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Abstract. Let F be a field of characteristic p. We define and investigate
nonassociative differential extensions of F and of a finite-dimensional cen-
tral division algebra over F and give a criterium for these algebras to be
division. As special cases, we obtain classical results for associative alge-
bras by Amitsur and Jacobson. We construct families of nonassociative
division algebras which can be viewed as generalizations of associative
cyclic extensions of a purely inseparable field extension of exponent one
or a central division algebra. Division algebras which are nonassociative
cyclic extensions of a purely inseparable field extension of exponent one
are particularly easy to obtain.
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1. Introduction

Differential polynomial rings D[t; δ], where D is a division algebra over a field
F and δ a derivation on D, have been used successfully to construct associative
central simple algebras. These appear either as a quotient algebra D[t; δ]/(f)
when factoring out a two-sided ideal generated by a differential polynomial
f ∈ D[t; δ], cf. [2,4], [5, Sections 1.5, 1.8, 1.9], or as the eigenring of a dif-
ferential polynomial f , e.g. see [1,9]. We can put these constructions into a
nonassociative context as follows:
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Given f ∈ D[t; δ] of degree m, the set of all differential polynomials of de-
gree less than m can be canonically equipped with a nonassociative ring struc-
ture, using right division by f to define the multiplication g ◦ h = gh modrf .
The resulting nonassociative unital ring Sf is an algebra over the field F0 =
C(D) ∩ Const(δ) (Petit [10]). If f is not two-sided (i.e., does not generate a
two-sided ideal in D[t; δ]) and δ is not trivial, then the Sf are algebras whose
nuclei are larger than their center F0. In particular, their right nucleus is the
eigenring of f employed in [1] and [9], whereas if f generates a two-sided ideal,
then Sf is the (associative) quotient algebra employed in [2] and [5], each time
for well considered choices of f and D[t; δ].

Let F be a field of characteristic p > 0. We study the algebras Sf con-
taining a purely inseparable field extension K/F of exponent one or a finite-
dimensional central division algebra D over F as left nucleus. As a special case
we reprove the classical results on differential extensions by Jacobson [5] and
Amitsur’s results on noncommutative cyclic extensions of degree p [2].

The paper is organized as follows: we introduce the basic terminology
in Sect. 2. In Sect. 3 we focus on the case that δ is a quasi-algebraic deriva-
tion with minimal polynomial g and therefore Sf an algebra of finite dimen-
sion over F = Const(δ). In particular, for f(t) = g(t) − d ∈ D[t; δ] where g
is the minimum polynomial of δ|C(D), the set of all logarithmic derivatives
{δ(c)/c | c ∈ C(D)} turns out to be a subgroup of the automorphism group
of Sf . We follow up on this observation and define nonassociative differential
extensions of a field in Sect. 4 and nonassociative differential extensions of a
central simple division algebra in Sect. 5, generalizing classical construction-
s by Amitsur and Jacobson, by choosing f(t) = g(t) − d ∈ D[t; δ] to be a
p-polynomial of a certain type.

In particular, when K is a purely inseparable extension of F of exponent
one with derivation δ such that δ has minimum polynomial g(t) = tp − t ∈ F [t]
and f(t) = tp −t−d ∈ K[t; δ], Sf = (K, δ, d) is a unital nonassociative division
algebra over F = Const(δ) of dimension p2 for all d ∈ K\F . Its automorphism
group contains a cyclic subgroup of order p which leaves K invariant (Theo-
rem 15). This canonically generalizes Amitsur’s associative cyclic extensions
of degree p. Thus (K(x), δ, h(x)) is a division algebra over F (x) of dimension
p2 for all h(x) ∈ K(x)\F (x), and so a nonassociative cyclic extension of K(x)
(Example 16). This generalizes [5, Proposition 1.9.10]. Analogously, Theorem
21 in Sect. 5 generalizes the result on associative cyclic extensions of D, cf. [5,
Theorem 1.3.27].

In Sect. 6 we construct tensor products of a central simple division algebra
and a nonassociative cyclic extension, generalizing another classical result by
Jacobson [5, Theorem 1.9.13] in Theorem 26. As an application, we show that
(K(x), δ, h(x))⊗F (x) DF (x) with h(x) ∈ K(x)\F (x) is a division algebra if and
only if h(x) �= (t−z)p −tp −z for all z ∈ DK(x) in Example 27, provided that δ
has minimum polynomial g(t) = tp − t and that D ⊗F K is a division algebra.
This algebra is a nonassociative cyclic extension of DK(x) if it is division. This
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generalizes [5, Theorem 1.9.11], where h(x) = x in which case the algebra is
division.

The theory presented in this paper can be extended to nonassociative
cyclic extensions of degree any prime power if desired, along the lines presented
here. It complements the theory of nonassociative cyclic algebras (K/F, σ, d)
which are constructed out of twisted polynomial rings K[t;σ] and f(t) = tm −
d ∈ K[t;σ], where K/F is a cyclic Galois extension of degree m, Gal(K/F ) =
〈σ〉 and F has characteristic zero or p, but now with p coprime to m, cf. [15],
and the theory of nonassociative generalized cyclic algebras (D,σ, d) which are
constructed out of twisted polynomial rings D[t;σ] and f(t) = tm−d ∈ D[t;σ],
where D is a cyclic division algebra of degree m, f(t) = tm − d ∈ D[t;σ], and
σ chosen suitably, cf. [13].

