Ann Oper Res @ CrossMark
DOI 10.1007/s10479-016-2352-8

APMOD 2014

Decomposition techniques with mixed integer
programming and heuristics for home healthcare
planning

Wasakorn Laesanklang! - Dario Landa-Silva!

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We tackle home healthcare planning scenarios in the UK using decomposition
methods that incorporate mixed integer programming solvers and heuristics. Home healthcare
planning is a difficult problem that integrates aspects from scheduling and routing. Solving
real-world size instances of these problems still presents a significant challenge to modern
exact optimization solvers. Nevertheless, we propose decomposition techniques to harness
the power of such solvers while still offering a practical approach to produce high-quality
solutions to real-world problem instances. We first decompose the problem into several
smaller sub-problems. Next, mixed integer programming and/or heuristics are used to tackle
the sub-problems. Finally, the sub-problem solutions are combined into a single valid solution
for the whole problem. The different decomposition methods differ in the way in which sub-
problems are generated and the way in which conflicting assignments are tackled (i.e. avoided
or repaired). We present the results obtained by the proposed decomposition methods and
compare them to solutions obtained with other methods. In addition, we conduct a study
that reveals how the different steps in the proposed method contribute to those results. The
main contribution of this paper is a better understanding of effective ways to combine mixed
integer programming within effective decomposition methods to solve real-world instances
of home healthcare planning problems in practical computation time.

Keywords Home healthcare planning - Workforce scheduling and routing - Mixed integer
programming - Problem decomposition - Heuristic decomposition

B Wasakorn Laesanklang
wasakorn.laesanklang @nottingham.ac.uk

Dario Landa-Silva
dario.landasilva@nottingham.ac.uk

ASAP Research Group, School of Computer Science, The University of Nottingham, Jubilee Campus,
Wollaton Road, Nottingham NG8 1BB, UK

Published online: 24 October 2016 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-016-2352-8&domain=pdf

Ann Oper Res

1 Introduction

Home healthcare planning (HHC) is a type of workforce scheduling and routing problem
(Castillo-Salazar et al. 2014). In HHC the problem is to allocate nurses or care workers to
deliver care services at the patient’s home. The problem involves producing a job schedule
and a route for every worker while its solution satisfies business requirements such as work-
ers qualifications and skills, task requirements, travelling requirements, etc. at the lowest
operational cost. Section 2 describes the HHC problem and instances tackled in this paper.

The HHC problem can be formulated as an integer programming or as a mixed integer
programming model. It has been shown that solving the problem with traditional optimiza-
tion solvers is not computationally efficient (Borsani et al. 2006; Bredstrom and Ronnqvist
2007). Therefore, several solution approaches use heuristic methods (Brandimarte 1993;
Akjiratikarl et al. 2007; Pillac et al. 2012; Pinheiro et al. 2015; Algethami and Landa-Silva
2015). However, there are ways to harness the power of mathematical programming solvers
while still achieving good efficiency in terms of computational time. Here, we investigate
problem decomposition techniques that perform well on a range of HHC real-world instances.
Section 3 reviews the key literature on decomposition techniques to put our work into context.

A Geographical Decomposition with Conflict Avoidance (GDCA) method that splits the
problem into sub-problems defined by geographical regions was presented in Laesanklang
et al. (2015). This method keeps track of workers assigned in sub-problems in order to
prevent conflicting assignments (assigning a worker to more than one task at the same time).
Sub-problems are solved in sequence and several heuristics to establish such sequence are
proposed. The main drawback of this GDCA method is that the solution quality depends
heavily on the sub-problem solving sequence. Finding an effective sequencing rule that
allows to always find a good complete solution is very difficult. Further details of this method
are given in Sect. 4. Then, we propose here an improved decomposition technique, called
Geographical Decomposition with Conflict Repair (GDCR), where the solving sequence
is no longer required. This method allows conflicting assignments to happen which are
then repaired later to produce a valid solution. Further details of this method are given
in Sect. 5. Another decomposition method presented here is an iterative approach called
Repeated Decomposition and Conflict Repair (RDCR) that combines decomposition and
conflicting assignments repair iteratively, resulting in an improvement on the computational
time. Further details of this method are given in Sect. 6. Section 7 presents a comparative
study between solutions produced by GDCA, GDCR, RDCR, a baseline heuristic and a
practitioner (expert human planner).

In summary, the main contribution of this paper is to present two improved decomposition
techniques to tackle real-world instances of the home healthcare planning (HHC) problem in
the UK. These techniques are the Geographical Decomposition with Conflict Repair (GDCR)
and the Repeated Decomposition and Conflict Repair (RDCR), which harness the power of
modern mixed-integer programming solvers in order to produce high-quality solutions in
practical computation time. This paper also conducts a study of the contribution that the
various steps make to the performance of these proposed techniques and a comparative study
against solutions produced by a baseline heuristic and the human planner. Section § of the
paper gives a summary, conclusions and proposed future research.

@ Springer

Ann Oper Res

2 The home healthcare planning problem

The goal in home healthcare planning (HHC) is to assign to each worker, a set of tasks to be
performed where each task is usually at a different geographical location (i.e. the patient’s
home). A path is a series of tasks to be carried out by a worker within the planning period.
A solution to a HHC problem instance is a collection of paths that cover the set of tasks.
The solution should also satisfy other conditions such as task requirements, appointment
times, required workers qualifications and skills, workers availability, restricted working
regions, working time limits, etc. A good-quality solution should have low operational cost.
This section describes the real-world HHC problem tackled here and the problem instances
provided by our industrial partner. A mixed integer programming (MIP) formulation for this
scenario is presented next.

