
Submitted to Transportation Science
manuscript (Please, provide the mansucript number!)

Pruning Rules for Optimal Runway Sequencing

Geert De Maere, Jason A.D. Atkin
ASAP research group, School of Computer Science, University of Nottingham, NG81BB Nottingham, UK

{gdm,jaa}@cs.nott.ac.uk

Edmund K. Burke
Queen Mary University of London, Office of the Principal, Queens Building, Mile End Road, London, E14NS, UK

vp-se@qmul.ac.uk

This paper investigates runway sequencing for real world scenarios at one of the world’s busiest airports,

London Heathrow. Several pruning principles are introduced that enable significant reductions of the prob-

lem’s average complexity, without compromising the optimality of the resulting sequences, nor compromising

the modelling of important real world constraints and objectives. The pruning principles are generic and

can be applied in a variety of heuristic, meta-heuristic or exact algorithms. They could also be applied

to different runway configurations, as well as to different variants of the machine scheduling problem with

sequence dependent setup times, the generic variant of the runway sequencing problem in this paper. They

have been integrated into a dynamic program for runway sequencing, which has been shown to be able to

generate optimal sequences for large scale problems at an extremely low computational cost, whilst consid-

ering complex non-linear and non-convex objective functions that offer significant flexibility to model real

world preferences and real world constraints. The results shown here counter the proliferation of papers that

claim that runway sequencing problems are too complex to solve exactly and therefore attempt to solve

them heuristically.

Key words : Dynamic programming, Runway Sequencing, Machine Scheduling, Sequence dependent setup

times

History :

1

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
2 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

1. Introduction

The recent and predicted future growth in air transport (Eurocontrol 2013) has already increased

the pressure on airport resources around the world, and will continue to do so. This is especially

true in the case of runways at highly congested airports that already operate at or close to their

maximum capacity. Runway capacity often limits the overall airport capacity, thus the efficient

use of this scarce resource is particularly important; failure to do so can significantly increase

delays, aircraft emissions and costs for airlines. Adding extra runway capacity (i.e. new runways)

is expensive, requires long term planning and may not be possible at many airports due to space

restrictions. However, improved use of existing runways may be achieved by intelligently schedul-

ing runway operations by re-sequencing aircraft. This is complex to achieve and requires highly

sophisticated algorithmic approaches to be embedded within complex decision support systems to

assist runway operators. Such algorithms must be fast enough to allow their use in highly dynamic

environments.

Since different separations have to be maintained between aircraft of different types (see Section

2), the order in which aircraft use the runway will affect the overall runway throughput and the

delays for each aircraft. The problem of determining this order is called the runway sequencing

problem. It aims at finding a feasible sequence that meets all constraints and has a satisfac-

tory or optimal value for some given objective function(s). Many constraints apply to the runway

sequencing problem, such as ensuring that safe separations are always maintained between aircraft,

ensuring that aircraft are not scheduled to use the runway before they can get there, and meeting

any landing/take-off deadlines which may apply to aircraft. There will usually also be a number of

conflicting objectives (Atkin et al. 2010, Atkin 2013, Bennell et al. 2011), such as to maximise the

runway utilisation, to reduce the average delay per aircraft, and to ensure some level of fairness

between the delays for different aircraft. Full details of the problem are provided in Section 2.

If aircraft are considered as jobs and the runway as a machine, the underlying runway sequencing

problem is a variant of the machine scheduling problem with sequence dependent setup times, which

is known to be NP-hard (Pinedo 2002). For this reason, a fast optimal algorithm for the general

formulation is unlikely to be attainable. However, the characteristics of the runway sequencing

problem result in sub-structures within the data and separation rules which can be leveraged to

improve the tractability of real world instances. For example, the separations which are required

between aircraft are not arbitrary, but follow specified rules depending upon the aircrafts’ weight

classes, speed groups and departure routes. This results in a separation table which is highly

structured, the structure of which can be utilised to simplify the problem. We note that, in the case

of departures, downstream constraints, e.g., to ensure in-flight separations or control congestion

for downstream sectors, are usually applied on the runway. The departure sequencing problem

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 3

therefore has more, and more complex, constraints than the arrival sequencing problem, for which

only the weight classes of the aircraft influence the separations. I.e. separation rules for departures

usually do not have such simple structures in them that can be exploited for simplifying the

problem. For this reason, the focus of this paper is upon the departure sequencing problems in

complex real world environments. Experiments have shown that the approach is also applicable

for arrival problems, and that these are actually much easier for it to solve, as will be observed in

Section 4.2.

A number of exact approaches for the runway sequencing problem have been introduced previ-

ously, and are discussed in more detail below. Heuristic approaches were introduced by, for example,

Atkin et al. (2007) and Bianco et al. (1999). We refer the reader to Bennell et al. (2011) for an

extensive survey of previous approaches.

Psaraftis (1980) utilised the characteristics of the problem to design an approach which grouped

identical aircraft into a number of queues, one per aircraft type, and exploits the fact that a

known precedence order exists within the queues in terms of total processing cost. The proposed

dynamic program to solve the problem of interleaving queues is polynomial as a function of the

number of aircraft n and exponential as a function of the number of aircraft types N (O(N 2(n+

1)N). Such an approach is practical for arrival sequencing, where there may be up to six or seven

queues (N), but is impractical for take-off sequencing or mixed mode sequencing (simultaneous

arrivals and departures) since many more queues are required in these cases (due to the more

complex separations, up to 33 queues for the problem instances considered in this paper). Psaraftis

further enhanced his approach by utilising constrained position shifts, introduced by Dear (1976).

Constrained position shifts restrict an aircraft’s maximum positional shift relative to its position

in the initial sequence, usually in first come first served order. This not only reduces the number

of aircraft which have to be considered for each position in the sequence, but also enforces equity

by preventing individual aircraft from being advanced or delayed disproportionally.

Constrained position shifts were also applied in the dynamic program introduced by Balakrishnan

and Chandran (2010). Their approach has a complexity that is polynomial as a function of the

number of aircraft n and exponential as a function of the constrained position shift k (O(n(2k+

1)(2k+2))). The authors also presented an extension of the approach to allow the optimisation of

more complex objective functions, albeit at an increased computational complexity.

Whilst constrained position shifts can be effective in many cases of arrival sequencing, in mixed

mode operations, delays may differ widely between arrivals and departures, thus overall maximum

position shift constraints are impractical. Even within departure operations alone, the differing

delays which accumulate across different departure routes, and the requirements to meet time

window constraints can require large positional shifts (i.e. large values for k) for the good runway

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
4 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

sequences, thereby challenging the tractability and practicality of approaches based on them. We

refer the reader to Atkin et al. (2007) and Atkin et al. (2010) for a more detailed discussion of why

large positional delays are sometimes beneficial rather than harmful.

If the objectives can be (at least piecewise) linearised, the problem can potentially be solved

using a MILP (Mixed Integer Linear Programming) solver such as CPLEX. Beasley et al. (2000)

and Ernst et al. (1999) applied such an approach for the arrival scheduling problem with hard

landing time windows. Beasley et al. (2000) introduced a mixed integer 0-1 formulation for the

static, mixed or segregated, single or multiple runway sequencing problem. The approach exploits

the presence of disjoint intervals due to relatively narrow hard time windows for arrivals (caused

by speed and fuel limitations), applying a similar sort of simplification as for constrained position

shifts, but utilising landing time rather than landing position. The approach allows the modelling of

precedence constraints, complex separation matrices and complex piecewise linear and non-linear

cost functions through time discretization and linearisation. Additional constraints are added to

strengthen the formulation and improve its tractability.

In summary, a number of approaches have been developed in the past to simplify the runway

sequencing problem, utilising the characteristics of the problem to do so. However, the assumptions

which underlie these approaches fail to hold for departure or mixed mode sequencing, where large

position shifts can be necessary for high quality results and time-windows are usually large (or

open-ended) and may overlap with many other windows (preventing them from being used to

simplify the problem). In addition, real world departure sequencing problem instances often require

the consideration of complex objective functions that model trade-offs between multiple individual

real world preferences (including delay, equity of delay, and time window compliance), further

increasing the challenging nature of this problem.

This paper introduces a number of practical approaches for reducing the computation required

for the general runway sequencing problem, expressed in terms of pruning rules for the search

tree. Their efficacy in a dynamic program is illustrated on a number of complex real world take-

off sequencing problems. A complex non-linear, non-convex and discontinuous objective function

which was introduced in Atkin et al. (2007) and is based upon real controller preferences is utilised.

Despite the challenging nature of the objective function (in particular for traditional MIP based

approaches) and the conflicting objectives that it models, the pruning rules which are introduced

here are shown to work well and to enable an algorithm to find optimal solutions extremely quickly

- fast enough to be of practical use for real time runway scheduling. The effects of each of these rules

is evaluated in terms of their effectiveness in reducing both the number of states in the problem

and the solution time.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 5

Pruning rules have received considerable attention in the literature on machine scheduling

and help to improve tractability (Allahverdi et al. 1999, 2008). However, the majority of these

approaches do not consider sequence dependent setup times, nor complex non-convex, non-linear,

or discontinuous objective functions such as the one considered here. Earlier work on dominance

rules that did consider sequence dependent setup times includes Ragatz (1993) and Bianco et al.

(1999). Ragatz (1993) introduces a branch and bound algorithm to optimise total tardiness and

prunes the search tree when local improvements can be achieved through a pairwise interchange of

jobs without increasing the future cost. Similar approaches that exploit local improvement strate-

gies were introduced by Luo and C. Chu (2007) for the maximum tardiness problem, Sourd (2005)

for the earliness-tardiness problem, and by Luo et al. (2005) and Luo and Chu (2006). The branch

and bound approach presented by Sewell et al. (2012) maintains a set of non-dominated solutions

during the exploration of the search tree, and uses the set to establish dominance relationships for

the current branch.

In contrast to approaches which reduce the search space by limiting the movement of aircraft

within the sequence, the pruning of the search space introduced here exploits (in most cases)

characteristics of the objective function to infer that the current sequence, or any future sequences

based on it (by appending aircraft to it), is sub-optimal. Whilst the characteristics are investigated

in the context of the objective function considered here, it can be easily shown that many of

them transfer to other objective functions that are commonly considered in the literature. The

advantage of exploiting characteristics of the objective function in the pruning rules is that partial

sub-sequences which show known poor characteristics can be pruned much earlier, even before the

dominating partial sequences have been generated. In addition, our pruning rules often have a much

lower complexity when compared to some of the the pruning rules based on local improvements

used in the approaches for machine scheduling listed above, and they are therefore usually more

effective from a computational point of view.

The pruning rules which we introduce in this paper could also be of use in other approaches to

this problem, having value beyond the specific dynamic programming approach which has been

developed. Moreover, whilst the results that we present in this paper are for departure sequencing,

the approach can also be applied to arrivals and mixed mode operations on a single runway (since

both use the same, or simpler, constraints than the ones used here). Furthermore, when multiple

runways are considered, runway allocations are usually pre-determined based on the departure

route (to de-conflict), the aircraft size, or the position of the aircraft. In this case, the approach

can easily be extended to support multiple runways, since the problem can be modelled as a

single runway with a separation matrix that includes inter-runway separations if the runways are

interacting, or it can be decomposed per runway if they are not interacting. Finally, the survey on

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
6 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

machine scheduling carried out by Panwalkar and Iskander (1977) reports that 70% of schedulers

state that setup times are sequence dependent in about 25% of the cases, and that the exact setup

times depend on the degree of similarity between jobs, and hence are well structured. Given that

the runway sequencing problem considered here is cast as a single machine scheduling problem with

sequence dependent setup times, and considering the observation that many real world instances

of such problems are well structured, our approach is expected to be applicable to a wide variety

of similar problems, and could therefore have a significant impact on a large number of real world

applications.

The outline of this paper is as follows: The runway sequencing problem is detailed in Section

2, where the constraints and objectives are explained in more detail, along with an explanation

of the real world problem and the reasons for the structure within the data. The various pruning

rules are then introduced in Section 3, where their complexity is discussed and a proof is provided

for each, showing that the application will not result in a loss of optimality. For the purpose of

illustrating their efficacy, these rules were implemented within a dynamic programming algorithm

and this is explained in Section 3.7. The results of applying this algorithm to the take-off sequencing

datasets for Heathrow (from Atkin et al. (2012)) are then given in Section 4, where the problems

which would occur if a constrained position shift approach was used are also shown. Finally, some

conclusions are drawn and the wider implications of this work are discussed in Section 5.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 7

2. Problem description and model

Given a set of aircraft S, with (asymmetric) minimum separations δij between any ordered pair of

aircraft i and j (where i precedes j), the runway sequencing problem consists of finding a sequence

of landings and take-offs, s, such that an optimal (or acceptable, for heuristic methods) value is

achieved for some given objective function(s), subject to the satisfaction of all hard constraints.