2. Preliminaries

2.1. Nonassociative Algebras

Let F be a field. An F -vector space A is called an algebra over F , if there is an
algebra multiplication · defined on it, that means there is a map A × A → A,
(x, y) 
→ x · y which is F -bilinear. The multiplication x · y in A is denoted
simply by juxtaposition xy in the following. An algebra A is called unital if
there is an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A.
We will only consider unital algebras from now on without explicitly saying
so.

An algebra A �= 0 is called a division algebra if for any a ∈ A, a �= 0,
the left multiplication with a, La(x) = ax, and the right multiplication with
a, Ra(x) = xa, are bijective. If A has finite dimension over F , A is a division
algebra if and only if A has no zero divisors [14, pp. 15, 16].

Associativity in A is measured by the associator [x, y, z] = (xy)z −x(yz).
The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the
middle nucleus of A is Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right
nucleus of A is Nucr(A) = {x ∈ A | [A,A, x] = 0}. Nucl(A), Nucm(A), and
Nucr(A) are associative subalgebras of A. Their intersection Nuc(A) = {x ∈
A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an
associative subalgebra of A containing F1 and x(yz) = (xy)z whenever one of
the elements x, y, z is in Nuc(A). The center of A is C(A) = {x ∈ Nuc(A) |xy =
yx for all y ∈ A}.

2.2. Differential Polynomial Rings

Let D be an associative division ring and δ : K → K a derivation, i.e. an
additive map such that

δ(ab) = aδ(b) + δ(a)b
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for all a, b ∈ K. The differential polynomial ring D[t; δ] is the set of polynomi-
als

a0 + a1t + · · · + antn

with ai ∈ D, where addition is defined term-wise and multiplication by

ta = at + δ(a) (a ∈ K).

For f = a0+a1t+ · · ·+antn with an �= 0 define deg(f) = n and deg(0) = −∞.
Then deg(fg) = deg(f) + deg(g). An element f ∈ R is irreducible in R if it
is no unit and it has no proper factors, i.e. if there do not exist g, h ∈ R with
deg(g),deg(h) < deg(f) such that f = gh.

R = D[t; δ] is a left and right principal ideal domain and there is a right
division algorithm in R: for all g, f ∈ R, g �= 0, there exist unique r, q ∈ R
with deg(r) < deg(f), such that

g = qf + r.

There is also a left division algorithm in R [5, p. 3 and Prop. 1.1.14] (our
terminology is the one used by Petit [10]; it is opposite to Jacobson’s).

We know that

Gτ,a

(
n∑

i=0

ait
i

)
=

n∑
i=0

τ(ai)(t + a)i

is an automorphism of R = D[t; δ] if and only if τ is an automorphism of D
and

δ(τ(z)) − τ(δ(z)) = aτ(z) − τ(z)a

for all z ∈ D [7].

2.3. Nonassociative Algebras Obtained from Differential Polynomial Rings

Let f ∈ R = D[t; δ] of degree m. Let modrf denote the remainder of right
division by f . Define F = Cent(δ) = {a ∈ D | δ(a) = 0}.

Definition 1. (cf. [10, (7)]) The vector space

Rm = {g ∈ D[t; δ] |deg(g) < m}
together with the multiplication

g ◦ h = gh modrf

is a unital nonassociative algebra Sf = (Rm, ◦) over

F0 = {a ∈ D | ah = ha for all h ∈ Sf}.

F0 is a commutative subring of D [10, (7)] and it is easy to check that
F0 = Cent(δ) ∩ C(D). The algebra Sf is also denoted by R/Rf [10,11] if
we want to make clear which ring R is involved in the construction. In the
following, we call the algebras Sf Petit algebras and denote their multiplication
simply by juxtaposition.
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Using left division by f and the remainder modlf of left division by f ,
we can define a second unital nonassociative algebra structure on Rm over F ,
called fS or R/fR.

It suffices to consider the Petit algebras Sf , however, since every algebra
fS is the opposite algebra of some Petit algebra (cf. [10, (1)]).

We call f ∈ R a (right) semi-invariant polynomial if for every a ∈ D
there is b ∈ D such that f(t)a = bf(t). If also f(t)t = (ct + d)f(t) for some
c, d ∈ D then f is called (right) invariant. The invariant polynomials are also
called two-sided, as the ideals they generate are left and right ideals.

Theorem 1. (cf. [10, (2), p. 13-03, (5), (6), (7), (9)]) Let f(t) ∈ R = D[t; δ].
(i) If Sf is not associative then Nucl(Sf ) = Nucm(Sf ) = D and

Nucr(Sf ) = {g ∈ R | fg ∈ Rf}.

(ii) The powers of t are associative if and only if tmt = ttm if and only if
t ∈ Nucr(Sf ) if and only if ft ∈ Rf.

(iii) If f is irreducible then Nucr(Sf ) is an associative division algebra.
(iv) Let f ∈ R be irreducible and Sf a finite-dimensional F -vector space or

free of finite rank as a right Nucr(Sf )-module. Then Sf is a division
algebra.
Conversely, if Sf is a division algebra then f is irreducible.

