reflects real connectomes. D) Example connectome matrices from real data 

and a model set with a mean delay of 16 ms and a coupling parameter of 3.  Figure adapted with permission 

from Cabral et al., (2014).  

  

5.4 Future directions for computational models in electrophysiology 

An important point for future modelling studies on dynamic electrophysiological connectivity is model 

selection. A recent study in the fMRI literature compared different models to estimate empirical and 

static functional networks (Messe et al., 2015). Their most simple model, an autoregressive model, 

outperformed most of the biologically informed models (spiking models, neural mass models) and the 930 

Kuramoto model. This raised the question of whether details of the local dynamics are at all relevant at 

the larger scale and whether macroscopic functional networks can merely emerge from the topology of 

the structural network. Non-biologically informed models, such as network diffusion models and 

epidemic spreading models have been successfully used in this context (Abdelnour et al., 2014; Meier 

et al., 2017; Misic et al., 2015; Stam et al., 2016). However, a recent study on dynamic fMRI networks 

showed that more simple models, e.g. autoregressive models, could not explain the necessary 

switching between network configurations as shown in empirical data (Hansen et al., 2015). 

Furthermore, epidemic spreading models do not support various network configurations once the model 
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reaches its quasi-static state and normal operating point (Barrat et al., 2008; Van Mieghem, 2009). In 

the context of dynamic electrophysiological connectivity, models are required to allow for switching 940 

between network configurations. This would therefore advocate the use of models that support 

metastability or multi-stability. 

 

Future neuronal models will not only have to match spatial and temporal features of ongoing empirical 

connectivity modulations but also spectral properties of MEG/EEG oscillations, or even arrhythmic scale 

free brain activity (He, 2014).  Most models are tuned to generate oscillations with a dominant frequency 

(usually alpha), whilst some models can mimic the 1/f power spectrum observed in empirical data 

(Linden et al., 2010; Robinson et al., 2001; Stefanescu and Jirsa, 2008). In order to understand ongoing 

neuronal connectivity modulations, we require sophisticated models that can not only produce a wealth 

of simultaneous frequencies, but also frequency specific networks. A recent study was able to simulate 950 

multiple (independent) network layers of Stuart-Landau oscillators, where each layer had a different 

dominant frequency (Deco et al., 2017). The best fit with MEG networks was achieved when the 

operating point for local dynamics was found near a supercritical Hopf-bifurcation (a bifurcation from a 

stable equilibrium to a limit cycle). As an extension to this type of approach, we also require models that 

can simulate frequency band specific spatial network patterns, and coupling between layers that can 

potentially induce phenomena such as nesting of fast oscillations to generate slower rhythms and local 

phase-amplitude coupling. Worth mentioning in the context of neuronal models are the next generation 

neural mass models (Byrne et al., 2017; Coombes and Byrne, 2016), which may prove useful in 

furthering our understanding of within population synchrony modulations during cognitive tasks, which 

is important in the context of oscillations. Furthermore, these models are based on an exact mean-field 960 

description of the underlying spiking neurodynamics, which make them an excellent candidate for 

simulations of large scale electrophysiological networks.   

 

One of the criticisms of the use of neuronal models to explain connectivity is their extensive parameter 

space and the difficulty to treat these models analytically. Whilst there are data-driven solutions to tuning 

these models (Freestone et al., 2011), the vast parameter space has prompted the use of more simple 

models of phase oscillators, such as the Kuramoto model. Despite fruitful applications of the Kuramoto 

model in relation to functional networks (Breakspear et al., 2010; Cabral et al., 2014), its phase 

interaction function (simply a sinusoid) lacks neurobiological realism. An elegant way to maintain a 

tractable model is to use a biologically informed phase interaction function derived from any neural 970 

mass model (see Ashwin et al., 2016 for mathematical details). For example, Kuramoto-type phase 

oscillators can also be derived from a network of weakly coupled neural mass models, giving rise to a 

non-sinusoidal interaction function (Hlinka and Coombes, 2012).  These model-specific phase 

interaction functions are derived from the phase response curves of the model and can be written in 

terms of a Fourier series. Most of these phase interaction functions require an operating point in the 

weak coupling regime (i.e. a perturbation that causes the trajectory to jump not far from the intrinsic limit 

cycle). However, in the case of strong coupling (e.g. during a task), it is not yet entirely what is the best 

approach to model these interactions.  

 

In summary, advances in the development of computational modelling have been made to start to 980 

replicate the empirical findings seen in functional connectivity analysis. However, we are still at an early 

stage of development, where robust testing of these models is still required and ongoing. Here, the link 

between the empirical and modelled fields at this point becomes the most apparent; to confirm or refute 

the feasibility of these models, we need more experimental observations to test them with. It is then we 

shall be able to make predictions from models which can specify future experiments.  
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Box 1: models for dynamic connectivity, concepts related to nonlinear dynamics and complex 

networks.  