2.1. Constraints

A feasible sequence must meet minimum runway separations, hard time windows (if applicable),

and earliest take-off times. Any sequence that violates these constraints is not feasible in practice,

and can be eliminated from the solution space.

2.1.1. Separation Constraints For the departure instances considered here, the minimum

runway separations are determined by the aircraft’s weight classes, speed groups, and their standard

instrument departure routes (SIDs). An aircraft’s weight class determines the severity of the wake

turbulence it causes, the time that is required for this to dissipate, and its senstivity to wake

turbulence caused by other aircraft. Larger aircraft generate, in general, more turbulence, to which

smaller aircraft are more sensitive. Consequently, a larger weight class separation is required when

a large aircraft is followed by a small aircraft, than when a small aircraft is followed by a large

aircraft (i.e. the separations are asymmetric). In a similar fashion, larger speed group separations

may be required when a slower aircraft is followed by a faster aircraft on the same route. This is

necessary to prevent the following aircraft from catching up before their routes diverge. Minimum

departure route separations are influenced by the climb and the relative bearing of the route, as

well as congestion in downstream airspace sectors. The latter may require an increased separation

upon take-off, to space out traffic and prevent the overloading of en-route sectors and controllers.

The minimum separation that must be maintained at the runway between the take-off time of

two (departing) aircraft is equal to the maximum of their weight, speed, and SID separation. This

results in a well structured separation matrix. For instance, the required separation for a fast and

small aircraft is usually no less than the separation for a slow and large aircraft if they follow the

same aircraft on the same route. However, the resulting separation matrix does not necessarily

obey the triangle inequality. I.e., given three aircraft i, j, and k using the runway in the order i,

then j, then k with the respective required separations between them denoted by δij, δjk, and δik,

then δij +δjk ≥ δik does not necessarily hold. The take-off time of one aircraft (e.g. k) can therefore

be influenced by multiple-preceding aircraft (e.g., i and j).

2.1.2. Time Windows Let aircraft i be subject to a hard time window (that must be adhered

to) that is defined by its start time eti and end time lti, then its take-off time, ti, must be within

this window. I.e., eti ≤ ti ≤ lti must hold. If an aircraft is not subject to a hard time window, it

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
8 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

can be considered to be subject to a very large time window with start time eti equal to −M and

end time lti equal to +M , with M denoting a very large constant (large enough to not interact

with the aircraft times).

In addition to a hard time window, an aircraft which is taking off can be subject to a Calculated

Take-Off Time (CTOT) or slot. A CTOT is a 15-minute time window during which the aircraft

should take-off. Let the start and end time of the CTOT window for aircraft i be denoted by eci

and lci respectively. An aircraft cannot take-off before eci and may have to be delayed to meet

the start of its window. It preferably takes-off before its end, lci. Although their use is strongly

discouraged and penalised, a limited number of 5 minute (300 seconds) CTOT extensions have

been available and could be used for aircraft that would otherwise narrowly miss their CTOT.

The start time of a CTOT window is therefore modelled as a hard constraint and the end time is

modelled as a heavily penalised soft constraint or objective.

2.1.3. Earliest Take-Off Time Assuming that the earliest time an aircraft i can join the

queue of aircraft waiting at the runway for take-off is bi (which we name the “base time”) and

that the minimum time to reach the start of the queue and line up with the runway is ci seconds,

the earliest time aircraft i can be sequenced, irrespective of any other aircraft, is called the release

time ri and can be calculated as the maximum of bi + ci and the start times of any hard or CTOT

windows (eti and eci). This is shown in Equation 1.

ri = max(bi + ci, eti, eci) (1)

Assuming that each aircraft will be sequenced as early as possible (which is a valid assumption at

busy airports), the time ti for aircraft i is equal to the maximum of ri and tx + δxi for all x ∈ si,

where x denotes an aircraft in the partial sequence si of aircraft which take-off before i and tx its

take-off time. This is defined by Equation 2, in which ri can be substituted by Equation 1.

ti = max(ri,max
x∈si

tx + δxi) (2)

2.2. Objectives

The objective function, F (s), considered in our approach is defined by Equation 3 and models

runway utilisation (quantified by the take-off time of the last aircraft in the partial or final sequence

that contains all aircraft in the set, i.e. the makespan), total (non-linear) delay, and CTOT compli-

ance. The runway utilisation is determined by the take-off time of the last aircraft in the sequence

s and is equal to max
x∈s

tx. Apart from its meaning as an objective (since it reflects runway utilisa-

tion), makespan is also utilised for the evaluation of partial sequences in the pruning rules and in

the dynamic programming algorithm introduced in Section 3, since it affects future take-off times.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 9

The objective function for delay and CTOT compliance is defined by the second component in

Equation 3.

F (s) = (max
i∈s

ti,
∑
i∈s

(W1(ti− bi)α +W2C(ti, lci))) (3)

C(ti, lci) =


0 if ti ≤ lci
ω1(ti− lci) +ω2 if lci < ti ≤ lci + 300

ω3(ti− lci) +ω4 if ti > (lci + 300)

(4)

The delay cost for an aircraft i is calculated as a function of the difference between its base time

bi and its take-off time ti, and measured as W1(ti − bi)α, where W1 and α are constants (α ≥ 1)

which can be set to appropriate values to model controller preferences (Atkin et al. 2010). Larger

values of α penalise larger delays more severely and encourage a more equitable distribution of

delay.

The cost for CTOT violations in Equation 3 is given by W2C(ti, lci), in which W2 denotes

a constant. C(ti, lci) is a non-convex discontinuous piecewise linear function that is defined by

Equation 4, in which ω1, ω2, ω3, ω4 represent constants. The different segments of C(ti, lci) reflect

the different costs associated with an aircraft taking off within its CTOT window (eci ≤ ti ≤ lci),

narrowly missing its departure window but leaving no more than 300 seconds late (lci < ti ≤

lci + 300), or missing its CTOT window completely (lci + 300 < ti). Given the increasing degree

of severity of missing a CTOT and hitting an extension, and missing CTOT and its extension

completely, it is usual that ω1 <<ω3 and ω2 <<ω4. This results in a jump in cost in the objective

function that recognises that small time window extensions are sometimes possible for departures

but should be avoided, whereas missing an extension is extremely bad. We note that the trade-off

between delay cost and slot compliance in Equation 3 can be influenced by setting their weight

factors (W1 and W2) appropriately. A summary of the notation is provided in Table 1.

The objective function described above is based upon the function used in Atkin et al. (2007)

which was defined in collaboration between those authors and the runway controllers at London

Heathrow. It is currently used in one of the live decision support tools at London Heathrow. The

tuning of this objective function to controller preferences was considered in Atkin et al. (2010). Its

properties in the context of the approach introduced here are analysed in more detail in Section

3.2.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
10 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Symbol Definition
W1, W2 Constant penalty weights for the different objective function components
ω1, ω2, ω3, ω4 Constant penalties for CTOT compliance
ti Take-off time of aircraft i
bi Base time for delay calculations, defined as the time the aircraft enters the

runway queue for departures, or the local airspace for arrivals
ri Release date (earliest take-off time) of aircraft i
eti Earliest time of the hard time window for aircraft i
lti Latest time of the hard time window for aircraft i
eci Earliest time of the CTOT window for aircraft i
lci Latest time of the CTOT window for aircraft i
α Power index to balance delay vs. equity of delay (α≥ 1)
δij The minimum required separation between aircraft i and j
n The number of aircraft in the set
N The number of aircraft types

Table 1 Summary of the notation

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 11

3. Pruning rules and solution method

This section introduces six pruning principles that can significantly reduce the solution time for real

world runway sequencing problems, without losing optimality. They also apply to other machine

scheduling problems with sequence dependent setup times that have objectives and structures

similar to the runway sequencing problem. The pruning rules are explained in this section along

with proofs that solution optimality is not lost by using them. A discussion of the applicability and

performance of each rule to runway sequencing problems and other setups in which they hold is

also given. Finally, the section ends with a description of the dynamic programming method which

was developed to solve the runway sequencing problems and is used in Section 4.

Our pruning principles are:

1. A multi-objective extension of the ability to infer a complete order within sets of separation

identical aircraft (Psaraftis 1980) for the non-additive objective function considered here

2. The ability to infer conditional orders between sets of separation identical aircraft

3. The ability to infer conditional orders between sets of non-separation identical aircraft

4. The use of insertion dominance which prunes sequences with intrinsically bad characteristics

5. The use of dominance combined with lower bounding

6. The identification of more generic dominance rules between partial sequences (i.e. to which

other aircraft still have to be added to the end) that cover non-identical sets of aircraft

The first principle results in the generation of a number of distinct sets of aircraft. The remaining

principles result in a tight coupling between those aircraft sets and enable new dominance relations

to be inferred between partial sequences. All principles can be applied to prune partial sequences

and are therefore particularly useful in algorithms that generate sequences by adding one aircraft

at a time, such as the dynamic program used here (described in Section 3.7) or, e.g., branch and

bound algorithms. However, they are also useful in other algorithms that are working on complete

sequences (containing the entire set of aircraft), e.g. to verify whether a particular change to the

sequence will compromise its optimality.

The validity of each of the six core principles above in the context of runway sequencing is

discussed in the remainder of this section. The importance of our proofs lies in the fact that they

not only prove the feasibility of our approach, but also generalise its applicability to any comparable

sets of linear and/or higher order objectives for which α≥ 1, ω1 ≥ ω3, and ω2 ≥ ω4. Their integration

into a dynamic program for solving the departure sequencing problem is discussed in Section 3.7,

however they could also be applied to augment many other approaches previously introduced in

the literature.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
12 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

3.1. Definitions

For the following proofs, let i and j denote two aircraft that are separation identical, i.e. the mutual

separations for aircraft i and j with respect to all other aircraft x in the set S (which includes i

and j) are the same (δix = δjx, δxi = δxj ∀x ∈ S). Let k denote an aircraft that is not separation

identical to i, i.e. ∃x∈ S : δix 6= δkx or δxi 6= δxk. Aircraft k is said to be “more difficult” to sequence

than aircraft i with respect to a set of aircraft S if the mutual separations between k and any

aircraft x∈ S are no less than the respective separations between i and x, and strictly greater for

at least one aircraft x∈ S (i.e. δkx ≥ δix, δxk ≥ δxi ∀x∈ S and ∃x∈ S : δkx > δix or δxk > δxi).

Let the base times for i, j, and k be denoted by bi, bj, bk, respectively, the start times of the

hard and CTOT windows be denoted by eti, etj, etk and eci, ecj, eck, respectively, and the ends

of hard and CTOT windows be denoted by lti, ltj, ltk and lci, lcj, lck, respectively. Finally, let tx

denote the take-off time of aircraft x in sequence s and t′x denote the take-off time of aircraft x in

sequence s′.

3.2. Complete orders within sets of separation identical aircraft

A complete order exists between aircraft i and j if the objective value(s) and feasibility of any

arbitrary sequence s including i and j cannot, under any circumstances, be improved by reversing

the order of i and j in s. If such complete orders exist, the sequencing problem can be simplified

to one of interleaving ordered sets of aircraft, always sequencing the first available aircraft from

the respective sets. The existence of such complete orders between separation identical aircraft

was shown by Psaraftis (1980) for the optimisation of processing cost, enabling a reduction in

the complexity of the problem from factorial as a function of the number of aircraft n (i.e. n!) to

exponential as a function of the number of aircraft types N , and equal to O(N 2(n+ 1)N).

In a multi-objective context, a complete order may be inferred upon a set of aircraft if the

complete orders for each of the individual constraints and objectives are consistent within the set.

The formal proofs below show that this is the case for the makespan and delay objectives, even

with hard time window constraints if the base times (bi), release dates (ri), and the end times of

hard time windows (lti) of the individual aircraft are in order. However, this is not the case for the

cost incurred by CTOT windows.

3.2.1. Initial observations We first present some initial observations which can be used to

simplify later proofs.