(v) Sf is associative if and only if f is a two-sided element. In that case, Sf

is the usual quotient algebra D[t; δ]/(f).

Proposition 2. Let R = D[t; δ] and F0 = F ∩C(D). For all f ∈ F0[t; δ] = F0[t],

F0[t]/(f) ∼= F0 ⊕ F0t ⊕ · · · ⊕ F0t
m−1

is a commutative subring of Sf which is an algebraic field extension of F0 if
f(t) ∈ F0[t] is irreducible, and

F0[t]/(f) = F0 ⊕ F0t ⊕ · · · ⊕ F0t
m−1 ⊂ Nucr(Sf ).

Proof. Since f ∈ F0[t; δ] = F0[t], Sf contains the commutative subring F0[t]/
(f). This subring is isomorphic to the ring consisting of the elements

∑m−1
i=0 ait

i

with ai ∈ F0. In particular, we know that the powers of t are associative. By
Theorem 1 (ii), this implies that t ∈ Nucr(Sf ). Clearly F0 ⊂ Nucr(Sf ), so
if t ∈ Nucr(Sf ) then F0 ⊕ F0t ⊕ · · · ⊕ F0t

m−1 ⊂ Nucr(Sf ), hence we obtain
the assertion. If f is irreducible in F0[t], this is an algebraic field extension of
F0. �
Proposition 3. Let f ∈ R be of degree m ≥ 2. Then f is a semi-invariant
polynomial if and only if

D ⊂ Nucr(Sf ).

Proof. If f ∈ R is a semi-invariant polynomial then for every a ∈ D there is
b ∈ D such that f(t)a = bf(t) ∈ Rf and hence D ⊂ {g ∈ Rm | fg ∈ Rf} =
Nucr(Sf ).
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Conversely, if D ⊂ Nucr(Sf ) then for all a ∈ D there is g(t) ∈ R such
that f(t)a = g(t)f(t). Comparing degrees, this means g(t) ∈ D, so that for all
a ∈ D there is b ∈ D such that f(t)a = bf(t). �

Corollary 4. Let R = D[t; δ]. If R is simple then there are no non-associative
algebras Sf such that D ⊂ Nucr(Sf ).

Proof. If R = D[t; δ], R is not simple if and only if there is a non-constant
semi-invariant f ∈ R [8]. The assertion now follows from Proposition 3. �

We will assume throughout the paper that f(t) ∈ D[t; δ] has deg(f(t)) =
m ≥ 2 (if f has degree m = 1 then Sf

∼= D) and that δ �= 0. Without loss of
generality, we will only look at monic f(t).

2.4. The Characteristic p > 0 Case

For a division ring D of characteristic p and R = D[t; δ], define

Vp(b) = bp + δp−1(b) + ∗ (1)

for all b ∈ D, with ∗ a sum of commutators of b, δ(b), . . . , δp−2(b), that is

V2(b) = b2 + δ(b), V3(b) = b3 + δ2(b) + [δ(b), b],
V5(b) = b5 + δ4(b) + [[[δ(b), b], b], b] + 2δ[[δ(b), b], b] + 2δ[[δ2(b), b], b]

+2[δ[δ(b), b], b] + 2[δ3(b), b] + 2δ2[δ(b), b] + 2δ[δ2(b), b]

and so on, as described in [5, p. 18, (1.3.20)]. We have

(t − b)p = tp − Vp(b), (2)

for all b ∈ D [5, 1.3.19]. An iteration of Eq. (2) yields

(t − b)pe

= tp
e − Vpe(b)

for all b ∈ D where

Vpe(b) = V e
p (b) = Vp(. . . (Vp(b)) . . . )

(with the number of terms Vp on the right-hand side being e) [5, 1.3.22]. For
any p-polynomial

f(t) = a0t
pe

+ a1t
pe−1

+ · · · + aet + d ∈ D[t; δ]

we thus have

f(t) − f(t − b) = a0Vpe(b) + a1Vpe−1(b) + · · · + aeb

for all b ∈ D and define

Vf (b) = a0Vpe(b) + a1Vpe−1(b) + · · · + aeb.

Lemma 5. (i) [2, Lemma 4] tp − t − a ∈ D[t; δ] is either irreducible or a
product of commutative linear factors.
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(ii) [2, Lemma 6] f(t) = tp − t − d ∈ D[t; δ] is irreducible if and only if
Vf (z) �= 0 for all z ∈ D which is equivalent to

Vp(z) − z �= d

for all z ∈ D.
(iii) [3] In characteristic 3, f(t) = t3 − ct − d ∈ D[t; δ] is irreducible if and

only if

V3(z) − cz �= d and V3(z) − zc + δ(c) �= d

for all z ∈ D.