2.1 Formulation of constraints

The HHC problem tackled here can be represented by a graph G = (V, E) where V is a set of
nodes and E is a set of edges between nodes. The set of nodes V.= DUT U D’ where T is a
set of visiting nodes or tasks, D and D’ are sets of source and sink nodes respectively (e.g. the
worker’s home). The set of edges E represents a set of links between two nodes (e.g. between
two task locations or between the workers home and a task location). For convenience, we
define V¥ = DUT asnodes that have leaving edges and and VY = D’UT as nodes that have
incoming edges. The set of workers is represented by K. A path is the assignment of a set
of edges from E to worker k € K. For example, a path is as series of visits to task locations

performed by a worker starting and ending at the worker’s home. A binary decision variable
k

X; ; Tepresents the assignment of edges to worker k, then x = 1 if the edge between nodes
i and Jj is assigned to worker k (i.e. worker k carries out taskz followed by task j), otherwise
=0.
]

In real-world HHC scenarios like the ones considered here, it is possible that some tasks
are left unassigned as there is not enough workforce or no worker has the required qualifica-
tions/skills. In such cases, an integer variable y; is used to indicate the number of unsatisfied
assignments for task j (i.e. task may require more than one worker) (Bredstrom and Ron-
nqvist 2008; Rasmussen et al. 2012). If task j is fully assigned then y; = 0, otherwise y;
takes a positive integer value equal to the number of workers required to the task. Constraint
(1) ensures this requirement is met even for tasks that are unassigned, r; is the number of

workers required for task j.
S xki+yi=rj. VjerT (1

keK ijev$
A path or sequence of tasks can be indicated by a set of variables x = 1 ensuring that
they form a connected sequence of edges for each worker k as given by constraint (2).
Sixfi= D xk, VieT.Vkek)
ieVs neVN

In addition, the path for each worker k should begin at a start location and terminate at an
end location (e.g. their home or a central office). The start location and the end location of
worker k are Dy and D,’(, respectively. The condition is enforced by constraints (3) and (4).
These constraints only apply to the nodes representing the worker’s start and end locations.
Workers may leave their start location and enter their end location at most once (although the
start and end locations may be different) as expressed by constraints (5) and (6) respectively.

@ Springer

Ann Oper Res

Sixk;= D xf, VkeK. VieT.IneD A3)
jevhN jevhN

>,z Dk, VkeKVjeT, e @
ieVs ievVs

> xf; <1, VieDVkek 5
jevhN

Zx{fjgl, VjeD VkekK (6)
ieVs

The problem also requires that workers have the required skills for every assigned task.
Let a binary parameter qj? represent a qualification parameter where qj? = 1 when a worker

k has the skills to take visit j, and qj? = 0 otherwise. Only qualified workers can make the
visit as indicated by constraint (7).

xf;<qf, VYkeK VievivVjerT @)

Travelling between task locations must be feasible in terms of travel time. Decision variable
alj? takes a positive fractional value that gives the arrival time of worker & to the location of
task j. Note that the maximum arrival time value here is 1440 minutes, which is equivalent
to the 24th hour of the day. Let al{‘, a¥ be the arrival times of worker k at the locations of task
i and task j respectively. The arrival time at task j must consider the time duration §; spent
on performing task i and the travelling time #; ; between task node i and task node j. This is
enforced by constraint (8) where M is a large constant number.

ay + M —xf)) = af +xftij+8, VYkeK, Vievivjevh ®)

A worker k must arrive at task node j within the given time window. For task j, the
earliest arrival time is w’ and the latest arrival time is wﬁ./. This requirement is enforced by
constraint (9).

wh <al <wY, VjeT Vkek)

Time availability can be different for each worker according to their individual contracts.
We adopt the availability constraint from the literature (Trautsamwieser and Hirsch 2011)
which defines a time availability period for each worker. The shift start time and shift end
time of the worker k are indicated by oz]’i and oz’,f, respectively. However, in the scenarios
tackled in this paper, tasks can be assigned outside the worker’s shift but subject to a penalty
cost. In order to indicate this, we introduce a binary decision variable ®* = 1 toindicate such
penalisation. The time availability constraints for worker k are given by expressions (10) and

(11).
af —dy <M —x};+), VkeK,¥ieDUTVjeT (10)
di +8;—ay <M1 —xf;+ o)), YkeK, VieDUT,VjeT (11)

Another working regulation in the HHC scenarios tackled here is not to exceed the max-
imum working hours for each worker. Each task j requires §; minutes to be completed. The
maximum working hours for worker k is given by #¥. Constraint constraint (12) enforces

this regulation.
D> xbsi <k, vkek (12)
ievS jeT

@ Springer

Ann Oper Res

In our HHC scenarios, each worker is associated to a set of geographical regions defined
by the service provider. In short, a geographical region contains several task locations and a
task location may have several tasks to be assigned. Ideally, a worker should only be assigned
to tasks in those geographical regions. However, if necessary, a worker can be asked to travel
to locations outside their geographical regions subject to some penalty cost. We define a
binary parameter yj].‘ = 1 to indicate that task j is located in the worker’s regions and y]]? =0

otherwise. We define a binary variable 1//;? = 1 to indicate that task j assigned to worker k

is outside the worker’s regions, and lﬁ}‘ = 0 otherwise. Constraint (13) presents the relation
between these binary variables for the different possible cases.

ink.j—ljfffy;c, Vke K,VjeT (13)
ieVs
Note that some of the constraints expressed in the above MIP formulation actually express
soft requirements in our HHC scenarios. These are constraint (1) (tasks may be left unas-
signed), constraints (10) and (11) (workers may be asked to work outside their shift hours)
and constraint (13) (workers may be asked to work outside their geographical regions). Later
for one of the methods described in this paper, constraints (10) and (11) are re-formulated to
enforce the condition that workers must not work outside their shift hours.