Lemma 1. Given two sub-sequences s and s′ with identical aircraft in the same order, differing

only in the take-off times (e.g. due to different aircraft preceeding s and s′), if tx ≤ t′x for all aircraft

x in s and s′, the delay (or CTOT) cost for each individual aircraft in s will be no worse than its

delay (or CTOT) cost in s′, and the total delay (or CTOT) cost summed over all aircraft in s will

be no worse than the total delay (or CTOT) cost summed over all aircraft in s′.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 13

Proof: Delay (or CTOT) costs monotonically increase with time, hence the pairwise cost rela-

tionship holds between corresponding aircraft. The relationship for the total cost summed over all

aircraft in s then follows.

�

Lemma 2. Given two sub-sequences s and s′ with identical aircraft in the same order, differing

only in the take-off times, if tx ≤ t′x for all aircraft x in s and s′, the violation of an aircraft’s hard

time window in s will be no worse than its violation in s′, and hence if sequence s is infeasible, so

will be sequence s′.

Proof: Since the aircraft order in s and s′ is identical, and since x cannot be sequenced before etx

and can always be delayed to meet etx, tx ≥ etx is trivial. Since tx ≤ t′x, if t′x ≤ ltx, then tx ≤ t′x ≤ ltx,

hence any aircraft x in s cannot violate the time window in s (i.e. tx > ltx) if x does not in s′ (i.e.

t′x > ltx).

�

Lemma 3. Given two aircraft sets A and A∪x, the delay (or CTOT) cost for a sequence s based

on A is no less than the delay (or CTOT) cost for a sequence s′ of A∪x with identical aircraft order

for the aircraft in A and with x inserted at any arbitrary position, both with or without including

the cost for x (without considering the cost of the aircraft remaining to be added).

Proof: Inserting an additional aircraft in any sequence cannot decrease the times for subsequent

aircraft. The delay (or CTOT) cost is monotonically increasing and the delay (or CTOT) cost for

x is non-negative (Equation 3).

�

Lemma 4. Let s and s′ denote two sequences based on the sets A and A ∪ x, respectively, for

which the order of the aircraft in A is the same in s and s′, and with x inserted at any arbitrary

position in s′ (i.e. not appended). The violation of hard time windows for s is no less than for s′,

both with or without considering the violation for x, and without considering the cost of the aircraft

remaining to be added.

Proof: Inserting an additional aircraft in any sequence cannot decrease the times for subsequent

aircraft. It then follows that violations of hard time windows cannot decrease (Lemma 2).

�

3.2.2. Makespan

Theorem 1. An objective to minimise makespan can be considered to induce a complete order

upon two separation identical aircraft i and j if ri ≤ rj.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
14 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Proof: Let s denote a partial sequence containing i and j (in that order), and let s′ denote a

partial sequence with identical order except that i and j are reversed. Let the times allocated to

i and j be denoted by ti and tj for s, and by t′i and t′j for s′. We will prove that if ri ≤ rj, then

any sequence with prefix s will be no worse than the equivalent sequence with prefix s′, and hence

a complete order may be inferred between i and j for makespan. The proof has four components.

Firstly we show that ti ≤ t′j. Secondly, we show through induction that the corresponding times

for the aircraft between i and j in s (j and i in s′) are no later in s than s′. Thirdly, we show that

tj ≤ t′i. Fourthly, we show that the inductive proof in the second part therefore also holds for any

further aircraft which could be added to the end of s and s′, completing the proof.

Part 1: Let si and s′j denote the identical partial sequences of aircraft which are sequenced

before i in s and before j in s′. Given the definitions of s and s′, si = s′j. From Equation 2 we

know ti =max(ri, tx + δxi ∀x∈ si) and t′j =max(rj, tx + δxj ∀x∈ si). Since i and j are separation

identical and ri ≤ rj, then ti ≤ t′j.

Part 2: Let y denote any aircraft between i and j in s (between j and i in s′) such that ty and

t′y denote the times of y in s and s′, respectively. Let sy denote the sequence of aircraft which are

before y in s and let s′y denote the sequence of aircraft which are before y in s′. From Equation

2 we know ty = max(ry, tx + δxy ∀x ∈ sy) and t′y = max(ry, t
′
x + δxy ∀x ∈ s′y). By consideration of

corresponding terms between the two equations, ty ≤ t′y if tx ≤ t′x for all x prior to y. tx = t′x for all

x ∈ si, since the aircraft are identical, and ti ≤ t′j (from part 1). Thus, by induction ty ≤ t′y for all

y between i and j in s.

Part 3: Let sj denote the partial sequence of aircraft before j in s and let s′i denote the sequence of

aircraft before i in s′. From Equation 2, tj =max(rj, tx+δxj ∀x∈ sj) and t′i =max(ri, t
′
x+δxi ∀x∈

s′i). From part 2, we know that t′x′ ≥ tx for all x and x′ at corresponding positions in sj. Since j is

sequenced before i in s′, t′i ≥ rj, and thus t′i ≥ tj.

Part 4: The inductive proof from part 2 therefore also applies to tj and t′i, and, thus, to all

subsequent aircraft, including the ones which will be added to the end of the sequence.

�

Lemma 5. Given the definitions of s, s′, ti, tj, t
′
i, t
′
j in the proof of Theorem 1, ti ≤ t′j ≤ tj ≤ t′i

holds.

Proof: The sequence of aircraft prior to j in s′ is a sub-sequence of the sequence of aircraft

prior to j in s, thus t′j ≤ tj. From Theorem 1, ti ≤ t′j and tj ≤ t′i.

�

Lemma 6. Given the definitions in Theorem 1, tx ≤ t′x′ for all aircraft x and x′ in corresponding

positions in s and s′, respectively.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 15

Proof: This is a direct consequence of Theorem 1.

�

Lemma 7. If an aircraft x is appended to both of the sequences s and s′ defined in Theorem 1

with times tx and t′x respectively, then tx ≤ t′x.

Proof: The inductive proof of Part 4 also applies to aircraft x, and to any subsequent aircraft.

�

3.2.3. Delay

Theorem 2. An objective to minimise the cost for delay in Equation 3 can be considered to

induce a complete order upon two separation identical aircraft i and j where bi ≤ bj and ri ≤ rj.

Proof: Assume the same definitions for s, s′, ti, tj, t
′
i, t
′
j as in Theorem 1. tx ≤ t′x′ for all aircraft x

and x′ in corresponding positions in s and s′ respectively (Lemma 6) and delay costs monotonically

increase (Lemma 1). An objective to minimise delay can therefore induce a complete order upon i

and j if Inequality 5 holds:

W1(ti− bi)α +W1(tj − bj)α ≤W1(t
′
j − bj)α +W1(t

′
i− bi)α (5)

Since the conditions for Lemma 5 hold, we know ti ≤ t′j ≤ tj ≤ t′i, so we can define x1, x2, x3 ≥ 0

such that t′j = ti +x1, tj = t′j +x2 = ti +x1 +x2, t
′
i = tj +x3 = ti +x1 +x2 +x3. Inequality 6 is then

equivalent to Inequality 5.

(ti− bi)α + (ti +x1 +x2− bj)α ≤ (ti +x1− bj)α + (ti +x1 +x2 +x3− bi)α (6)

Let x2 = 0, then Inequality 6 becomes Inequality 7 or 8, which holds for all x1, x3 ≥ 0.

(ti− bi)α + (ti +x1− bj)α ≤ (ti +x1− bj)α + (ti +x1 +x3− bi)α (7)

(ti− bi)α ≤ (ti +x1 +x3− bi)α (8)

Thus, Inequality 6 holds for x2 = 0. As x2 is increased (ti + x1 + x2 + x3 − bi)α will increase

faster than (ti + x1 + x2− bj)α, since bi ≤ bj and x3 ≥ 0. Inequalities 5 and 6 therefore hold for all

x1, x2, x3 ≥ 0, thus the cost of s can be no greater than the cost of s′, so there is never a benefit

from sequencing j before i.

�

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
16 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

3.2.4. Time windows

Theorem 3. Hard time windows can be considered to induce a complete order upon two sepa-

ration identical aircraft i and j where ri ≤ rj and lti ≤ ltj

Proof: Assume the same definitions of s, s′, ti, tj, t
′
i, t
′
j as in Theorem 1. Since an aircraft can

always be delayed to meet the start of its window, etx ≤ tx is trivial. Since tx ≤ t′x′ for all aircraft x

and x′ at corresponding positions in s and s′ (Lemma 6), the time window violation of all aircraft

other than i and j is no worse in s than in s′ (Lemma 2). If i misses its hard time window in s (i.e.

ti > lti), irrespective of j, i will also miss its time window in s′, since t′i ≥ ti, thus t′i > lti. If j misses

its time window in s (i.e. tj > ltj), then i will miss its time window in s′, since t′i ≥ tj and lti ≤ ltj.

Since tx ≤ t′x (Lemma 7) for any arbitrary aircraft x added to both s and s′, the time window

violation for x is no worse in the case of s. Hence, a complete order can be inferred between i and

j for time window violations.

�

Lemma 8. A complete order can be inferred within a set of separation identical aircraft with

respect to makespan, delay, and hard time window compliance if the base times (bx), release dates

(rx), and the end times of hard time windows (ltx) are in the same order for all aircraft x in the

set.

Proof: The necessary conditions for Theorem 1 (the release dates are in order), Theorem 2 (the

base times and release dates are in order), and Theorem 3 (the release dates and end times are

in order) are satisfied for all ordered pairs of aircraft in the set, hence a complete order can be

inferred.

�

In contrast to Lemma 8, complete orders cannot be inferred within separation identical sets

when CTOT windows are considered due to the piecewise linear, discontinuous and non-convex

objective function that models their cost. I.e., the better order for two separation identical aircraft

i and j (bi ≤ bj,ri ≤ rj, lci ≤ lcj) depends upon the times ti and tj. For example, let us assume

that j is restricted by a CTOT window but i is not. Let s denote a partial sequence in which i

is sequenced at time ti ≥ rj (i.e. after j becomes available for sequencing), and j is sequenced at

time tj ≥ lcj (i.e., j misses its time window). Since ti ≥ rj, and i and j are separation identical,

the aircraft could be swapped with no modification of times to i, j, or other aircraft. Even though

the swap may potentially increase the delay cost (since bi ≤ bj, ri ≤ rj) the reduction in the CTOT

violation cost from scheduling j earlier could more than offset this. I.e., the total cost could be

reduced. Conversely, if rj = tj (i.e., j could not be sequenced any earlier), there is no benefit from

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 17

sequencing j before i, since this would not reduce j’s CTOT violation cost, so the total cost for i

and j (see §3.2.3) would not improve and could even increase.

If both i and j are subject to a CTOT, then the lower cost order will depend upon the relationship

between ti, tj, eci, ecj, lci, and lcj. Given the CTOTs for i and j and the possible times at which

i and j can be scheduled, say t1 and t2, with t1 < t2, if both aircraft can meet their time windows

with i scheduled before j (i.e., ti = t1 ≤ lci and tj = t2 ≤ lcj), then i should precede j for reasons

of delay. However, if lci ≤ t1 < lcj ≤ t2 then swapping the aircraft so that tj = t1 and ti = t2 would

mean that only i misses its time window. This could result in a lower total CTOT violation cost

which could more than offset the increased delay cost.

Performance: An efficient algorithm would implement complete orders by generating and order-

ing the separation identical sets in a pre-processing step, i.e. before the actual sequencing is done.

This can be done through pairwise comparison of aircraft and their separations with the aircraft

in the set S. The solution method can then interleave the ordered sets by selecting the first avail-

able aircraft in each of the sets and avoid consideration of later aircraft. If the solution method is

exact, optimality of the resulting sequences will not be compromised since a complete order exists

within the sets. It was shown by Psaraftis (1980) that interleaving ordered sets of aircraft reduces

the worst case complexity from n! to O(N 2(n+ 1)N), with N denoting the number of sets and n

denoting the number of aircraft. I.e., complete orders reduce the computational complexity of the

algorithm and require no additional computation during its execution.

The efficacy of using complete orders is highly influenced by the complexity and structure of

the separation matrix, and the aircraft mix that operates at the airport in practice. In practice,

the separation matrices for runway sequencing problems have a structure which enables complete

orders to be exploited well. However, in extreme cases, e.g., where all aircraft are subject to a

CTOT, when the aircraft mix is highly diverse, or when no separation identical aircraft are present,

no complete orders can be inferred. Even in this case, however, the pruning rules introduced below

can help to improve tractability.