Proof. (iii) f is irreducible if and only if it is neither right nor left divisible
by some linear factor t − z, z ∈ D. Now f(t) �= g(t)(t − z) for all z ∈ D and
g(t) ∈ D[t; δ] is equivalent to Vf (z) �= 0 for all z ∈ D [5, Proposition (1.3.25)],
i.e. to V3(z)−cz �= d, and similarly f(t) �= (t−z)h(t) for all z ∈ D is equivalent
to V3(z) − zc− d + δ(c) �= 0 for all z ∈ D by a straightforward calculation. �

Remark 6. If D is commutative, or if b ∈ D commutes with all its derivatives,
then the sum ∗ in Eq. (1) is 0 and the formula simplifies to

Vp(b) = bp + δp−1(b)

[5, p. 17ff].

3. Petit’s Algebras from Algebraic Derivations

Let C be a field of characteristic p and D a (finite-dimensional) central division
algebra over C of degree n (we allow D = C here). Let δ be a derivation of D,
such that δ|C is algebraic with minimum polynomial

g(t) = tp
e

+ a1t
pe−1

+ · · · + aet ∈ F [t]

of degree pe, where F = Const(δ). Then g(δ) = idd0 is an inner derivation of
D and we choose d0 ∈ F so that δ(d0) = 0 [5, Lemma 1.5.3]. The center of
R = D[t; δ] is F [z] with z = g(t) − d0 and the two-sided f ∈ D[t; δ] are of the
form f(t) = uh(t) with u ∈ D and h(t) ∈ C(R) [5, Theorem 1.1.32]. For all
a ∈ C, define

V (a) = Vg(a) = Vpe(a) + a1Vpe−1(a) + · · · + aea.

Then V (a) ∈ F [6] and V : C −→ F is a homomorphism of the additive groups
C and F . Moreover,

V (a) = 0 if and only if a = δ(c)/c

for some c ∈ C ([6], cf. also [4, p. 2]. V can be seen as an additive analogue to
the norm of a cyclic separable field extension.

In particular, δ is a quasi-algebraic derivation on D in the sense of [8]
and so R = D[t; δ] is not simple. Theorem 1 together with Proposition 2 and
Corollary 4 yields:
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Theorem 7. Let f ∈ D[t; δ] have degree m.
(i) Sf is a unital algebra over F of dimension mn2pe and if f is irreducible

then Sf is a division algebra over F . If f is not two-sided then its left
and middle nucleus are D. D is not contained in the right nucleus.

(ii) If f ∈ F [t] then Nucr(Sf ) contains the subring

F [t]/(f) ∼= F ⊕ Ft ⊕ · · · ⊕ Ftm−1

which is a subfield of degree mpe over F whenever f(t) ∈ F [t] is irre-
ducible.

(iii) If f(t) ∈ C[t; δ], then Sf contains C[t; δ]/C[t; δ]f as a subalgebra of di-
mension mpe over F .

When Sf is not associative, any automorphism of Sf extends an auto-
morphism of D since the left nucleus of an algebra is left invariant under
automorphisms.

Let H : D[t; δ] −→ D[t; δ] be any F -automorphism of R = D[t; δ]. Then
H canonically induces an isomorphism of F -algebras

Sf
∼= SH(f).

This leads us to:

Proposition 8. Let f(t) = a0t
pe

+ a1t
pe−1

+ · · · + aet + d ∈ D[t; δ] be a p-
polynomial of degree pe.

(i) Sf
∼= Sh for all h(t) = f(t) − Vf (a), a ∈ C.

(ii) The map Gid,−a defined via G|D = idD and G(t) = t − a is an automor-
phism of Sf for all a ∈ C such that Vf (a) = 0.

Proof. We know that G = Gid,−a is an automorphism of R if and only if
a ∈ C(D) = C. G is F -linear. Since f(t) − f(t − a) = Vf (a) for all a ∈ C,
G(f(t)) = f(t − a) = f(t) − Vf (a), so that G(f(t)) = f(t) for all a ∈ C with
Vf (a) = 0 implying (ii). �

We conclude:

Proposition 9. For f(t) = g(t) − d ∈ D[t; δ],

ker(V ) = {a ∈ C |V (a) = 0} = {δ(c)/c | c ∈ C}
is isomorphic to the subgroup {Gid,−a | a ∈ C with V (a) = 0} of AutF (Sf ).

Proof. There is a one-one correspondence between the sets ker(V ) and
{Gid,−a | a ∈ C, V (a) = 0} of AutF (Sf ) given by a 
→ Gid,−a which yields
the assertion. �

For f(t) = tp−t−d we have in particular G(f(t)) = f(t) for all a ∈ C(D)
with δp−1(a) + ap − a = 0.

Lemma 10. For f(t) = tp − t − d ∈ D[t; δ], Gid,−1 ∈ Aut(Sf ) has order p.
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Proof. G = Gid,−1 is an automorphism of R of order p [2]. For f(t) = tp − t−d
we have G(f(t)) = f(t) since δp−1(1) + 1p − 1 = 0. Thus Gid,−1 induces an
automorphism of Sf , it is easy to see it has order p. �

4. Nonassociative Differential Extensions of a Field

Let K be a field of characteristic p together with a derivation δ : K → K and
F = Const(δ). Put R = K[t; δ]. We assume that δ is an algebraic derivation
of K of degree pe with minimum polynomial

g(t) = tp
e

+ c1t
pe−1

+ · · · + cet ∈ F [t]

of degree pe. Then K is a purely inseparable extension of F of exponent one,
and Kp ⊂ F ⊂ K. More precisely, K = F (u1, . . . , ue) = F (u1)⊗F · · ·⊗F F (ue),
up

i = ai ∈ F , and [K : F ] = pe. The center of R is F [z] with z = g(t) − d0,
d0 ∈ F .