2.2 Formulation of the objective function

The objective function (14) to be minimized involves three costs: monetary cost, soft
constraints penalty and preferences penalty. This objective function has been defined in
consultation with our industrial partner as it seeks to incorporate the key aspects that make a
high-quality solution: low operational cost and improved satisfaction of patients and workers.
These costs are balanced into four priority levels, each corresponding to one of the weights
Ay oy Mg

RIS ID IO CIEN A EAEEED W ETED I IS

keK jevS jeyN JjeT ievs kek
IO R BT I (14)
keK jeT jeT

The weights associated to each operational cost component should be set to values that
clearly reflect the difference between the priority levels (Rasmussen et al. 2012; Castillo-
Salazar et al. 2014). The highest priority is given to minimize unassigned tasks through
weight A4. This is because the first priority of the service provider is to complete as many
tasks as possible. The second highest priority is given to minimize the soft constraints penalty
(i.e. number of worker time availability and working regions violations) through weight X53.
This is because in practice the service provider may ask workers to undertake tasks that
are outside their time availability and/or geographical region. The third priority is given
to minimize the preferences penalty through weight A,. These preferences are expressed
in our HHC scenarios and there are three types: preferred worker-client pairing, worker
preferred region and client preferred skills. The degree of satisfaction of these preferences
when assigning worker k to task j is given by ,0’/? which has a value in the range [0, 3]. This is
because the satisfaction of the three types of preferences for each assignment has a value in
the range [0, 1] from not satisfied to satisfied. The satisfaction level is reverted to penalty by

@ Springer

Ann Oper Res

subtracting it from the full satisfaction score, which is 3r; for each visit j. Finally, the fourth
and lowest priority is given to minimize the monetary cost through weight 1. The monetary
cost includes travelling cost d; ; and workers salary p’j‘. as calculated by the service provider
in our HHC scenarios.

Note that in the above objective function, two of the four priority levels involve a cost
related to the geographical regions. In the soft constraints penalty, assignments outside the
worker’s available regions are penalized. In the preferences penalty, assignments made in
a less-preferred region (but still within the worker’s available regions) are penalized. Note
also that worker skills are involved in two parts of the model. The set of base worker skills
required by each task is accounted in constraint (7). The client preferred skills accounted in
the preferences penalty cost refers to additional skills that are desirable depending on the
client to be served. With this weighted objective function based on priority levels, the total
penalty due to violating all soft constraints is always higher than the total penalty due to
violating all preferences, as this reflects practice in our HHC scenarios.

2.3 Real-world problem instances

The problem instances used here were provided by our industrial partner. Their main busi-
ness is to provide workforce management software as a service to a large number of home
healthcare service providers. From their large number of real-world scenarios, they kindly
provided the data for 6 different scenarios and 7 different planning periods resulting in 42
problem instances. We classified these instances in two groups: small and large. The small
instances are those labelled WSRP-A-(01-07) and WSRP-B-(01-07). The large instances are
those labelled WSRP-D-(01-07), WSRP-E-(01-07) and WSRP-F-(01-07). Table 1 shows the
main features of these 42 problem instances. For each instance, the table shows: number of
workers (| K |), number of different task locations (|L|), number of tasks to assign (|T'|) and
number of geographical regions (|A|). Problem instances in the group WSRP-C are different
from the others in that they have a much larger workforce size (| K|). In these instances there
are many tasks but in a relatively small number of locations. For example, problem instance
WSRP-C-01 has T = 177 tasks distributed in only L = 8 locations. Note also that in these
WSRP-C instances each geographical region includes only one task location, i.e. A = L.
Therefore, these WSRP-C instances do not involve routing within a region but they may
involve routing between regions.

As part of the project in which this research has been conducted, we developed
a framework to facilitate the collaboration between researchers and practitioners (Pin-
heiro and Landa-Silva 2014). Among other things, this framework is used to process
instances data and to validate/evaluate solutions according to the objective function
(14). This framework has also facilitated the development and consistent evaluation
of other solution techniques being investigated. The real-world instances and related
documentation are available at the following location: https://drive.google.com/open?id=
0B20tHr1VocuSNGVOT2VSYmp6a2M. An analysis of these benchmark problem instances
and a comparison of methodologies to solve them are presented in Pinheiro et al. (2016).