3.3. Conditional orders

3.3.1. Conditional orders between sets of separation identical aircraft When partial

sequences are compared, it will often be possible to infer some information about take-off times (e.g.

lower bounds) and the aircraft order required to obtain an optimal sequence taking into account the

characteristics of the given objective function, even if the exact take-off times are not yet known.

This section looks at how an algorithm could use this information to prune partial sequences much

earlier, i.e. before the sequences are generated and before the exact times are known.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
18 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Theorem 4. A conditional order can be inferred between two separation identical aircraft i and

j (ri ≤ rj, lti ≤ ltj), such that i should precede j, when ti, tj, t
′
i, t
′
j are such that Inequality 9 holds.

W1(ti− bi)α +W2C(ti, lci) +W1(tj − bj)α +W2C(tj, lcj)≤

W1(t
′
i− bi)α +W2C(t′i, lci) +W1(t

′
j − bj)α +W2C(t′j, lcj) (9)

Proof: Let us assume the definitions of s, s′, ti, tj, t
′
i, t
′
j in Theorem 1. Since ri ≤ rj and

lti ≤ ltj, a complete order can be inferred between i and j with respect to makespan and hard

time window violations. Hence, tx ≤ t′x for all aircraft other than i and j at corresponding positions

in s and s′ (Lemma 6), or at corresponding positions in sequences obtained by adding a sub-

sequence containing the same aircraft in the same order to s and s′ (Lemma 7). It then follows

that sequencing j before i could not decrease the makespan, the delay cost, the CTOT violation

cost, and the violation of hard time windows for any of these aircraft (Lemmas 1 and 2). Hence,

an order can be inferred between i and j such that i should precede j if Inequality 9 holds, and

thus the cost for sequencing i before j is lower than the cost of sequencing j before i.

�

Theorem 5. If tj and t′i are not yet known (e.g. when incrementally building up the sequence),

a conditional order can still be inferred between i and j if, in addition to the conditions outlined in

Theorem 4, bi ≤ bj, lci ≤ lcj and Inequality 10 hold.

W1(ti− bi)α +W2C(ti, lci)−W1(t
′
j − bj)α−W2C(t′j, lcj)≤

W1(t
′
i− bi)α +W2C(t′i, lci)−W1(t

′
i− bj)α−W2C(t′i, lcj) (10)

Proof: If ri ≤ rj, lti ≤ ltj, and bi ≤ bj, a complete order can be inferred between i and j for

makespan, delay, and hard time window violations. Since delay costs are monotonically increasing

and tj ≤ t′i (Lemma 5), W1(t
′
i− bj)α ≥W1(tj − bj)α, and thus W1(t

′
i− bi)α−W1(tj − bj)α ≥W1(t

′
i−

bi)
α −W1(t

′
i − bj)α. Since CTOT violation costs are monotonically increasing for ω1 ≤ ω3 and

ω2 ≤ ω4 (Equation 4) and tj ≤ t′i (Lemma 5), C(t′i, lcj)≥C(tj, lcj), and thus C(t′i, lci)−C(tj, lcj)≥

C(t′i, lci)−C(t′i, lcj). Meeting Inequality 10 is therefore sufficient for meeting Inequality 9, and a

conditional order can be inferred between i and j as soon as Inequality 10 is met.

�

If bi ≤ bj, the minimum value for W1(t
′
i− bi)α−W1(t

′
i− bj)α occurs at minimal t′i. The minimum

value of C(t′i, lci)−C(t′i, lcj) occurs either at minimal t′i or around the discontinuities in Equation

4, and can therefore be calculated easily once an earliest time for t′i is known, even before the exact

value for t′i is known. Time t′i can be no earlier than the latest take-off time for an aircraft which

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 19

is already in the partial sequence, and will increase as more aircraft are added, thereby further

tightening Inequality 10.

A special case arises if ti ≤ lci (lci ≤ lcj), i.e. if i can meet its time window. In this case, Inequality

9 reduces to Inequality 11. A complete order exists for delay if ri ≤ rj and bi ≤ bj, and thus

W1(ti − bi)α +W1(tj − bj)α ≤W1(t
′
i − bi)α +W1(t

′
j − bj)α. From Equation 4, C(tj, lcj) ≤ C(t′i, lci)

for lci ≤ lcj, tj ≤ t′i (Lemma 5), and C(t′j, lcj)≥ 0. Thus, Inequality 11 must hold and a conditional

order can be inferred between i and j if ri ≤ rj, bi ≤ bj, lti ≤ ltj, lci ≤ lcj and ti ≤ lci.

W1(ti− bi)α +W1(tj − bj)α +W2C(tj, lcj)≤

W1(t
′
i− bi)α +W2C(t′i, lci) +W1(t

′
j − bj)α +W2C(t′j, lcj) (11)

If ri ≤ rj, bi ≤ bj, and lti ≤ ltj and aircraft i and j are not subject to a CTOT window, their cost

is equal to 0, and Theorem 5 reduces to Lemma 8, in which case a complete order exists between

i and j. Finally, if aircraft j does not have a CTOT window, Inequality 9 reduces to Inequality

12, which is always satisfied (since a complete order exists for delay, the CTOT window cost is

monotonically increasing, and ti ≤ t′i, Lemma 5). I.e. a complete order exists between i and j in

this case.

W1(ti− bi)α +W2C(ti, lci) +W1(tj − bj)α ≤

W1(t
′
i− bi)α +W2C(t′i, lci) +W1(t

′
j − bj)α (12)

3.3.2. Conditional orders between non-separation identical aircraft

Theorem 6. A conditional order can be inferred between two non-separation identical aircraft

i and k (i more difficult to sequence than k, ri ≤ rk, lti ≤ ltk) such that i should precede k if the

increased separations for i compared to k do not impose an additional delay for any subsequent

aircraft in the current partial sequence, or any aircraft remaining to be added to the current sequence

when ti, tk, t′i, t
′
k are such that Inequality 13 holds.

W1(ti− bi)α +W2C(ti, lci) +W1(tk− bk)α +W2C(tk, lck)≤

W1(t
′
i− bi)α +W2C(t′i, lci) +W1(t

′
k− bk)α +W2C(t′k, lck) (13)

Proof: Let s denote a partial sequence containing i and k (in that order), and let s′ denote

a partial sequence with identical order except that i and k are reversed. Let the set of aircraft

remaining to be added to s and s′ be denoted by R. If no additional delays are incurred by the

aircraft subsequent to i in s or by any aircraft in R (relative to s′), then tx ≤ t′x for all aircraft other

than i and k. The makespan, delay cost, violation of hard time windows, and CTOT violation cost

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
20 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

for these aircraft is thus no worse in s than in s′ (Theorem 1 and Lemmas 1 and 2). Since ti ≤ t′i
(the sequence of aircraft before i in s is a subsequence of the aircraft before i in s′) and tk ≤ t′i
(the increased separations for i compared to k do not impose additional delay), the observations

for hard time windows in Theorem 3 remain valid. If Inequality 13 holds, the delay cost and the

cost for CTOT violations for i and k is no worse in s than in s′ and a conditional order can be

inferred for i and k.

�

In a similar fashion as in §3.3.1, a conditional order can still be inferred between i and k even

if the exact values of tk and t′i are not yet known. This is the case if the current increase in delay

and time window cost for scheduling i rather than k is less than any future decrease in delay and

time window cost when k and i are later added, as shown by Inequality 14 (a rearrangement of

Inequality 13). We note that with respect to the cost for CTOT violations in Inequality 14, the

observations from §3.3.1 remain valid.

W1(ti− bi)α +W2C(ti, lci)−W1(t
′
k− bk)α−W2C(t′k, lck)≤

W1(t
′
i− bi)α +W2C(t′i, lci)−W1(tk− bk)α−W2C(tk, lck) (14)

Performance: To infer conditional orders when incrementally building up a sequence, the con-

ditions in Theorems 4, 5 and 6 must be validated between the newly added aircraft and both the

aircraft preceding it in the sequence and the aircraft remaining to be added to the sequence. The

complexity of validating conditional orders is therefore linear as a function of the number of aircraft

in S, denoted by |S|, since any aircraft is either added to the sequence or remaining to be added.

If complete orders are present in S, and hence a number of ordered separation identical sets has

been defined, conditional orders have to be evaluated only for the first remaining aircraft in each

of the N sets. In addition, they only have to be evaluated for aircraft that are either separation

identical or are more difficult to sequence, and for which replacing them with j does not impose an

additional delay on subsequent aircraft in the sequence (if rj >> tx, aircraft j is likely to impose an

additional delay). The actual number of comparisons is therefore likely to be significantly fewer in

practice. This makes the implementation of conditional orders very efficient from a computational

point of view.

Extension: We note that conditional orders can be generalised to any arbitrary objective func-

tion/constraints, or any number of aircraft, as long as their exact times in the sequence are known.

Indeed, if a local improvement can be obtained without increasing the future cost, the partial

sequence, or any sequence based on the unimproved order, is not optimal. This is also the case if

the exact times of tj and t′i are not yet known, as long as it can be establised for the given objective

function that the current increase in cost for sequencing j before i is less than any future decrease.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 21

3.4. Insertion dominance

Theorem 7. If an aircraft x can be inserted into a partial sequence s (i.e. not appended) with-

out delaying any of the subsequent and remaining aircraft, the sequence s can be pruned without

compromising optimality.

Proof: Since x can be inserted into s without delaying any of the subsequent and remaining

aircraft, the makespan, delay cost, cost for CTOT violations, and the violation of hard time windows

for these other aircraft does not increase (Theorem 1 and Lemmas 1 and 2). If x is scheduled after

s, its time can be no earlier than if it was scheduled within s, thus the makespan, delay cost, CTOT

violation cost (which are monotonically increasing), and the violation of hard time windows for

x can also be no less (Theorem 1 and Lemmas 1 and 2). Therefore, the sequence based on s and

containing x can be no worse than the sequence based on s to which x is appended later.

�

Performance: To evaluate insertion dominance, it is necessary to verify whether any of the

remaining aircraft x∈R can be inserted into s without additional delay to the subsequent aircraft in

s, or to the aircraft in R\x. In practice, since complete orders exist between the aircraft in the same

separation identical set, it is sufficient to validate this dominance rule only for the first remaining

aircraft in each of the sets, and only for the positions in s where the maximum separation for x with

any arbitrary aircraft exceeds the makespan of s augmented with the minimum separation (i.e.,

it can still influence future take-off times). The complexity of evaluating insertion dominance is

therefore linear as a function of the number of separation identical sets N , and linear as a function

of the number of positions that need to be considered for insertion dominance as determined by

the maximum separation (this is 2 for the problem instances considered here).

The efficacy of insertion dominance is influenced by three factors: the distribution of the release

dates ri; the accumulated delay; and the occurrence of violations of the triangle inequality in the

separation rules. If all release dates are equal, or it is a high delay situation, an aircraft x’s release

date, rx, is less likely to delay its take-off time. I.e., tx is likely to be constrained by the separation

requirements only. Hence, the sequence may not contain idle time, so insertion dominance may

not apply. However, if the separation rules violate the triangle inequality, i.e. δij ≥ δix + δxj (with

i preceding j in s), it may be possible to insert x between i and j without causing any additional

delay to other aircraft, and hence without increasing their cost. In this case, s can be pruned

without compromising optimality. In practice, the efficacy of insertion dominance is determined by

a complex interaction between these three key factors (release dates, delay, and separation rules).

We therefore report empirical results on its efficacy in Section 4.

Extension: We note that insertion dominance is valid for any monotonically increasing objective

function. It can be easily and efficiently extended to “conditional insertion dominance” for an

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
22 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

arbitrary objective function, provided that it can be easily verified that the cost for inserting an

aircraft is less than the future cost for adding the aircraft later.

3.5. Dominance with lower bounding

The presence of sequence dependent separations that violate the triangle inequality (e.g. for depar-

ture sequencing, mixed mode operations, or for multiple runway scenarios) means that the take-off

time(s) and objective value(s) of future aircraft added to a given sequence s can be influenced by

one or more preceding aircraft, typically the most recently sequenced ones. The set of aircraft in

s that influence the times of future aircraft is called the “separation influencing set” and consists

of all aircraft x∈ s for which the separation constraints tx + δxy may be binding upon the take-off

time ty of any arbitrary aircraft y in the set of aircraft R remaining to be added to s. The set of

other aircraft in s, i.e. the ones that are not binding upon the take-off time of any aircraft y ∈R
is called the “non-separation influencing” set.