Theorem 7 becomes:

Theorem 11. Let f ∈ K[t; δ] have degree m. Then Sf is an algebra over F of
dimension mpe and if f(t) is irreducible then Sf is a division algebra. If f is
not two-sided then Sf has left and middle nucleus K and K is not contained
in the right nucleus.

In particular, if f(t) ∈ F [t] then Nucr(Sf ) contains the subring

F [t]/(f) ∼= F ⊕ Ft ⊕ · · · ⊕ Ftm−1

which is a subfield of degree m over F whenever f(t) is irreducible in F [t].

We will investigate the following special case:

Definition 2. Let f(t) = g(t) − d ∈ K[t; δ]. Then the F -algebra

(K, δ, d) = Sf = K[t; δ]/K[t; δ]f(t)

is called a (nonassociative) differential extension of K.

(K, δ, d) has dimension p2e, is free of dimension p as a K-vector space,
and contains K as a subfield. (K, δ, d) is associative if and only if d ∈ F and a
division algebra if and only if f(t) is irreducible. For d ∈ K\F it has left and
middle nucleus K.

Proposition 12. (i) For d ∈ K\F , the right nucleus of (K, δ, d) contains K,
thus

Nuc((K, δ, d)) = K.

The powers of t are not associative in (K, δ, d).
(ii) For all a, d ∈ K, (K, δ, d) ∼= (K, δ, d − V (a)).
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Proof. (i) Since g is semi-invariant and monic of minimal degree, we have
g(t)a = ag(t) for all a ∈ K [8, (2.1), p. 3], i.e. f(t)a = af(t) for all a ∈ K
and so f is semi-invariant, too, and hence the right nucleus of (K, δ, d)
contains K by Proposition 3. By [8], f is two-sided iff f is semi-invariant
and ft ∈ Rf . Here, f is not two-sided, therefore ft �∈ Rf , which implies
that the powers of t are not associative in (K, δ, d) by Theorem 1.

(ii) For a, d ∈ K and G = Gid,−a we have G(f(t)) = f(t) − V (a) and Sf
∼=

SG(f).
�

In fact, for f(t) = g(t) − d ∈ F [t] (i.e. here f(t) is two-sided),

(K, δ, d) = K[t; δ]/K[t; δ]f(t)

is an associative central simple F -algebra called a differential extension of K
and treated in [5, p. 23]. Then K is a maximal subfield of (K, δ, d). Note
that (K, δ, d) contains the subring F [t]/(f(t)), which is a field extension of F
of degree pe whenever f(t) is irreducible in F [t] (thus a maximal subfield of
(K, δ, d)).

Remark 13. In the special case where g(t) = tp − t and f(t) = tp − t−d ∈ F [t],
the automorphism group of (K, δ, d) has a cyclic subgroup of order p generated
by Gid,−1 which leaves K invariant. If f(t) = tp − t − d is irreducible then
the division algebra (K, δ, d) is called a cyclic extension of K of degree p by
Amitsur, as it can be seen as a noncommutative generalization of a cyclic field
extension of K: it has dimension p as a K-vector space and the automorphism
group of (K, δ, d) has a cyclic subgroup of order p. All cyclic extensions of K of
degree p are of this form [2]. Note that they always contain the cyclic separable
field extension F [t]/(tp − t − d) of degree p.

When g(t) = tp − t ∈ F [t] and f(t) = tp − t − d ∈ K[t; δ], d ∈ K\F is
irreducible, the nonassociative division algebra (K, δ, d) is a canonical, nonas-
sociative, generalization of a cyclic extension:

Theorem 14. Let δ be of degree p with minimum polynomial g(t) = tp−t ∈ F [t].
Let f(t) = tp − t − d ∈ K[t; δ]. Then

(K, δ, d) = K[t; δ]/K[t; δ]f(t)

is a nonassociative algebra over F of dimension p2, and is a division algebra
if and only if

Vp(z) − z �= d

for all z ∈ K, if and only if

zp + δp−1(z) − z �= d

for all z ∈ K. AutF (Sf ) has a cyclic subgroup of order p generated by G =
Gid,−1, i.e. G|K = idK .
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Proof. Here f(t) = tp − t−d ∈ K[t; δ] is irreducible if and only if for all z ∈ K,
Vp(z)−z �= d by Lemma 5 (ii). Since K is commutative, the second equivalence
is clear. The remaining assertion follows from Lemma 10. �

If d ∈ F then Sf = (K, δ, d) is the cyclic extension of F of degree p in
Remark 13. As a corollary of Theorem 14 we obtain a canonical construction
method for nonassociative cyclic extensions of K, if we define these algebras
as division algebras containing K which are K-vector spaces of dimension p
and whose automorphism group contains a cyclic subgroup of order p which
leaves K invariant:

Theorem 15. Let δ be of degree p with minimum polynomial g(t) = tp−t ∈ F [t].
For all f(t) = tp − t − d ∈ K[t; δ] with d ∈ K\F , (K, δ, d) is a unital nonasso-
ciative division algebra over F of dimension p2. Its left and middle nucleus is
K, its right nucleus contains K, and its automorphism group contains a cyclic
subgroup of order p which leaves K invariant.