3 Literature review
Although mathematical programming is effective for modelling real-world HHC scenarios

like the one described above, solving large instances using MIP solvers is not yet very
efficient in terms of computational time. Despite the fact that heuristic algorithms can be

@ Springer

https://drive.google.com/open?id=0B2OtHr1VocuSNGVOT2VSYmp6a2M
https://drive.google.com/open?id=0B2OtHr1VocuSNGVOT2VSYmp6a2M

Ann Oper Res

Table 1 The HHC problem instances obtained from real-world operational scenarios

Set K| IL] IT| [A] Set IK| IL] IT| |A]|
WSRP-A-01 23 25 31 6 WSRP-B-01 25 27 36 6
WSRP-A-02 22 24 31 4 WSRP-B-02 25 11 12 4
WSRP-A-03 22 28 38 5 WSRP-B-03 34 43 69 6
WSRP-A-04 19 22 28 3 WSRP-B-04 34 14 30 4
WSRP-A-05 19 9 13 3 WSRP-B-05 32 38 61 8
WSRP-A-06 21 22 28 7 WSRP-B-06 32 38 57 7
WSRP-A-07 21 9 13 3 WSRP-B-07 32 38 61 7
WSRP-C-01 1037 8 177 8 WSRP-D-01 164 233 483 13
WSRP-C-02 618 4 7 4 WSRP-D-02 166 215 454 12
WSRP-C-03 1077 7 150 7 WSRP-D-03 174 279 585 15
WSRP-C-04 979 8 32 8 WSRP-D-04 174 237 520 15
WSRP-C-05 821 6 29 6 WSRP-D-05 173 259 538 15
WSRP-C-06 816 11 158 11 WSRP-D-06 174 291 610 15
WSRP-C-07 349 5 6 6 WSRP-D-07 173 293 611 15
WSRP-E-01 243 239 418 13 WSRP-F-01 805 477 1211 45
WSRP-E-02 244 257 425 14 WSRP-F-02 769 496 1243 46
WSRP-E-03 267 264 462 15 WSRP-F-03 898 582 1479 54
WSRP-E-04 266 174 351 13 WSRP-F-04 789 513 1448 47
WSRP-E-05 278 263 461 15 WSRP-F-05 883 626 1599 59
WSRP-E-06 278 138 301 13 WSRP-F-06 783 565 1582 44

WSRP-E-07 302 276 498 16 WSRP-F-07 1011 711 1726 64

| K | number of workers, | L| number of task locations, |7 | number of tasks, |A| number of geographical regions

developed, here we are interested in investigating ways to harness the power of modern exact
optimization solvers to produce high-quality solutions in practical computation time. One
possibility is to use problem decomposition and next we review some of the literature relevant
to our research.

3.1 Traditional decomposition methods

Decomposition is a technique for tackling a large scale problem which cannot be handled
with MIP solvers, the technique seeks to exploit the problem structure (Ralphs and Galati
2010). Decomposition methods have been applied to many problems such as aircraft routing
and crew scheduling problem (Cordeau et al. 2001; Salazar-Gonzélez 2014), manpower
allocation problem (Dohn et al. 2009), employee tour scheduling problem (Ni and Abeledo
2007) and home healthcare scheduling (Rasmussen et al. 2012).

The principle in traditional decomposition methods is to improve solution bounds (upper
and/or lower bound) (Ralphs and Galati 2010). The same principle is applied in the general
branch and bound algorithm where bounds are narrowed by computing the linear program-
ming (LP) relaxation or other relaxation techniques that provide better bounds, for example,
Lagrangian Relaxation (Fisher 2004). Traditional decomposition is usually beneficial when
the optimization problem can be defined in some specific structure such as block-diagonal
structure so that it can be approached by optimizing blocks independently. There are two

@ Springer

Ann Oper Res

main decomposition approaches for exploiting problem structure: constraint decomposition
and variable decomposition (Vanderbeck and Wolsey 2010).

The constraint decomposition method creates a compact problem by inserting approxi-
mation planes or constraints to get a better approximation. The planes could generate either
outer approximation (cutting plane methods) (Kelley 1960) or inner approximation (Dantzig-
Wolfe method Vanderbeck 2000, Lagrangian method Ruszczynski 1989). The additional
plane generates a cut which eliminates part of the feasible region that does not contain an
integer solution. Improved methods use both inner and outer approximations to get better
LP bounds (Vanderbeck 2000). Thus, the problem must be derived in both primal and dual
formulations in order to apply a two-way approximation.

The variable decomposition method is applied to problems where decision variables can
be separated mostly into two types (Benders 1962). The method solves the problem in two
stages. The first stage chooses a set of integer variables and finds values for them. The second
stage finds the optimal solution for the other variables subject to the values given to the first
group of variables in the first stage. Benders’ decomposition is a method representing this
type of approach. It has been applied to many problems such as network design (Costa 2005),
scheduling and routing of automated guided vehicles (Corréa et al. 2007) and tour scheduling
(Rekik et al. 2004).

3.2 Heuristic decomposition methods

Heuristic decomposition methods basically seek for a feasible solution and are based on
decomposing both variables and constraints. A difference with traditional decomposition
methods is that heuristic decomposition discards bounds improvement. Therefore, the process
is significantly faster because the repeated optimization process to close the gap between
lower and upper bounds is removed.

In essence, heuristic decomposition methods reduce the problem size by partitioning the
problem into smaller sub-problems. The partitioning can be done by using a general scheme
such as splitting the whole problem into equally sized sub-problems. Also, the partitioning
can be done based on some specific problem feature, an example is the steel plant production
scheduling problem where the steel making process was used as a splitting rule (Harjunkoski
and Grossmann 2001). The sub-problems created by the partitioning rule are usually defined
in a mathematical model. Hence, solving the sub-problems can be approached with a math-
ematical programming solver. The sub-problem solving process can be done independently
or hierarchically. An example of independent sub-problem solving is the time-based decom-
position applied to a scheduling model where the time horizon was used as splitting criterion
(Bassett et al. 1996). Hierarchical sub-problem solving requires a solving order for the sub-
problems. A tier-based hierarchical decomposition defines each tier as a different model,
for example batch plant design and planning (Subrahmanyam et al. 1996), a warehouse
location-routing problem (Perl and Daskin 1985), multi-depot location routing problem (Wu
et al. 2002).