Since the separation influencing set can affect the take-off time of future aircraft, and hence

their objective value(s), two sequences s and s′ are comparable only if their separation influencing

sets are the same if standard dominance rules are used. I.e. sequence s is no worse than sequence

s′ if F (s) ≤ F (s′) and tx ≤ t′x for all aircraft x in the separation identical sets. This problem

characteristic greatly increases the complexity of the problem by increasing the number of non-

comparable sequences by a factor of m!, where m is the number of separation influencing aircraft.

I.e., the requirement for separation identical sets to be the same can significantly reduce the efficacy

of pruning rules.

The requirements on the separation identical sets of s and s′ can be relaxed by integrating “look-

ahead” or lower bounding strategies to consider the effects of aircraft in the separation influencing

sets on the set of aircraft, R, that remain to be added to the partial sequence s. This enables

the inference of dominance relations between otherwise incomparable sequences, and significantly

increases the number of sequences that can be compared.

Theorem 8. Given partial sequences s and s′ that contain the same set of aircraft, and a set

of aircraft R which have not yet been added, any sequence based on s is no worse than a sequence

based on s′ if s is feasible, F (s)≤ F (s′) and max
x∈s

(tx + δxy, ry)≤max
x∈s′

(t′x + δxy, ry) ∀y ∈R

Proof: Let z be a sequence consisting of sub-sequence s followed by any (sub-)set of aircraft

in R and let z′ be the sequence consisting of the sub-sequence s′ followed by the same (sub-)set

of aircraft from R in the same order. Let ty and t′y denote the times for y ∈R in sequences z and

z′, respectively. Then ty ≤ t′y ∀y ∈R, since max
x∈s

(tx + δxy, ry)≤max
x∈s′

(t′x + δxy, ry) ∀y ∈R. It follows

that the makespan, the delay cost, the cost for CTOT violations, and the violation of hard time

windows for z based on s is no worse than for z′ based on s′ (Theorem 1, Lemmas 1 and 2), so the

sequence s′, and any sequence based on it, can be pruned without compromising optimality.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 23

�

Performance: To evaluate dominance with lower bounding, it is sufficient to identify all compa-

rable sequences (i.e. sequences that contain the same set of aircraft but do not neccesarily have

the same separation influencing set) and validate the conditions in Theorem 8. If the sequences are

ordered and grouped by their aircraft set, the sets of comparable sequences can be located using

binary search. I.e. the worst case complexity is given by O(log2 N), with N denoting the number

of unique aircraft sets in this case. The worst case value of N is determined by the number of

unique subsets that can be selected from S, and is given by N = |S|!
|s|!(|S|−|s|)! , with |s| denoting the

number of aircraft in sequence s. The value of N reaches a maximum for |s|= |S|
2

. However, the

other pruning rules introduced in this paper will significantly reduce the number of unique sets in

practice (i.e., the value of N). Hence, the average complexity can be expected to be significantly

less than the worst case complexity, making the implementation of dominance with lower bounding

computationally very efficient.

Extension: We note that dominance with lower bounding applies to any arbitrary cost function,

even if the aircraft do not have to be scheduled as early as possible. Given ty ≤ t′y ∀y ∈ R, the

objective value of y in z will never exceed its value in z′, since y in z can always be delayed to t′y

(if this were to improve the objective value) but y in z′ cannot be advanced to ty.

3.6. Dominance between non-identical sets

3.6.1. Dominance considering subsets

Theorem 9. Let s be a partial sequence containing the aircraft from set S and let s′ be a partial

sequence containing the aircraft from set S′, where S′ ⊂ S. Let R denote the set of aircraft which

have not yet been sequenced in s and R′ denote the set of aircraft which have not yet been sequenced

in s′. If s is feasible, F (s)≤ F (s′) and max
x∈s

(tx+δxy, ry)≤max
x∈s′

(t′x+δxy, ry) ∀y ∈R, then the sequence

s′ and any sequence based on it can be pruned without compromising optimality.

Proof: Given the definition of s, s′, S, S′, R and R′, R⊂R′ in Theorem 8, the sequence obtained

by adding the aircraft from R after s can not be worse than the one obtained by adding the same

aircraft from R′ (in the same order) after s′. Inserting the additional aircraft from R′ \R cannot

reduce the makespan, the delay cost, the cost for CTOT violations, and violation of hard time

windows (Theorem 1 and Lemmas 3 and 4), regardless of their positions. Thus, the sequence based

on s and R cannot be worse than the sequence based on s′ and R′. The sequence s′, and any

sequences based it, can therefore be pruned without compromising optimality.

�

We note that this dominance relationship can be further tightened by considering a lower bound

L for the total cost of the aircraft in R′ \R, calculated from their earliest take-off times given that

they must follow s′, and consider whether F (s)≤ F (s′) +L rather than F (s)≤ F (s′).

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
24 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Performance: Similarly to dominance with lower bounding, dominance between subsets requires

the retrieval of the set of all sequences containing a given set of aircraft, which can be done in

O(log2 N). This has to be repeated for all subsets of the aircraft in s that one would want to

consider. Hence, the complexity of validating dominance between subsets is a linear function of

the number of subsets that are considered, and logarithmic as a function of the number of unique

aircraft sets.

Extension: We note that dominance with subsets is applicable for any arbitrary non-negative

cost function.

3.6.2. Dominance considering non-identical sets

Theorem 10. Let s and s′ be arbitrary partial sequences containing the aircraft from set S ∪ i
and S ∪ k, respectively (i more difficult to sequence than k, ri ≤ rk, bi ≤ bk, lci ≤ lck, lti ≤ ltk). Let

R∪k and R∪i denote the sets of aircraft which have not yet been sequenced in s and s′, respectively.

If s is feasible, max
x∈s

(tx + δxy, ry) ≤max
x∈s′

(t′x + δxy, ry) ∀y ∈ R, max
x∈s

(tx + δxk, rk) ≤max
x∈s′

(t′x + δxi, ri),

and Inequality 15 holds, then s′ (and any sequence based on it) can be pruned from the solution

space without compromising optimality.

F (s)−F (s′)≤W1(t− bi)α +W2C(t, lci)−W1(t− bk)α−W2C(t, lck) ∀t≥max
x∈s′

(tx + δxi, ri) (15)

Proof: Let z be a sequence consisting of partial sequence s, followed by any sequence of aircraft

from R∪k. Let z′ be the corresponding sequence consisting of partial sequence s′, followed by the

same sequence of aircraft from R∪i, replacing aircraft k by aircraft i. Given that max
x∈s

(tx+δxk, rk)≤
max
x∈s′

(t′x + δxi, ri) (i.e., if δik > δki, it has no influence) and rk ≤ t′i (k preceeds i in s′), then tk ≤ t′i.
Given that lti ≤ ltk, tx ≤ t′x ∀x∈R and that s is feasible, it then follows that the violation of hard

time windows for z no worse than z′. In addition, given that tx ≤ t′x ∀x ∈R, the cost incurred by

any aircraft x ∈R is no worse in z than in z′. Also, since tk ≤ t′i and t′i ≤ t (t≥max
x∈s′

(tx + δxi, ri)),

tk ≤ t and W1(t− bk)α +W2C(t, lck)≥W1(tk− bk)α +W2C(tk, lck). Hence, satisfying Inequality 15

is sufficient for satisfying Inequality 16 and implies that the current difference in cost between s

and s′ is less than any future difference between z and z′, and that for any sequence z′ there is

a sequence z which is no worse. Pruning s′ (or any sequence based on it) from the solution space

will therefore not compromise optimality. Theorem 10 is thereby a generalisation of Theorem 6,

for which the aircraft in s and s′ can take any arbitrary order. From a computational perspective

however, Theorem 6 allows for much faster implementation, since it only applies to one single

sequence, and does not require the retrieval of the set of sequences containing the aircraft in s′.

F (s)−F (s′)≤W1(t
′
i− bi)α +W2C(t′i, lci)−W1(tk− bk)α−W2C(tk, lck) (16)

�

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 25

3.7. Dynamic program

3.7.1. Algorithm Outline The pruning rules introduced above were integrated in a dynamic

program (DP) that incrementally builds up a sequence by adding one aircraft to the partial

sequence at every stage. Our code was implemented following the template provided in Algorithm

1. Each state in stage n represents a partial sequence containing n aircraft that have already been

scheduled for take-off. A state is defined by the set of non-separation influencing aircraft, the set

of separation influencing aircraft and their take-off times, the objective values (Equation 3), and

any constraint violations. States are expanded in a similar way to other dynamic programming

approaches previously introduced in the literature (see Section 1), however, any state at any stage

that violates any of the complete or conditional orders defined above is pruned here. Dominance

with lower bounding, dominance between subsets, and dominance between non-identical sets is

applied when comparing states against each other. The additional pruning and improved domi-

nance rules (beyond the normal dynamic programming approach of implicitly pruning sub-optimal

paths to achieving the states in the current stage) resolves the state space problem. Each state in

the final stage of our DP therefore represents a Pareto-optimal runway sequence consisting of n

aircraft. Results are shown in the next section for the application of this method to real departure

problems at Heathrow, including an analysis of the contribution of each rule in terms of the reduc-

tion in the size of the state space and the runtime of the algorithm. An example of applying these

rules to a recent arrival sequencing problem is also provided, to show their effectiveness, and the

results contrasted with those from earlier work.

3.7.2. Discussion In contrast to some previous methods where only one aircraft is considered

to influence the separations of later aircraft, the dynamic program and the pruning rules that it

uses explicitly considers multiple separation influencing aircraft. This implies that the approach is

applicable to problem instances where the triangle inequality does not hold (e.g. departures and

mixed mode operations) or to multi-runway scenarios where it is necessary to take, at least, the last

aircraft on every runway into account. The fact that considering multiple separation influencing

aircraft may result in a combinatorial explosion of the state space is addressed by introducing the

pruning rules and using more flexible dominance rules.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
26 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Algorithm 1 Outline of our pruned dynamic program
1: Initialise previousStateSpace with a single state with no aircraft

2: Initialise currentStateSpace to be empty

3: while aircraft remain to be added do

4: for each state s in previousStateSpace do

5: for each ordered set of separation identical aircraft Si (§3.2) do

6: a = first aircraft in Si that is not in s, null if none are left

7: if a != null then

8: if appending a to s will not violate insertion dominance (§3.4) then

9: if appending a to s will not violate conditional orders (§3.3.1) then

10: if appending a to s will not violate conditional non-identical orders (§3.3.2) then

11: expand s by adding a, resulting in sNew

12: add sNew to currentStateSpace

13: check for dominance with look-ahead in currentStateSpace (§3.5)

14: end if

15: end if

16: end if

17: end if

18: end for

19: end for

20: check for subset dominance between previousStateSpace and currentStateSpace (§3.6.1)

21: check for dominance between non-identical sets in currentStateSpace (§3.6.2)

22: previousStateSpace = currentStateSpace

23: Initialise currentStateSpace to be empty

24: end while

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 27

4. Results
4.1. Problem Instances

The performance of our pruned dynamic program is illustrated here using complex real world

problem instances, covering three days of departure operations at London Heathrow Airport. The

instances were first introduced in Atkin et al. (2012) for the pushback time allocation problem.

Their characteristics are summarised in Table 2, which shows the number of sets of separation

identical aircraft and the number of aircraft with CTOTs. Each instance contains 55 aircraft, of

which the first 5 are assumed to be fixed to give a take-off history.

Day I Day II Day III
Id. Sets CTOTs Id. Sets CTOTs Id. Sets CTOTs
1 26 17 13 23 13 25 33 23
2 17 8 14 27 18 26 24 17
3 14 6 15 25 17 27 30 20
4 16 8 16 24 16 28 26 18
5 21 13 17 25 17 29 29 21
6 20 11 18 20 9 30 23 12
7 13 5 19 12 5 31 24 16
8 17 4 20 15 5 32 29 19
9 20 8 21 8 1 33 18 9
10 12 4 22 9 1 34 15 5
11 13 1 23 10 1 35 12 3
12 9 0 24 9 0 36 15 5

Table 2 Problem instances

The terminal manoeuvering area around London Heathrow is highly complex. It has ten different

standard instrument departure routes in normal use at any time. In addition, up to three different

speed classes and five different weight classes have to be considered, resulting in 180 different aircraft

types (corresponding to N above) and 32400 possible combinations. This results in a large and

complex separation matrix in which triangle inequalities are violated (the separation of subsequent

aircraft is influenced by the two most recent ones in general, and more on occasion). A detailed

description of the separation requirements at Heathrow Airport is provided in Atkin (2008). It is

also obvious from Table 2 that there are more than the usual 3 to 6 different separation classes (as

discussed in the arrival scheduling literature) to consider.