Proof. Suppose there is z ∈ K such that zp +δp−1(z)−z = d. Apply δ to both
sides to obtain δ(zp) + δp(z) − δ(z) = δ(d), which means δ(zp) = δ(d) since
δp = δ here. Now δp(z) = pzp−1δ(z) = 0 implies that δ(d) = 0 and hence the
first assertion since d �∈ F by Lemma 5 (ii). The right nucleus contains K by
Proposition 12 and the remaining assertion follows from Theorem 14. �
Example 16. Let δ have minimum polynomial g(t) = tp − t ∈ F [t]. Let x be
an indeterminate and δ be the extension of δ to K(x) via δ(x) = 0. Clearly
Const(δ) = F (x) and g(t) = tp − t ∈ F (x)[t] is the minimal polynomial of the
extended derivation δ. Then for all h(x) ∈ K(x)\F (x), f(t) = tp − t − h(x) is
irreducible and hence

(K(x), δ, h(x))

is a unital nonassociative division algebra over F (x) of dimension p2, and
a nonassociative cyclic extension of K(x). This generalized [5, Proposition
1.9.10].

When F has characteristic 3, using Lemma 5 and Proposition 9 we can
generalize Theorem 15 slightly:

Theorem 17. Let F have characteristic 3 and δ be of degree 3 with minimum
polynomial g(t) = tp − ct ∈ F [t]. For all f(t) = tp − ct − d ∈ K[t; δ] with
d ∈ K\F , (K, δ, d) is a nine-dimensional unital nonassociative division algebra
over F . Its left and middle nucleus is K, its right nucleus contains K and
{δ(c)/c | c ∈ K} is isomorphic to the subgroup {Gid,−a | a ∈ C with V (a) = 0}
of AutF ((K, δ, d)).

Proof. Suppose there is z ∈ K such that z3 + δ2(z) − cz = d. Apply δ to
both sides to obtain δ(z3) + δp(z) − cδ(z) = δ(d). Now δ3(z) = 0 and δ3 = cδ
implies that 0 = δ(d), a contradiction. Next assume that that there is z ∈ K
such that z3 + δ2(z) − cz + δ(c) = d. Apply δ to both sides to obtain δ(z3) +
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δp(z)− cδ(z)++δ2(c) = δ(d), i.e. again that 0 = δ(d), a contradiction. Thus f
is irreducible by Lemma 5 (iii). The right nucleus contains K by Proposition
12 and the assertion follows. �
Example 18. Let F have characteristic 3 and δ be of degree 3 with minimum
polynomial g(t) = t3 − ct ∈ F [t]. Let x be an indeterminate and δ be the
extension of δ to K(x) via δ(x) = 0. Clearly Const(δ) = F (x) and g(t) =
t3 − ct ∈ F (x)[t] is the minimal polynomial of the extended derivation δ. Then
for all h(x) ∈ K(x)\F (x), f(t) = t3 − ct − h(x) is irreducible and so

(K(x), δ, h(x))

is a unital nine-dimensional nonassociative division algebra over F (x). This
again generalizes [5, Proposition 1.9.10].

5. Nonassociative Differential Extensions of a Division Algebra

5.1.

Let C be a field of characteristic p and D a (finite-dimensional) central division
algebra over C of degree n. Let δ be a derivation of D, such that δ|C is algebraic
with minimum polynomial

g(t) = tp
e

+ c1t
pe−1

+ · · · + cet ∈ F [t]

of degree pe and F = Const(δ) as in Sect. 3.

Definition 3. For all f(t) = g(t) − d ∈ D[t; δ], the F -algebra

(D, δ, d) = Sf = D[t; δ]/D[t; δ]f(t)

is called a (nonassociative) generalized differential algebra.

(D, δ, d) is a unital nonassociative algebra over F of dimension p2en2

and free of rank pe as a left D-module, and contains D as a subalgebra. For
d ∈ D\F it has left and middle nucleus D.

Lemma 19. For d ∈ D\F , the right nucleus of (D, δ, d) does not contain D,
thus Nuc((D, δ, d)) is properly contained in D.
If d ∈ C\F , then (C, δ|C , d) is a subalgebra of (D, δ, d) and the right nucleus
of (D, δ, d) contains C, thus C ⊂ Nuc((D, δ, d)).

Proof. Since g is semi-invariant and monic of minimal degree, we have g(t)a =
ag(t) for all a ∈ D [8, (2.1), p. 3], i.e. f(t)a = ag(t) − da for all a ∈ D and so
f is not semi-invariant, since this would mean that da = ad for all a ∈ D and
we assumed d ∈ D\F . Hence the right nucleus of (K, δ, d) does not contain D
by Proposition 3.

If d ∈ C\F , then f ∈ C[t, δ] = C[t; δ|C ] is semi-invariant in C[t, δ] and
δ|C is an algebraic derivation on C with minimum polynomial g(t) of degree pe.
Since d ∈ C, f is semi-algebraic in C[t, δ], see the proof of Lemma 12. Thus for
every a ∈ C we have f(t)a ∈ C[t; δ]f ⊂ Rf and hence C ⊂ Nucr((D, δ, d)). �
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Proposition 20. For all d ∈ D and a ∈ C,

(D, δ, d) ∼= (D, δ, d − V (a)).