Geographical decomposition is an approach that can be applied to partition problems where
geographical regions are defined like in vehicle routing problems. Considering geographi-
cal proximity in the decomposition can help to generate efficient routing paths (Reimann
et al. 2004). For example, polar coordinates partitioning can be applied to problems where
there is a depot located on the centre and visiting locations are distributed around the depot
(Taillard 1993). Geographical decomposition can employ clustering algorithms for the par-
titioning (Campbell and Savelsbergh 2004). However, clustering alone might not benefit the
mathematical solver if the clusters are too large for the solver to tackle. Rules can also be

@ Springer

Ann Oper Res

applied to control the size of sub-problems, for example to limit the number of customers by
merging customers within a small neighbourhood into one job. This approach was used in a
multi-carrier transportation planning problem where delivery jobs are assigned to multiple
carrier companies subjected to their operational cost (Landa-Silva et al. 2011).

The next section reviews Geographical Decomposition with Conflict Avoidance (GDCA).
Furthermore, we propose two improved decomposition methods: Geographical Decomposi-
tion with Conflict Repair (GDCR), and Repeated Decomposition and Conflict Repair (RDCR)
which will be described in Sects. 5 and 6 respectively.

4 Geographical decomposition with conflict aveidance (GDCA)

This section describes the implementation of the Geographical Decomposition with Con-
flict Avoidance (GDCA), a heuristic decomposition technique designed to tackle the HHC
problem (Laesanklang et al. 2015). Basically, it decomposes an instance into geographical
regions as featured by the problem. The GDCA splits a main problem into smaller sub-
problems each representing a different geographical region and small enough to be tackled
with an MIP solver. We note that the solution produced by GDCA is not guaranteed to be
optimal.

Figure 1 shows the outline of the GDCA. On the left, tasks are partitioned into geographical
regions. On the right, workers are selected by their geographical region availability. Both
components are combined into sub-problems as illustrated in the middle of the figure. Sub-
problems are ordered based on some criterion and they are tackled with the MIP solver in
that order. After a sub-problem is solved, the available workforce is updated so that the next
sub-problem to be solved does not generate conflicting assignments, i.e. tasks overlapping
in time assigned to the same worker. Thus, in this approach conflicts are avoided as sub-
problems are solved in sequence. Finally, sub-problem solutions are combined into a final
solution, i.e. a set of paths one for each worker.

Algorithm 1 outlines the GDCA method which takes a problem instance and generates
a solution. A problem instance P can be defined by a set of workers K and a set of nodes
V (tasks and start/end locations). The algorithm starts by identifying the unavailability time
period between ,BE =0 and /3;‘] = 0 for every worker k € K. Next, the problem instance P
is split into sub-problems s € S (step 3). Each sub-problem s contains the task nodes located

Algorithm 1: Geographical Decomposition with Conflict Avoidance (GDCA).

Data: Problem P = (K, V), K is the set of workers and V is the set of nodes
Result: {SolutionPaths} FinalSolution
1 begin
2 Initialization: for worker k € K, identify the unavailability period given between ﬂ’i =0and
B =0:
3 {Problem} S = ProblemDecomposition(K,V);
4 SortSubProblem(S);
5 for problem s € S do
6 sub_sol(s) = cplex.solve(s,S;.8u);
7 Update_unavailability (87,8y);
8
9
(]

end
FinalSolution = Combine_solutions(sub_sol);
end

1

@ Springer

Ann Oper Res

Geographical Decomposition with Conflict Avoidance

Order by parameter

£
Screen

) "’>
NG v ‘ worker
Split task by
regions
-

Screen
worker

.

e

Final solution 3 s

Combine
solution

Fig. 1 The Geographical Decomposition with Conflict Avoidance (GDCA) Approach

in the same geographical region and workers who are available to work in that region. Each
sub-problem s also contains the start/end location nodes. Hence, each task is in exactly
one sub-problem but a worker may be in more than one sub-problem. Each sub-problem
is defined by the MIP model presented in Sect. 2 plus the additional constraints (15) and
(16). The addition of these constraints means that the worker time availability constraint is
enforced in GDCA and hence conflicting assignments are avoided. These constraints define
the time period between ﬂf and ﬂé‘] as unavailable. The binary variable ¢ is used to enforce
the selection of only one side of the available time period, ¥ = 1 for the time interval up
to ﬂf, and ¢% = 0 for the time interval from ,35 onwards. Sub-problems are then sorted by
non-increasing number of tasks (step 4) and solved in that order (steps 5-8). For every solved
sub-problem, ﬁﬁ and ﬂé‘] are updated for every worker k € K.

as+8;—p <MQ—xf; -5 Vkek VievivjevV (15)

By —ay <M1 —xf;+¢ VkeK VievivjevV (16)

After all sub-problems are solved, constructing the final solution requires combining the
paths from all the sub-problems so that a worker has only one working path (step 9). Although
each sub-problem provides a path per worker, a worker may be involved in multiple sub-
problems hence resulting in multiple paths for that worker. Thus, these multiple paths are

simply merged into one single path as follows. Let ®X, @’5, ..., ®F be the multiple paths for
worker k given by solving n sub-problems. These paths have the same start location d and