We start our analysis with a comparison between the runtimes obtained by our approach with

those obtained for the approaches introduced by Psaraftis (1980) and Balakrishnan and Chandran

(2010). We complete this consideration by applying the pruning rules to an alternative problem

which was previously introduced in the literature and illustrate their effectiveness. The focus of

the remainder of our analysis is threefold: to evaluate the effectiveness of the principles introduced

in §3 that underpin our dynamic program; to see the impact of optimising multiple objectives as

opposed to a single objective; to see the potential real world improvements that could be obtained

from runway sequencing without constraining an aircraft’s maximum positional shift relative to

the initial first come first served sequence (i.e., modelling equity as an objective through the non-

linear delay penalty only), as opposed to runway sequencing in which the maximum positional shift

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
28 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

relative to the aircraft’s initial position is constrained (i.e., modelling equity as a hard constraint,

in addition to the non-linear delay penalty).

Our pruned DP was implemented in Java and all experiments reported in this section were

carried out on a single core of an Intel(R) Core(TM)i7 CPU 950@3.70GHz desktop PC. Our code

was allocated 16GB of RAM and executed on Sun’s Java(TM) Runtime environment (Version 6),

on a Windows 7, 64 bit, Enterprise Edition platform. The following parameter settings were used:

W1 = 100, W2 = 10, ω1 = 10 ω2 = 10000, ω3 = 100, ω4 = 1000000, α= 1.5, which were taken from

Atkin (2008).

4.2. Comparison with previous approaches

As discussed in Section 1, constrained position shifts have been utilised in the past to reduce the

problem complexity by limiting the number of positions that each aircraft can take. The problems

of such an approach are illustrated in this section.

The average, maximum, and total runtime for different values of the constrained position shift

and for different previous approaches are listed in Table 3. For instance, the third line in Table

3 for constrained position shift 3 represents the results that were obtained when the maximum

number of positions that an aircraft could deviate from its position in the initial sequence was

restricted to ±3. All code was implemented in a comparable way and common components were

shared between the implementations to make the comparison as fair as possible.

The results show that the computational cost for the approaches introduced by Psaraftis (1980)

and Balakrishnan and Chandran (2010) increases rapidly as a function of the constrained position

shift. This is in line with the expectations based on their theoretical complexity and with the results

in the publications themselves, since they were not designed for such complex problems, relying on

having a low number of separation groups. In the case of Balakrishnan and Chandran’s approach,

the runs for a constrained position shift of 10 were terminated when our implementation failed

to solve the first instance within 12 hours. This was also the case for Psaraftis’ approach when a

constrained position shift of 55 was applied (which effectively means that any aircraft could take

up any position in the sequence).

CPS
Psaraftis (1980) Balakrishnan and Chandran (2010) Pruned DP

Avg. Max. Total Avg. Max. Total Avg. Max. Total
1 0.001 0.020 0.020 0.003 0.020 0.100 0.004 0.020 0.160
2 0.003 0.020 0.100 0.005 0.030 0.190 0.001 0.020 0.020
3 0.012 0.030 0.440 0.028 0.060 0.990 0.006 0.030 0.230
4 0.039 0.110 1.420 0.150 0.360 5.410 0.013 0.050 0.460
5 0.165 0.690 5.940 0.950 2.820 34.190 0.029 0.080 1.060
6 0.556 1.750 20.010 5.061 9.920 182.180 0.067 0.170 2.410
7 1.931 7.250 69.510 28.288 60.140 1018.380 0.153 0.420 5.500
8 6.333 30.280 227.980 154.940 364.700 5577.830 0.325 1.010 11.690
9 20.555 137.130 739.980 862.696 1575.160 31057.060 0.668 1.870 24.050
10 68.287 588.210 2458.320 1.379 4.600 49.660
55 1.288 8.860 46.350

Table 3 Computational cost in seconds for different dynamic programs, summed for all 36 data instances.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 29

Table 4 lists the results for our approach on the benchmark instances for Milan Airport pro-

vided by Furini et al. (2012), containing 60 aircraft each. These instances are freely available from

http://www.or.deis.unibo.it/research.html. Furini et al. (2012) do not consider CTOT costs and

makespan, and apply a weighted linear delay penalty per aircraft based on its size and fuel con-

sumption. I.e., the value of α in Equation 3 is set to 1 (linear delay cost), the value of W1 is aircraft

dependent and replaced by W1,i, and the value of W2 is set to 0 (which significantly simplifies the

problem).

Furini’s instances were considerably easier to solve than the instances considered for Heathrow

Airport. The results in Table 4 were obtained by enabling complete orders, conditional orders,

dominance with lower bounding, and insertion dominance. These rules were able to prune the

state space sufficiently without the additional computational burden of checking the other pruning

rules, and without the need to add additional complexity to the algorithm. The total runtime to

solve all problem instances to optimality was 64 milliseconds, or on average 5.3ms per problem

instance. This equates to a speedup by a factor of 37170 relative to the runtimes reported in

Furini et al. (2012) (which were an average of 197 seconds for heuristically obtained solutions,

although we note that the hardware configuration used by Furini et al. (2012) is different from the

hardware configuration used to generate the results in this paper). The results reported above for

the problem instances from Heathrow and Milan counter the common belief that many real world

runway sequencing problems are too complex to solve exactly, despite the difficulty that many

algorithms have had in the past.

Dataset Start Time End Time Objective Value
FPT01 14:55:00 17:32:00 265
FPT02 15:30:00 18:00:00 293
FPT03 15:47:00 18:27:00 255
FPT04 16:14:00 18:47:00 268
FPT05 16:35:00 19:36:00 249
FPT06 14:00:00 16:47:00 167
FPT07 14:32:00 17:08:00 198
FPT08 14:55:00 17:37:00 167
FPT09 15:25:00 18:10:00 183
FPT10 15:55:00 18:45:00 211
FPT11 16:24:00 19:34:00 229
FPT12 16:45:00 20:17:00 207

Table 4 Optimal results for the benchmark instances introduced by Furini et al. (2012).

4.3. Pruning

The results in Table 5 illustrate the efficiency of the pruning rules, by showing the effects of

iteratively disabling each of the rules in our full implementation. The number of states that were

generated and the runtimes for the full implementation are listed in the second column of Table 5.

The numbers listed in the other columns represent the ratio of the number of states generated in

the modified implementation versus the number of states in the full implementation. The numbers

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
30 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

in parentheses in the other columns represent the ratio of the computation time required by the

modified implementation versus the computation time required by the full implementation. The last

two rows of Table 5 list the total number of states and the total runtime for our full implementation

in the second column, and the aggregated ratios for the total number of states and the total runtime

in the other columns. The aim is to determine the benefits of adding each of the pruning rules even

when all of the other rules are already present, i.e. what this rule contributes that other rules do

not.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 31

O
rd

e
rs

D
o
m

in
a
n
c
e

ru
le

s
Id

.
F
u
ll

Im
p
le

m
e
n
ta

ti
o
n

C
o
m

p
le

te
C

o
n
d
it

io
n
a
l

Id
e
n
ti

c
a
l

C
o
n
d
it

io
n
a
l

N
o
n
-I

d
e
n
ti

c
a
l

In
se

rt
io

n
L

o
w

e
r

B
o
u
n
d
in

g
S
u
b
se

t
N

o
n
-I

d
e
n
ti

c
a
l

1
5
1
3
.0

0
(0

.0
5
)

1
.0

0
(2

.8
0
)

1
.7

4
(2

.2
0
)

1
.0

0
(1

.6
0
)

5
.2

7
(5

.0
0
)

6
.0

0
(4

.4
0
)

4
.9

5
(2

.8
0
)

1
.0

0
(1

.2
0
)

2
5
2
2
.0

0
(0

.0
5
)

1
.0

0
(1

.8
0
)

2
.1

8
(1

.0
0
)

1
.0

0
(0

.6
0
)

3
.7

9
(1

.2
0
)

6
.7

0
(2

.2
0
)

4
.5

8
(1

.6
0
)

1
.0

0
(0

.6
0
)

3
2
5
4
3
9
.0

0
(0

.6
4
)

1
.0

0
(4

.4
1
)

1
.6

6
(1

.6
6
)

2
.2

5
(2

.4
1
)

2
.4

9
(3

.2
2
)

1
7
.8

1
(2

2
.7

7
)

8
.2

6
(5

.2
2
)

1
.3

4
(1

.3
1
)

4
5
6
2
1
.0

0
(0

.1
3
)

1
.0

0
(3

.6
9
)

1
.5

8
(1

.5
4
)

1
.1

1
(1

.2
3
)

2
.6

8
(3

.1
5
)

3
6
.1

3
(5

3
.6

2
)

1
1
.7

9
(8

.9
2
)

0
.9

5
(1

.0
8
)

5
1
7
8
9
0
4
.0

0
(6

.9
7
)

1
.0

0
(2

.5
2
)

6
.1

2
(1

1
.7

4
)

1
.2

8
(1

.2
7
)

1
.9

1
(3

.1
0
)

4
6
.7

6
(8

6
.5

7
)

9
.4

7
(1

0
.1

4
)

1
.0

8
(1

.0
1
)

6
2
4
3
8
0
0
.0

0
(8

.3
9
)

1
.0

0
(2

.6
4
)

9
.8

9
(2

3
.4

3
)

1
.0

0
(0

.9
7
)

1
.8

4
(2

.9
8
)

4
9
.5

0
(1

0
4
.1

1
)

1
2
.9

5
(1

8
.0

0
)

1
.0

0
(0

.9
8
)

7
3
4
6
1
.0

0
(0

.0
6
)

1
.0

0
(6

.3
3
)

1
.4

2
(1

.8
3
)

1
.0

5
(1

.3
3
)

2
.5

9
(3

.6
7
)

1
6
.8

8
(2

6
.8

3
)

5
.7

4
(4

.6
7
)

1
.0

0
(1

.0
0
)

8
1
3
1
7
.0

0
(0

.0
5
)

1
.0

0
(3

.4
0
)

1
.0

1
(0

.6
0
)

1
.1

6
(1

.0
0
)

4
.7

4
(6

.2
0
)

1
2
.4

9
(9

.6
0
)

3
.0

1
(1

.2
0
)

1
.0

0
(1

.0
0
)

9
4
4
2
.0

0
(0

.0
2
)

1
.0

0
(2

.5
0
)

1
.0

0
(0

.0
0
)

1
.2

0
(1

.5
0
)

8
.0

8
(8

.0
0
)

5
.2

3
(4

.0
0
)

2
8
.1

1
(1

1
.0

0
)

1
.0

0
(1

.0
0
)

1
0

2
3
8
.0

0
(0

.0
2
)

1
.0

0
(1

.0
0
)

1
.0

1
(0

.0
0
)

1
.0

7
(0

.0
0
)

3
.7

9
(1

.0
0
)

4
.3

4
(1

.0
0
)

1
.3

5
(0

.0
0
)

1
.0

0
(0

.0
0
)

1
1

1
1
2
5
4
.0

0
(0

.2
6
)

1
.0

0
(4

.5
4
)

1
.0

2
(1

.0
0
)

1
.5

5
(1

.6
9
)

3
.7

1
(6

.0
8
)

1
0
.1

9
(1

5
.8

8
)

5
.2

1
(3

.6
2
)

1
.0

3
(1

.0
4
)

1
2

1
6
9
.0

0
(0

.0
2
)

1
.0

0
(0

.0
0
)

1
.0

0
(0

.0
0
)

1
.0

1
(0

.0
0
)

4
.1

8
(0

.0
0
)

4
.9

2
(0

.0
0
)

1
.6

6
(0

.0
0
)

1
.0

0
(0

.0
0
)

1
3

3
3
3
.0

0
(0

.0
0
)

1
.0

0
(-

)
1
.2

3
(-

)
1
.1

2
(-

)
4
.3

2
(-

)
4
.9

1
(-

)
1
.4

1
(-

)
1
.0

0
(-

)
1
4

2
8
9
.0

0
(0

.0
2
)

1
.0

0
(1

.0
0
)

1
.1

5
(0

.0
0
)

1
.0

1
(0

.0
0
)