 

Chaos: a branch of mathematics concerned with the characterisation of dynamical systems which 

typically are highly sensitive to their initial conditions. 

 

Bifurcation: the value of certain parameter of interest for which a small change brings a dramatic 

change in qualitative behavior of the system. 

 

Phase space: an n-dimensional geometric space, where n corresponds to the number of state 

variables, encompassing all possible states.     

 

Attractors: subspace in phase space to which a trajectory converges for certain initial conditions. 

 

Limit-cycle: an isolated periodic attractor (oscillator), which is a solution for a dynamical system 

which repeats itself in time. 

 

Saddle node bifurcation: by tuning a bifurcation parameter of interest, an unstable fixed point 

approaches a stable fixed point until they collide and annihilate.  

 

Hopf-bifurcation: bifurcation for which a fixed point loses stability in favour of a limit-cycle 

oscillation. 

 

Multistability: co-existence of multiple attractors. 

 

Metastability: Metastability refers to the dwelling tendency of trajectories in phase space without 

convergence to an attractor (or remnants of attractors). This type of dynamics can be induced by 

the presence of saddle. 

 

Phase interaction function: periodic function in a network of phase oscillators that determines the 

phase difference coupling between oscillators. The simplest interaction function is the sine function 

used in the Kuramoto model (see e.g. Ashwin et al., 2016).  

 

Phase response curves: transient change in the cycle of an oscillator described in terms of its 

phase due to a small external perturbation. 

 

Rich-club: tendency of high degree nodes to be more connected to each other than to low degree 

nodes. 

 

Walks: routes in a network or graph between two given nodes, which is described as a sequence 

of links to traverse (walks can include loops).  

 

 

  990 
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6. Summary 

 

In this review, we have covered the methods and applications of measuring the dynamics of large scale 

electrophysiological functional networks using both MEG and EEG. We have laid out the motivation for 

such methods, showing that other non-invasive neuroimaging methods simply cannot reach the 

temporal scales at which neural oscillations (and therefore cortico-cortical communication) modulate. 

Whilst still a nascent field of research, we have shown that there is a vast array of methods to capture 

the temporal dynamics of connectivity (either using sliding window or other instantaneous approaches). 

These methods have allowed us to push the temporal scale of functional connectivity dynamics from 

hours and minutes, to only a few seconds and even milliseconds, allowing us to now probe 1000 

neurophysiological effects which were previously unattainable.  

 

Functional network structures exist across a continuum of temporal scales ranging from many hours of 

data to just a few hundred milliseconds.  Dynamic electrophysiological connectivity has shown that such 

networks, and the connectivities that define them, modulate not only temporally, but also spectrally and 

spatially. This therefore offers new dimensions in which to probe network structure and how the brain 

continually forms and dissolves a hierarchy of functional networks to support ongoing task demand. It 

is hoped that by probing connectivity at these scales, the neuroscientific insights offered will allow us to 

gain a better understating of mechanisms of functional communication in both health and disease. Early 

studies into the differences of dynamic networks between healthy and clinical populations are starting 1010 

to emerge, supporting this notion. Nevertheless, in order to be clinically useful, dynamic network 

approaches need to meet at least two requirements: 1) To be more sensitive in identifying disease-

induced effects than static connectivity approaches and correlate better with disease status; 2) To be 

more reproducible than static network approaches (Liuzzi et al., 2016; Schoonheim et al., 2015; Tijms 

et al., 2013). It is on these grounds that we will be able to explore the role of dynamic networks in the 

context of personalised prediction of disease progression and treatment response.  

 

For us to truly understand how these networks function, and fail in pathology, we cannot merely rely on 

empirical findings alone. In part, the growing number of methods developed to track connectivity means 

we may start to see conflicting results depending on which processing pipeline is applied; for this we 1020 

need a system to adjudicate these observations. Also, even if some consensus is reached on the best 

way to capture connectivity dynamics, these empirical results can only tell what is happening in the 

brain in on a macroscopic, and somewhat abstract level. To understand the underlying neurobiology, 

we need to apply computational models of neural dynamics to mimic what we are observing. These 

models offer us the potential to explain the mechanisms of communication in the human brain, as well 

as predictions on what we will find next. As these empirical and modelling studies continue to mature 

over time, we should see the gulf between connectivity and its physical basis narrow.    
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Box 2: Questions for future developments 

 

 Are dynamic connectivity approaches robust and reliable enough to track dynamic networks 

over several cognitive experiments? Is the low SNR of encephalography a limiting factor? 

 Will dynamic connectivity investigations (both empirical and computational) tell us anything 

new about the brain we didn’t know before? 1040 

 What are the macroscopic, microscopic and scale-free properties at play which generate 

connectivity dynamics? 
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