@ Springer

Ann Oper Res

end location d’. Without loss of generality, assume CI>’f is the earliest path, Cbg is the second
earliest path and so on. The paths merging process takes the two earliest paths <I>’lC and d>]§.
Then, the ending edge of d>]1‘ (connecting the last task i to the end node d’) and the starting
edge of <I>§ (connecting the start node d to the first task j) are removed. This is done by
setting xf » = 0and xfj’ ; = 0. Next, the edge connecting i and j for worker k is selected by

setting xf/. = 1. Since d and d’ is the same location thus

k k k k k
a; +tiqg = ay <ag < ag; +14,j Saj

where af‘, aj‘., as, aﬁ, are the arrival times at tasks i and j, start node d and end node d’

respectively. Therefore, paths CI>’1‘ and <I>’§ are now merged. This process continues connecting
the recently merged path to the next earliest path until a single path for worker k is formed.

As mentioned above, GDCA requires an ordering for solving the sub-problems. Our
experiments did not identify an ordering criterion that performed the best on all instances.
However, we observed that ordering the sub-problems by non-increasing order of the number
of tasks provided good overall performance. Experimental results from using this setup
on GDCA will be shown in Sect. 7 alongside with the results from other decomposition
algorithms.

5 Geographical decomposition with conflict repair (GDCR)

Solving the problem as a whole with an MIP solver is not practical for the case of instance
sets WSRP-A, WSRP-B and some in WSRP-C, but the GDCA described above finds feasible
solutions for all test instances. However, the solution quality obtained by GDCA still depends
on the sub-problems solving sequence. Moreover, there seems to be no solving sequence that
works better for all instances. Therefore, we propose a decomposition approach which does
not require a solving sequence, Geographical Decomposition with Conflict Repair (GDCR).
Here, sub-problems are tackled in no specific order. The method consists of three stages:
geographical-based decomposition, conflicting assignments repair and heuristic assignment.
The first two stages achieve most of the tasks assignments of a problem instance, but the
heuristic assignment is crucial to complete the whole solution.

Figure 2 shows the outline of the GDCR. The upper rectangle in the figure illustrates the
geographical decomposition, the lower right rectangle illustrates the conflicting assignments
repair and the lower left rectangle illustrates the heuristic assignment. In summary, GDCR
decomposes a problem instance by geographical regions and solves each sub-problem but not
preventing conflicting assignments. Then, conflicting assignments are repaired which may
result in some unassigned tasks. Finally, a heuristic assignment algorithm is used to deal with
unassigned tasks. Each of these stages is further explained later in this paper.

Algorithm 2 outlines the GDCR method which takes a problem instance and generates
a solution by assigning paths to workforce. The algorithm shows the three stages executed
in sequence: geographical decomposition (lines 2-5), conflicting assignments repair (lines
6-10) and heuristic assignment (line 14). We now proceed to describe these three processes in
Sects. 5.1, 5.2 and 5.3 respectively. Each sub-problem is defined by the MIP model presented
in Sect.2 [not including constraints (15) and (16)] and solved to optimality by the MIP
solver.

@ Springer

Ann Oper Res

Geographical Decomposition

Split task by
regions

¥

Collect
valid paths

Split workforce

E—— Valid paths

Conflict paths

Final heuristic assignment Conflict Repair
Monday, 08
Collect \ December 2014
o ‘ Solve c
Valid path sub-problem o o}
" "= = 39
Valid paths — [} 8 :
a5 58
— -é S
a 25
a2
g5
Greedy f, e
heuristic ® ~§
Valid paths < g

Monday, 08
December 2014
Solve

sub-problem
— «“

Fig. 2 The Geographical Decomposition with Conflict Repair (GDCR) Approach

Collect
Unassigned tasks

5.1 Geographical decomposition

As illustrated in Fig. 2, the geographical decomposition stage decomposes the problem into
several smaller sub-problems. This is done exactly as in GDCA, i.e. the sub-problems are
defined by the geographical regions. Then, each sub-problem contains the task nodes located
in the same geographical region and workers who are available to work in that region. Each
sub-problem also contains the start/end location nodes. Algorithm 3 outlines this stage. The
set of tasks are partitioned (line 2) and workforce selected for the tasks in each partition 7},
(line 4). The sub-problems are generated by subproblem_builder which basically collects
data for the sub-problem.

5.1.1 Tasks partition

The size of each sub-problem is restricted by the task partitioning process within the geo-
graphical decomposition stage, as shown in Algorithm 4. This process takes the set of task
nodes 7 and returns a partition set 7P with no partition element larger than subProblemSize.
All tasks located in each region a € A are added to the subset 7, (line 5). If the size of subset
T, is larger than the maximum allowed sub-problem size (20 locations), then the subset of
tasks 7y, is further partitioned by uniformly distributing the tasks over the second level subsets

@ Springer

Ann Oper Res

Algorithm 2: Geographical Decomposition and Conflict Repair (GDCR)

Data: Problem P = (K, V), K is the set of workers and V = D U T U D’ is the set of nodes
Result: {SolutionPaths} FinalSolution
1 begin
/* Geographical Decomposition */
{Problem} S = ProblemDecomposition(K, V')
for s € S do
| sub_sol(s) = cplex.solve(s)
end
/* Conflicting Assignments Repair */
6 {Problem} Q = ConflictDetection(sub_sol, S)
7 FinalSolution.add(NonConflict(sub_sol))
8
9