4
.1

5
(1

.5
0
)

3
.4

7
(1

.5
0
)

3
.3

4
(1

.5
0
)

1
.0

0
(1

.0
0
)

1
5

3
3
8
6
4
.0

0
(1

.2
2
)

1
.0

0
(2

.1
6
)

4
.2

9
(4

.4
8
)

1
.0

4
(1

.0
3
)

2
.7

2
(4

.0
9
)

2
4
.8

0
(3

6
.3

0
)

8
.5

8
(6

.2
4
)

0
.7

0
(0

.7
0
)

1
6

2
3
0
6
.0

0
(0

.0
8
)

1
.0

0
(2

.5
0
)

3
.4

5
(3

.3
8
)

1
.0

0
(1

.0
0
)

3
.9

4
(4

.2
5
)

1
6
.6

7
(1

8
.5

0
)

8
5
.7

2
(5

2
.1

3
)

1
.0

0
(1

.0
0
)

1
7

4
2
1
.0

0
(0

.0
3
)

1
.0

0
(1

.6
7
)

1
.1

9
(0

.6
7
)

1
.0

7
(0

.6
7
)

4
.5

5
(2

.0
0
)

5
.2

4
(3

.0
0
)

5
.9

5
(3

.0
0
)

1
.0

2
(0

.6
7
)

1
8

1
1
2
6
.0

0
(0

.0
3
)

1
.0

0
(4

.0
0
)

2
.5

1
(3

.6
7
)

1
.1

1
(1

.6
7
)

4
.6

9
(7

.6
7
)

1
2
.6

0
(1

3
.6

7
)

2
4
.4

4
(1

2
.3

3
)

1
.0

0
(1

.6
7
)

1
9

2
2
3
0
6
.0

0
(0

.4
0
)

1
.0

0
(5

.5
8
)

4
.5

2
(5

.0
8
)

4
.0

6
(4

.5
5
)

5
.9

9
(7

.5
3
)

5
9
.7

8
(1

1
8
.5

5
)

9
.9

4
(8

.4
3
)

2
.3

1
(2

.3
5
)

2
0

2
1
6
8
4
2
.0

0
(6

.1
5
)

1
.0

0
(2

.7
4
)

1
.9

4
(2

.2
0
)

1
.0

0
(0

.9
7
)

6
.8

2
(1

6
.5

3
)

3
4
.9

0
(9

3
.2

0
)

1
3
.6

3
(1

5
.8

7
)

1
.0

0
(0

.9
8
)

2
1

1
6
0
0
.0

0
(0

.0
0
)

1
.0

0
(-

)
1
.0

1
(-

)
1
.2

3
(-

)
2
.0

2
(-

)
5
3
.4

7
(-

)
7
.6

2
(-

)
1
.0

3
(-

)
2
2

3
3
8
5
.0

0
(0

.0
5
)

1
.0

0
(5

.6
0
)

1
.0

0
(1

.0
0
)

1
.0

0
(0

.6
0
)

2
.2

3
(2

.2
0
)

1
8
.8

3
(2

6
.8

0
)

2
.8

9
(1

.2
0
)

1
.0

0
(1

.0
0
)

2
3

2
3
5
5
9
.0

0
(0

.4
5
)

1
.0

0
(4

.5
8
)

1
.0

0
(0

.9
8
)

1
.0

0
(1

.0
0
)

2
.2

1
(2

.9
1
)

9
1
.5

8
(2

2
7
.9

3
)

1
7
.5

1
(1

3
.3

3
)

1
.0

0
(0

.9
8
)

2
4

3
3
9
.0

0
(0

.0
2
)

1
.0

0
(1

.5
0
)

1
.0

0
(1

.0
0
)

1
.0

6
(0

.0
0
)

3
.8

9
(0

.0
0
)

4
.1

0
(0

.0
0
)

1
.3

6
(0

.0
0
)

1
.0

0
(1

.0
0
)

2
5

3
7
9
.0

0
(0

.0
0
)

1
.0

0
(-

)
1
.7

7
(-

)
1
.0

4
(-

)
3
.7

1
(-

)
3
.6

7
(-

)
1
.9

8
(-

)
1
.0

0
(-

)
2
6

2
1
6
.0

0
(0

.0
0
)

1
.0

0
(-

)
1
.2

3
(-

)
1
.0

0
(-

)
4
.4

7
(-

)
3
.4

3
(-

)
1
.6

3
(-

)
1
.0

0
(-

)
2
7

1
7
2
2
.0

0
(0

.0
5
)

1
.0

0
(1

.8
0
)

3
.1

4
(3

.2
0
)

1
.0

0
(1

.0
0
)

4
.3

3
(7

.2
0
)

8
1
.4

4
(1

2
2
.6

0
)

4
3
.2

1
(2

2
.4

0
)

1
.0

0
(1

.0
0
)

2
8

1
7
8
6
.0

0
(0

.0
8
)

1
.0

0
(2

.1
3
)

1
.2

1
(1

.0
0
)

1
.0

1
(0

.7
5
)

2
5
.2

7
(2

8
.2

5
)

4
.6

2
(4

.2
5
)

7
.3

7
(4

.1
3
)

1
.0

0
(1

.0
0
)

2
9

3
2
1
9
2
.0

0
(1

.6
5
)

1
.0

0
(2

.0
7
)

1
7
.9

9
(1

6
.7

8
)

1
.0

9
(1

.0
0
)

4
.2

7
(5

.3
3
)

2
5
.2

5
(2

9
.1

6
)

7
0
.6

7
(5

3
.4

1
)

1
.0

0
(0

.9
5
)

3
0

5
3
2
5
2
.0

0
(1

.4
2
)

1
.0

0
(2

.8
0
)

2
.7

3
(3

.1
4
)

1
.0

1
(0

.9
6
)

1
.7

5
(2

.4
7
)

1
2
.3

8
(2

3
.9

9
)

2
1
.2

6
(1

7
.8

9
)

1
.0

0
(0

.9
6
)

3
1

7
2
0
9
5
.0

0
(3

.2
6
)

1
.0

0
(2

.4
5
)

6
.2

8
(6

.7
1
)

1
.2

2
(1

.1
7
)

2
.6

9
(3

.8
1
)

2
6
.8

7
(3

7
.8

3
)

7
.4

6
(4

.6
2
)

1
.0

5
(0

.9
9
)

3
2

8
5
4
9
4
.0

0
(3

.7
4
)

1
.0

0
(1

.9
1
)

5
7
.6

7
(1

8
5
.7

0
)

1
.0

0
(0

.9
7
)

2
.2

9
(3

.6
3
)

4
7
.2

9
(8

0
.8

0
)

4
3
.9

2
(5

0
.7

6
)

1
.0

0
(0

.9
6
)

3
3

6
7
9
1
4
.0

0
(1

.6
4
)

1
.0

0
(3

.2
3
)

1
6
.1

9
(4

0
.9

5
)

1
.0

0
(0

.9
6
)

3
.3

0
(4

.6
8
)

6
5
.7

0
(1

7
7
.0

4
)

2
1
.7

3
(2

3
.8

8
)

1
.0

0
(0

.9
6
)

3
4

2
9
4
7
3
8
.0

0
(8

.8
6
)

1
.0

0
(3

.2
8
)

3
.7

6
(5

.0
2
)

1
.0

8
(1

.0
4
)

1
.6

2
(2

.2
2
)

1
7
.9

9
(3

6
.4

7
)

4
.4

5
(3

.4
9
)

1
.0

1
(0

.9
8
)

3
5

2
5
1
1
6
.0

0
(0

.5
2
)

1
.0

0
(3

.6
3
)

1
.2

3
(1

.2
3
)

1
.0

0
(0

.9
2
)

2
.5

8
(3

.9
2
)

1
0
2
.9

4
(2

3
8
.0

4
)

2
4
.2

5
(2

0
.5

6
)

1
.0

0
(0

.9
2
)

3
6

6
0
5
.0

0
(0

.0
2
)

1
.0

0
(2

.5
0
)

1
.8

0
(1

.0
0
)

1
.0

2
(1

.0
0
)

3
.0

2
(1

.5
0
)

4
.2

6
(2

.5
0
)

2
.8

4
(0

.0
0
)

1
.0

0
(0

.0
0
)

R
a
ti

o
s

1
.0

0
(2

.7
8
)

8
.9

4
(2

5
.1

0
)

1
.1

4
(1

.1
0
)

2
.9

5
(5

.0
5
)

3
7
.7

4
(7

6
.1

5
)

1
4
.5

4
(1

6
.1

4
)

1
.0

3
(0

.9
9
)

T
o
ta

ls
1
4
1
3
5
5
9
.0

0
(4

6
.3

5
)

1
4
1
3
5
5
9
.0

0
(1

2
8
.7

7
)

1
2
6
4
1
5
3
2
.0

0
(1

1
6
3
.3

1
)

1
6
1
5
2
6
4
.0

0
(5

1
.0

1
)

4
1
6
7
4
8
6
.0

0
(2

3
3
.9

6
)

5
3
3
5
1
1
2
7
.0

0
(3

5
2
9
.5

0
)

2
0
5
4
6
9
3
8
.0

0
(7

4
8
.0

2
)

1
4
6
2
0
6
8
.0

0
(4

5
.8

4
)

T
a

b
le

5
N

u
m

b
er

o
f

st
a

te
s

(a
n

d
fi

n
a

l
ru

n
ti

m
e,

in
se

co
n

d
s)

fo
r

fu
ll

im
p

le
m

en
ta

ti
o

n
o

f
th

e
a

lg
o

ri
th

m
,

co
m

p
ar

ed
to

th
e

ra
ti

o
o

f
th

e
n

u
m

b
er

o
f

st
a

te
s

(r
u

n
ti

m
e)

w
it

h
o

u
t

th
e

p
ru

n
in

g
ru

le
s.

T
h

e
tw

o
la

st
lin

es
lis

ts
th

e
ra

ti
o

a
n

d
a

b
so

lu
te

va
lu

es
fo

r
th

e
n

u
m

b
er

o
f

st
a

te
s

(r
u

n
ti

m
e)

a
cr

o
ss

a
ll

3
6

in
st

a
n

ce
s.

T
h

e
la

st

co
lu

m
n

lis
ts

th
e

n
u

m
b

er
o

f
st

a
te

s
a

n
d

th
e

ru
n

ti
m

e
fo

r
o

u
r

fu
ll

im
p

le
m

en
ta

ti
o

n
.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
32 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

It can be observed from Table 5 that the most efficient principles are dominance with lower

bounding, subset dominance, and conditional orders between identical aircraft. These reduced

the number of states (or runtimes) by a factor of 37.74 (76.15), 14.54 (16.14), and 8.94 (25.10)

respectively. They are followed by insertion dominance, conditional orders between non-identical

aircraft, and dominance between non-identical sets, which resulted in a factor of 2.95, 1.14, and 1.03

times fewer states being generated, and speed-ups of a factor of 5.05, 1.10, and 0.99, respectively.

The table also shows that conditional orders between identical aircraft covers complete orders, as

explained in §3.3.1: exactly the same number of states are generated if the respective rule is disabled.

However, the inclusion of complete orders still results in a speed up by a factor of 2.78 by reducing

the computational burden. The relative ratio of the state space reduction versus the reduction

in runtime illustrates that some principles are more “costly” to implement. However, apart from

dominance between non-identical sets, the significant reduction in the number of states always

outweighed the additional computational cost of adding the pruning rule to the implementation.

Our full implementation is able to generate optimal results in an average runtime of 1.29 seconds

per dataset, a maximum runtime of 8.86 seconds, and a total runtime of 46.35 seconds across all 36

instances. We note that no parallelisation of our code was used, however preliminary experiments

indicate that further reductions in runtime are possible from parallelisation.

The pruning rules evaluated above exploit three key characteristics that are present in real world

instances:

• Aircraft arrive over time and cannot depart before they are ready (insertion dominance, dom-

inance with lower bounding)

• Sets of identical aircraft are present (complete orders, conditional orders between identical

aircraft)

• The separations are structured (conditional orders between non-identical aircraft and domi-

nance between non-identical sets)

These characteristics are expected to be present in the majority of the real world runway sequencing

problems, since they are inherent to the core nature of the problem. In the worst case scenario, where

every aircraft belongs to a different weight class, and/or speed class, and/or follows a different SID,

or all aircraft have a slot, no complete orders can be inferred, and the pruning exploiting conditional

orders between identical and non-identical aircraft will become more important. Similarly, if all

aircraft are ready at the same time, insertion dominance and dominance with lower bounding will

become less efficient, but the other pruning rules will still apply. However, none of these scenarios

are likely to occur in practice.