Proof. The proof is analogous to the one of Proposition 12 (ii). �

(D, δ, d) is associative if and only if d ∈ F and a division algebra if and
only if f(t) is irreducible. For f(t) = g(t)−d ∈ F [t], the associative F -algebra

(D, δ, d) = Sf = D[t; δ]/D[t; δ]f(t)

is a central simple algebra over F and called a generalized differential extension
of D in [5, p. 23]. The defining relations characterizing the associative algebra
(D, δ, d) are given by

ta = at + δ(a) and tp
e

+ c1t
pe−1

+ · · · + cet = d

for all a ∈ D [5, p. 23]. Moreover, the central simple algebra (D, δ, d) contains
D as the centralizer of C [4, Theorem 3.1] and Proposition 20 for d ∈ F was
proved in [4, Theorem 3.2].

In the special case where g(t) = tp − t and hence f(t) = tp − t − d ∈ F [t],
the automorphism group of the central simple algebra (D, δ, d) of degree n2p2

has a cyclic subgroup of order p generated by Gid,−1 which leaves D invariant.
If f is irreducible then the division algebra (D, δ, d0) is also called a cyclic
extension of D of degree p by Amitsur, as it is also free of rank p as a right
D-module and thus can be seen as canonical generalization of a cyclic field
extension. All cyclic extensions of D of degree p are of this form [2].

Note that if f(t) = tp − t − d ∈ F [t] is irreducible, then (D, δ, d) also
contains the cyclic field extension F [t]/(tp − t − d) of dimension p over F as a
subfield.

Theorem 21. Let δ have minimum polynomial

g(t) = tp − t ∈ F [t].

Then for all f(t) = tp − t − d ∈ D[t; δ],

(D, δ, d) = D[t; δ]/D[t; δ]f(t)

is a nonassociative algebra over F of dimension n2p2 and a division algebra if
and only if

d �= Vp(z) − z

for all z ∈ D, if and only if

d �= (t − z)p − tp − z

for all z ∈ D. (D, δ, d) is associative if and only if d ∈ F .
AutF ((D, δ, d)) has a cyclic subgroup of order p generated by G = Gid,−1,

i.e. G|D = idD.



S. Pumplün Results Math

Proof. We know that Sf = (D, δ, d) = D[t; δ]/D[t; δ]f(t) with f(t) = tp − t−d
is a division algebra if and only if d �= Vp(z)− z for all z ∈ D by Lemma 5 (ii).
The remaining assertion follows from Lemma 10. �

This nicely generalizes [5, Theorem 1.3.27] on cyclic extensions of D
whenever f is irreducible. We thus call unital nonassociative division alge-
bras which contain D as a subalgebra, are free of rank p as a left D-module
and have a cyclic subgroup of automorphisms of order p which restrict to idD

on D, nonassociative cyclic extensions of D of degree p.
In particular, if f(t) ∈ C[t; δ] in Theorem 21, then (D, δ, d) contains

the nonassociative cyclic extension (C, δ, d) = C[t; δ]/C[t; δ]f of C treated
in Theorem 14 as a subalgebra of dimension p2 over F . This is a division
subalgebra whenever d ∈ C\F by Theorem 15.

Note also that for f(t) = tp − t − d ∈ D[t; δ] and all a ∈ C we have

(D, δ, d) ∼= (D, δ, d + δp−1(a) + ap − a) = (D, δ, d + Vp(a) − a).

Remark 22. Petit’s construction of nonassociative algebras Sf can be gener-
alized to the setting where f ∈ S[t; δ] is a monic polynomial and S any unital
associative ring [12]. Therefore some of the results above also hold for nonas-
sociative algebras obtained by employing f(t) = tp − t−d ∈ S[t; δ] if δ satisfies
the polynomial identity δp = δ as before. I.e., we can construct algebras which
are free of rank p as left S-modules whose automorphism group contains a
cyclic subgroup of order p. Amitsur’s method of determining the (associative)
cyclic extensions of division rings D was extended to simple rings S already
in [7].

When F has characteristic 3, we can generalize Theorem 21 slightly,
employing Lemma 5 and and Proposition 9:

Theorem 23. Let δ have minimum polynomial

g(t) = t3 − ct ∈ F [t].

Then for all f(t) = t3 − ct − d ∈ D[t; δ],

(D, δ, d) = D[t; δ]/D[t; δ]f(t)

is a nonassociative unital algebra over F of dimension 9n2 and a division
algebra if and only if

V3(z) − cz �= d and V3(z) − zc − d + δ(c) �= 0

for all z ∈ D. (D, δ, d) is associative if and only if d ∈ F . AutF ((D, δ, d)) has
a subgroup isomorphic to {δ(c)/c | c ∈ K}.
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5.2.