[N)

for g € O do
| cRepair_sol(q) = cplex.solve(q)
10 end
1 FinalSolution.add(cRepair_sol)
12 {UnassignedTasks} T’ = T .notAssignedIn(FinalSolution)
13 Update_AvailableWorkforce(K)
/* Heuristic Assignment */
14 {Assignment} H S = HeuristicAssignment(7’, K)
15 FinalSolution.addAssignment(H S)
16 end

Algorithm 3: Problem Decomposition

Data: {Workers} K, {Nodes} V=DUT U D’
Result: {Problem} S is a collection of sub-problems.
1 begin
2 {{Tasks}} TP = TaskPartition(7);
3 for 7, € TP do
4 {Workers} ws = WorkforceSelection(K,T},);
5
6
7

S.add(subproblem_builder(7;,, ws, D, D'));
end
end

W (line 10). This second partitioning layer is crucial to control the size of sub-problems so
that they can be solved to optimality in practical time by the MIP solver.

5.1.2 Workforce selection

We remind the reader that each worker is usually associated to more than one geographical
region, hence the workforce set cannot be partitioned like the tasks. A worker can be used
in multiple sub-problems. This is exactly like in GDCA but in that approach, the additional
constraints (15) and (16) prevent conflicting assignments. Since these constraints are not used
in this GDCR approach, solving each of the s; sub-problems independently may provoke a
worker to be assigned to different tasks at the same time in different sub-problems. Hence,
the conflicting assignments repair procedure described next is implemented.

5.2 Conflicting assignments repair

This process takes the solution from solving each of the s; € S sub-problems and identifies
conflicting assignments to form conflict sub-problems. For each path ®; in the solution of

@ Springer

Ann Oper Res

Algorithm 4: Task Partition: Geographical Decomposition
Data: {Tasks} T, subProblemSize

Result: {{Tasks}} TP ={T,|n =1, ..., |S|}; Tasks partition set
1 begin
2 {Region} A =readRegion(7T);
3 for jeT,acAdo
4 if j.location.in(a) then
5 | Ta.add(j);
6 end
7 end
8 fora € Ado
9 if |7, | > subProblemSize then
10 {Tasks} W = uniformPartition(7, ,subProblemSize);
1 TP.addAlI(W);
12 else
13 \ TP.add(7y,);
14 end
15 end
16 end

Algorithm 5: Heuristic Assignment

Data: {UnassignedTasks} 7’, {Workers} K
Result: {Assignments} HS

1 begin

2 | for Task j € T' do

3 Worker k = bestCostForTask(K, j);

4 H S.addAssignment(j,k,startTime(j));

5

6

end
end

sub-problem s;, the algorithm searches for all the conflicting paths in the other sub-problem
solutions. A conflicting path is any other path ®; that uses the same worker as ®;. Then, if
conflicting paths exist for a worker, they are removed from the sub-problem solutions and put
together in a conflict sub-problem. Each conflict sub-problem is defined by the MIP model
presented in Sect. 2 and corresponds to exactly one worker and all tasks that were in the
set of conflicting paths. Each conflicting sub-problem is then solved with the MIP solver as
shown in line 9 of Algorithm 2. Solving a conflicting sub-problem gives a single valid path
for the worker but perhaps with some unassigned tasks due to the optimization process. The
heuristic assignment process described next seeks to incorporate these unassigned tasks into
the overall solution.

5.3 Heuristic assignment

At this stage, the set of unassigned tasks 7" that result from the conflicting assignments repair
procedure are tackled with a heuristic assignment method. This is a simple greedy approach
that seeks to assign tasks to the worker that incurs the least cost. Algorithm 5 outlines this
procedure. Basically, for each unassigned task j € T it seeks the most cost efficient worker
k € K that can take the task without provoking a conflicting assignment. This may result in
the assignment not respecting the worker’s predefined geographical regions, but as explained
earlier in this paper, this is a soft requirement in our HHC scenarios.

@ Springer

Ann Oper Res

100
S
g 50 !
) e
= §
= AN = NNN ™
N N
N N N NN MN ™]LL j i
\ I i
0 ____L_____E____________________ (0 S 5
S AN D O AM O AN T OA AN F DO AN F O NN T O
299999999599589589894898999%89%8¢9%8¢9%89989949¢9998¢9%98¢9+%
$444444ERaddAd000000000000 008 ddR it ALt nLink
Lo O U A VO VA P Vs O PO sV W O PV WM PR WS D PR« o PR PR Vo P P YR P P P
[S S e e e e e el ol e el o o v e e e e el el el s s s~ s~ < i i i i R o
NNNNNNNNNNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNN N
2222222222222 222222823322233¢E8EEzEEEEEEEE
O Decomposition N Conflict repair [Heuristic Assignment [Unassigned

Fig. 3 Proportion of tasks assigned in each stage of GDCR. Each bar shows for a problem instance, the
percentage of tasks assigned by each stage: decomposition, conflict repair and heuristic assignment. In very
few cases there are tasks left unassigned after the three stages are completed

5.4 Experimental study on the stages of GDCR

We now present experimental results to investigate how the three stages in the GDCR method
contribute to generating a final solution to the whole problem instance. For this, we scrutinize
the proportion of assigned tasks, travelling distance and computation time that each of these
stages deals with in producing a solution.