For instance, insertion dominance and dominance with lower bounding exploit the fact that

aircraft “depart over time”, and are not all ready at the same time (which is likely to be always

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 33

the case in a real world instances). If all aircraft are subject to a slot (which is unlikely to happen

in practice), complete orders can not be inferred. However, in this case, conditional orders could

be inferred in many cases, as discussed in special cases for Theorem 4 in §3.3.

4.4. Objectives

Table 6 lists the average, maximum and total computational cost (in seconds) of our pruned

dynamic program across all 36 problem instances for different constrained position shifts (CPS) and

different combinations of objectives. If only makespan is optimised, and no CTOTs are modelled,

our approach solves the unconstrained problem (i.e. without constrained position shifts) in 0.233

seconds on average, with a maximum runtime of 1.592 seconds, and a total runtime of 8.398 seconds

for all 36 instances. These times increase to 0.342, 2.278, and 12.316 seconds, respectively, if CTOTs

are modelled as a constraint (i.e. the CTOT start time may delay take-off), but only makespan

is optimised (i.e., CTOT violations and delay are not penalised in the objective function, 3rd

column). These values gradually increase when CTOT violations or delay are added as an objective

(4th and 5th column, respectively). When makespan, CTOT violations, and delay are all included

as objectives, the respective values rise to 1.288, 8.860, 46.350 seconds. These results illustrate

the increasing challenges when considering multiple objectives. We note that the computation

times for CPS 10 are slightly larger than those for the unconstrained problem. This is due to the

fact that the pruning rules need to account for constrained position shifts, which reduces their

efficiency/applicability in some cases.

CPS
No CTOTs CTOTs
Makespan Makespan Makespan, TW Makespan, Delay Makespan, TW, Delay

1 0.000 0.015 0.030 0.001 0.016 0.062 0.000 0.016 0.016 0.002 0.016 0.079 0.003 0.016 0.124
2 0.003 0.031 0.109 0.000 0.015 0.015 0.000 0.016 0.031 0.000 0.016 0.031 0.000 0.016 0.016
3 0.002 0.016 0.094 0.002 0.016 0.077 0.001 0.016 0.062 0.003 0.016 0.110 0.005 0.031 0.188
4 0.003 0.016 0.111 0.007 0.031 0.252 0.008 0.032 0.313 0.006 0.016 0.235 0.010 0.046 0.374
5 0.010 0.031 0.389 0.013 0.031 0.499 0.022 0.078 0.827 0.019 0.047 0.703 0.027 0.078 0.998
6 0.022 0.062 0.798 0.033 0.079 1.217 0.052 0.140 1.890 0.042 0.109 1.513 0.066 0.172 2.388
7 0.045 0.140 1.638 0.070 0.172 2.545 0.114 0.312 4.122 0.090 0.203 3.265 0.152 0.421 5.495
8 0.088 0.312 3.169 0.139 0.374 5.012 0.247 0.764 8.899 0.179 0.437 6.464 0.324 1.014 11.695
9 0.160 0.686 5.762 0.266 0.857 9.584 0.520 1.545 18.731 0.337 0.920 12.160 0.668 1.873 24.054
10 0.290 1.389 10.462 0.489 1.918 17.605 1.090 3.807 39.249 0.608 2.029 21.916 1.379 4.603 49.673
55 0.233 1.592 8.398 0.342 2.278 12.316 0.732 4.900 26.356 0.620 4.477 22.331 1.288 8.860 46.350

Table 6 Computational cost in seconds (average, maximum, total) as a function of the constrained position

shift for different objective function configurations.

4.5. Impact

The results in Table 7 illustrate the real world benefits that could be obtained for makespan (run-

way utilisation), delay, and CTOT compliance when solving the departure sequencing problem

without constrained position shifts. The values in Table 7 show the increase in makespan and delay

(in minutes), and the absolute increase in the number of CTOT violations and their extensions for

solutions obtained with a constrained position shift, relative to unconstrained solutions. For exam-

ple, the results illustrate that for a constrained position shift of 3 and with the given preferences

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
34 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

between delay, equity of delay and CTOT compliance, i.e. the values of W1, W2, α, ω1, ω2, ω3, ω4

listed in §4.1, the total increase in makespan across all 36 instances is 157 minutes, 7103 additional

delay minutes are incurred, 46 additional CTOTs are missed, and 21 additional violations of CTOT

extensions are accumulated. Even when the constrained position shift is equal to 10, the increase

in makespan, delay, and CTOT violations is still significant. Thus, the results show that imposing

equity as a hard constraint through constrained position shifts rather than as an objective has a

detrimental effect on the quality of the resulting sequences for the problem instances considered

here.

CPS ∆Makespan ∆Delay ∆TW Violations ∆TW Extension Violations Avg. Shift Max. Shift
0 718 23847 185 135 0.00 0
1 373 14218 120 68 0.57 1
2 232 9884 77 38 1.05 2
3 157 7103 46 21 1.42 3
4 112 5413 31 16 1.69 4
5 92 4236 19 11 1.92 5
6 71 3323 14 10 1.99 6
7 64 2703 9 7 2.10 7
8 48 2208 6 6 2.15 8
9 44 1848 6 6 2.18 9
10 35 1514 4 4 2.27 10

Table 7 Incremental difference between optimal unconstrained solutions and with a constrained position shift,

summed over all instances

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 35

5. Conclusions

This paper introduced a number of highly effective pruning rules for optimal unconstrained runway

sequencing (i.e. without imposing constrained position shifts). They were shown to make otherwise

intractable runway sequencing problems with complex separation constraints, time-windows, and

multiple non-linear objectives tractable. In addition, they can be applied to different types of

runway sequencing problems, including segregated and mixed mode operations on a single runway

or multiple runways and pre-determined runway allocation. The pruning rules presented in this

paper are expected to be particularly beneficial in these scenarios.

The importance of the work in the context of airport operations is underlined by the results

that were reported for real world sequencing problems from London Heathrow. They show that

significant improvements in runway utilisation, delay, equity of delay, and slot compliance can

be obtained, whilst maintaining a careful balance between these objectives. The importance of

this work is also illustrated by the fact that we are currently building upon it in our work on

multi-runway sequencing with en-route dependencies (considering the interactions between multiple

departure and/or arrival routes) and our work in integrated airport operations (in particular the

integration of ground movement and runway sequencing). Within this context we would like to

refer to our recent work on Target Start-At Time allocation (TSAT) at London Heathrow Atkin

et al. (2012). The TSAT generator is used to allocate pushback times to aircraft and to negotiate

optimal calculated times of take-off (CTOTs or slots). This enables the operations at the airport

to drive the network rather than the other way round. Runway sequencing forms an indispensable

element of the TSAT system and we hope to be able to incorporate those ideas into that system.

The broader impact of the work reported here is illustrated by the fact that our pruning rules are

applicable to different exact and heuristic approaches. In addition, they are applicable to different

types of machine scheduling problems with sequence dependent setup-times. They can therefore be

expected to have a significant impact within the broader field of airport operations and machine

scheduling.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
36 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Acknowledgments

Part of this work was carried out under under EPSRC grants EP/F033214/1, EP/H000968/1, and

EP/H004424/2. The authors would like to thank National Air Traffic Services for their continued support.

We would also like to thank the editor in chief, the associate editor and anonymous reviewers for their

detailed and constructive feedback.

References

Allahverdi, A., J.N.D. Gupta, T. Aldowaisan. 1999. A review of scheduling research involving setup consid-

erations. Omega 27(2) 219 – 239.

Allahverdi, A., C.T. Ng, T.C.E. Cheng, M.Y. Kovalyov. 2008. A survey of scheduling problems with setup

times or costs. European Journal of Operational Research 187(3) 985 – 1032.

Atkin, J.A.D. 2008. Online decision support for take-off runway scheduling at London Heathrow airport.

Ph.D. thesis, School of Computer Science, University of Nottingham, Nottingham, UK.

Atkin, J.A.D. 2013. Airport airside optimisation problems. A.S. Etaner-Uyar, E. Ozcan, N. Urquhard,

eds., Automated Scheduling and Planning, From Theory to Practice, chap. 1. Studies in Computational

Intelligence Volume 505, Springer, 1 – 37.

Atkin, J.A.D., E.K. Burke, J.S. Greenwood. 2010. TSAT allocation at London Heathrow: the relationship

between slot compliance, throughput and equity. Public Transport 2 173 – 198.

Atkin, J.A.D., E.K. Burke, J.S. Greenwood, D. Reeson. 2007. Hybrid metaheuristics to aid runway scheduling

at London Heathrow airport. Transportation Science 41 90 – 106.

Atkin, J.A.D., G. De Maere, E.K. Burke, J.S. Greenwood. 2012. Addressing the pushback time allocation

problem at Heathrow airport. Transportation Science 47(4) 584 – 602.

Balakrishnan, H., B. Chandran. 2010. Algorithms for scheduling runway operations under constrained posi-

tion shifting. Operations Research 58 1650 – 1665.

Beasley, J.E., M. Krishnamoorthy, Y.M. Sharaiha, D. Abramson. 2000. Scheduling aircraft landings - the

static case. Transportation Science 34 180 – 197.

Bennell, J.A., M. Mesgarpour, C.N. Potts. 2011. Airport runway scheduling. 4OR: A Quarterly Journal of

Operations Research 9 115 – 138.

Bianco, L., P. Dell’Olmo, S. Giordani. 1999. Minimizing total completion time subject to release dates and

sequence-dependent processing times. Annals of Operations Research 86 393 – 415.

Dear, R.G. 1976. The dynamic scheduling of aircraft in the near terminal area. Tech. rep., Flight Trans-

portation Laboratory, MIT, Cambridge, Massachusets, U.S.

Ernst, A. T., M. Krishnamoorthy, R. H. Storer. 1999. Heuristic and exact algorithms for scheduling aircraft

landings. Networks 34 229 – 241.

Eurocontrol. 2013. Challenges of growth 2013. Tech. rep., Eurocontrol.

De Maere et al.: Pruning Rules for Optimal Runway Sequencing
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 37

Furini, F., C. Persiani, P. Toth. 2012. Aircraft sequencing problems via a rolling horizon algorithm. A.

Mahjoub, V. Markakis, I. Milis, V. Paschos, eds., Combinatorial Optimization, Lecture Notes in Com-

puter Science, vol. 7422. Springer Berlin / Heidelberg, 273–284.

Luo, X., C. Chu. 2007. A branch-and-bound algorithm of the single machine schedule with sequence-

dependent setup times for minimizing maximum tardiness. European Journal of Operational Research

180(1) 68 – 81. doi:http://dx.doi.org/10.1016/j.ejor.2005.06.069.

Luo, X., F. Chu. 2006. A branch and bound algorithm of the single machine schedule with sequence dependent

setup times for minimizing total tardiness. Applied Mathematics and Computation 183(1) 575 – 588.

Luo, X., X. Liu, C. Wang, Z. Liu. 2005. Dominance rules for single machine schedule with sequence

dependent setup and due date. Journal of Control Theory and Applications 3(4) 364 – 370. doi:

10.1007/s11768-005-0025-2.

Panwalkar, S.S., W. Iskander. 1977. A survey of scheduling rules. Operations research 25 45–61.

Pinedo, M. 2002. Scheduling. Theory, Algorithms and Systems. 2nd ed. Prentice-Hall inc., Upper Saddle,

River, New Jersey.

Psaraftis, H.N. 1980. A dynamic programming approach for sequencing groups of identical jobs. Operations

Research 28 1347 – 1359.

Ragatz, G.L. 1993. A branch and bound method for minimum tardiness sequencing on a single processor

with sequence dependent setup times. Proceedings of the 24th Annual Meeting of the Decision Sciences

Institute. 1375 – 1377.

Sewell, E.C., J.J. Sauppe, D.R. Morrison, S.H. Jacobson, G.K. Kao. 2012. A BB&R algorithm for minimizing

total tardiness on a single machine with sequence dependent setup times. Journal of Global Optimization

54(4) 791 – 812. doi:10.1007/s10898-011-9793-z.

Sourd, F. 2005. Earliness – tardiness scheduling with setup considerations. Computers & Operations Research

32(7) 1849 – 1865. doi:http://dx.doi.org/10.1016/j.cor.2003.12.002.