Let D be a central division algebra over C of degree [D : F ] = n and let C
have characteristic p. As a consequence of [10, (3)] we obtain the following
partial generalization of [2, Theorem 3] which states when a nonassociative
cyclic extension S of D of degree p has the form discussed in Theorem 21:

Theorem 24. Let S be a division ring with multiplication ◦, which is not asso-
ciative, such that
(1) S has D as subring, is a free left D-module of rank p, and there is t ∈ S

such that t0, t, t2, . . . , tp−1 is a basis of S over D, when defining ti+1 =
t ◦ ti, t0 = 1, for 0 ≤ i < p;

(2) for all a ∈ D, a �= 0, there is a′ ∈ D× such that t ◦ a = a ◦ t + a′;
(3) for all a, b, c ∈ D, i + j < p, k < p, we have

[a ◦ ti, b ◦ tj , c ◦ tk] = 0,

(4) tp = t + d for some d ∈ D× with tp = t ◦ tp−1 as above. Then

δ(a) = a′ = t ◦ a − a ◦ t (a ∈ D)

is a derivation on D and

S ∼= Sf

with f(t) = tp − t − d ∈ D[t; δ] irreducible. For any H ∈ AutF (Sf ),
H|D ∈ AutF (D).
If, in particular, δ|C is algebraic with minimal polynomial g(t) = tp − t
and F = Const(δ) then S is a nonassociative cyclic extension of D of
dimension p2[D : F ] over F .

Remark 25. Conditions (1), (2), (3) are equivalent to conditions (1), (2), (5),
(6), (7) with
(5) D ⊂ Nucl(S) ∩ Nucm(S);
(6) ti ◦ b = t ◦ (ti−1 ◦ b) for all b ∈ D, 0 ≤ i < p,
(7) for 0 ≤ i, j, k < p and i + j < p, k < p, we have [ti, tj , tk] = 0 [10, (3)].

An analogous result holds when D = K is a field of characteristic p and
we consider the setup as in Sect. 4.

6. Some Tensor Product Constructions

Let E/F be a finite dimensional purely inseparable extension of exponent one
and characteristic p and δ a derivation on E such that F = Const(δ). Then δ
is an algebraic derivation of degree pe with minimum polynomial

g(t) = tp
e

+ c1t
pe−1

+ · · · + cet ∈ F [t]

of degree pe, and [E : F ] = pe.
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Let D be an (associative) central division algebra over F such that DE =
D ⊗F E is a division algebra and let δ be the extension of δ to DE such that
δ|D = 0. Suppose that

Sf = E[t; δ]/E[t; δ]f(t)

with f(t) ∈ E[t; δ] of degree m, is a division algebra of dimension mpe over
F = Const(δ) (i.e. that f(t) ∈ E[t; δ] is irreducible). Then the tensor product

Sf ⊗F D = E[t; δ]/E[t; δ]f(t) ⊗F D ∼= DE [t; δ]/DE [t; δ]f(t)

is a nonassociative algebra over F of dimension mpe[D : F ] and a division
algebra if and only if f(t) is irreducible in DE [t; δ]. We consider the following
special case:

Theorem 26. If g(t) = tp − t ∈ F [t] is the minimal polynomial of δ and
f(t) = tp − t − d ∈ E[t; δ], then

(E, δ, d) ⊗F D ∼= DE [t; δ]/DE [t; δ]f(t)

and

(E/F, δ, c) ⊗F D

is a nonassociative division algebra over F of dimension p2[D : F ] if and only
if

d �= Vp(z) − z

for all z ∈ DE, if and only if

d �= (t − z)p − tp − z

for all z ∈ DE.
AutF ((E/F, δ, c) ⊗F D) has a cyclic subgroup of order p generated by

G = Gid,−1, i.e. G|D = idD.

Proof. f(t) = tp − t−d is irreducible if and only if d �= Vp(z)−z for all z ∈ DE

by Lemma 5 (ii). This is equivalent to d �= tp − (t − z)p − z for all z ∈ DE by
[5, (1.3.19)]. The remaining assertion follows from Lemma 10. �

This generalizes [5, Theorem 1.9.13] which appears as the case d ∈ F .

Example 27. Let δ be of degree p with minimum polynomial g(t) = tp −
t ∈ F [t]. Let x be an indeterminate and δ be the extension of δ to K(x)
via δ(x) = 0, where Const(δ) = F (x). For all f(t) = tp − t − h(x) with
h(x) ∈ K(x)\F (x), (K(x), δ, h(x)) is a unital nonassociative division algebra
over F (x) of dimension p2, and a nonassociative cyclic extension of K(x), see
Example 16.

Let D be a central division algebra over F of degree n such that D ⊗F K
is a division algebra. Then

(K(x), δ, h(x)) ⊗F (x) DF (x)
∼= DK(x)[t; δ]/DK(x)[t; δ]f(t)
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is a nonassociative unital algebra over F (x) of dimension p2n2 and a division
algebra if and only if

h(x) �= Vp(z) − z

for all z ∈ DK(x), if and only if

h(x) �= (t − z)p − tp − z

for all z ∈ DK(x).
Its automorphism group has a cyclic subgroup of order p generated by

G = Gid,−1, so that the algebra is a nonassociative cyclic extension of DK(x)

if it is division.
This can be seen as a generalization of [5, Theorem 1.9.11], where h(x) =

x in which case the algebra is division.
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