Figure 3 shows the proportion of tasks assigned in each of the three stages. Each of the
42 stacked bars corresponds to 100 % of the number of tasks in the corresponding prob-
lem instance. Each stacked bar has four parts: decomposition, conflicts repair, heuristic
assignment and unassigned tasks. Each part indicates the proportion of tasks assigned in
the corresponding stage of GDCR. On average, the proportion of tasks assigned by decom-
position, conflicts repair and heuristic assignment were 26.34,47.50 and 25.82 % respectively.
Only 0.34 % of the tasks were left unassigned. In general, the conflicts repair stage achieves
the largest proportion of successful assignments, except for instances WSRP-C. In these
instances most tasks have a long duration of 6-9 h. Therefore, it is likely that workers could
take only one task in the solution to each sub-problem. Therefore, the conflicting assignments
repair stage was less successful in solving conflicting sub-problems.

Figure 4 shows the proportion of travelling distance generated in each of the three stages.
Each of the 42 stacked bars corresponds to the total travelling distance in the final solution to
the corresponding problem instance. Note that there is no bar for WSRP-C instances because
no travelling between locations takes place in these solutions. Each stacked bar has three parts:
decomposition, conflicts repair and heuristic assignment. Each part indicates the proportion
of travelling distance generated in each stage. These are 26.36 % for decomposition, 37.64 %
for conflicts repair and 36.0 % for heuristic assignment.

Figure 5 shows the proportion of computational time used by each of the three stages.
Each of the 42 stacked bars corresponds to the total computational time spent to produce
a solution to the corresponding problem instance. For better visualization, the y-axis only
shows from 80 to 100 %. Each stacked bar has three parts: decomposition, conflicts repair and
heuristic assignment. Each part indicates the proportion of computational time spent in each
stage. While the geographic decomposition stage consumes most of the time. This is because
the sub-problems generated in this stage are much larger than those generated in the conflicts

@ Springer

Ann Oper Res

100

Distance (%)
o
S}

1
7

N

<

[=]
1

M

<
=}
O

WSRP-B-01 |1
WSRP-C-05
A |WsRP-c-06

WSRP-B-02

WSRP-A-01 [
WSRP-A-02 [
WSRP-A-03 |
WSRP-A-04 [{
WSRP-A-05 |1/
WSRP-A-06 [
WSRP-A-07 [
WSRP-B-03 [
WSRP-B-05 [
WSRP-B-06 %
WSRP-B-07
WSRP-C-01
WSRP-C-02
WSRP-C-03
WSRP-C-07
WSRP-D-01
WSRP-D-02
WSRP-D-03
WSRP-D-04 ||
WSRP-D-05 |
WSRP-D-06 |
WSRP-D-07
WSRP-E-01 |{
WSRP-E-02 |
WSRP-E-03 |
WSRP-E-04 |
WSRP-E-05 ||
WSRP-E-06 ||
WSRP-E-07 ||
WSRP-F-01 |
WSRP-F-02 |
WSRP-F-03 ||
WSRP-F-04 ||
WSRP-F-05 ||
WSRP-F-06 []
WSRP-F-07 |]

[+ [0
g g
z z
Ob n N

ecompositio onflict repair = Heuristic

Fig. 4 Proportion of travelling distance generated in each stage of GDCR. Each bar shows for a problem
instance, the percentage of travelling distance in the portion of path generated by each stage: decomposition,
conflict repair and heuristic assignment

100 [INRE NN M S SN S R RS 1 B R S B A A S T e e e e e e e
SINIINNIND mIs
95 N
S
o 90
E
E
85
N
80
H AN O A NN O A NN O NN F DO NN T O NNF DO
2995599999299999°2994999°93999999°99999%999¢999%9¢9¢%
€442 iBdddddd0000000dAd0AdAdEAuddRdddidad
OV A O AV VO W MO AP VsV VM D P s WO DR PR oV o P D P Y Vo P PP
e e e e e e e e i e e e e e <. i o i < Y e e ol 4
NNNNNNNNNNNNNNNNANANNNNNNNNNNNNNNNNNNNNNDNNNN
E2EE2REE22222222222222R22222RB32222838R8388E8E
O Decomposition N Conflict repair Ll Heuristic

Fig. 5 Proportion of computation time used in each stage of GDCR. Each bar shows for a problem instance,
the percentage of computation time used by each stage: decomposition, conflict repair and heuristic assignment

repair stage. On the other hand, heuristic assignment is very quick, particularly for instances
WSRP-D, WSRP-E and WSRP-F, taking less than 0.1 % of the total computational time.

One way to shorten the computational time of the decomposition stage would be to reduce
the size of the decomposition sub-problems. However, this would mean more conflicting paths
and hence larger conflicting sub-problems to tackle with the conflicts repair stage. It would
also mean more unassigned tasks to tackle with the heuristic assignment stage. Hence, in the
next section we propose an iterative decomposition and conflict repair approach.

6 Repeated decomposition and conflict repair (RDCR)

An improved method called Repeated Decomposition and Conflict Repair (RDCR) is pre-
sented here aimed at reducing the computational time spent in the geographical decomposition

@ Springer

Ann Oper Res

Algorithm 6: Repeated Decomposition and Conflict Repair (RDCR)

Data: Problem P = (K, V) where K is a set of workers and V = D U T U D’ is a set of nodes
Result: {SolutionPaths} FinalSolution
1 {UnassignedTasks} T’ =T

2 repeat
3 {Nodes} V=DUT'UD;
/* Problem Decomposition */
4 {Problem} S = ProblemDecom(K, V);
5 for s € S do
6 \ sub_sol(s) = cplex.solve(s);
7 end
/* Conflicting Assignments Repair */

8 {Problem} Q = ConflictDetection(sub_sol, S);
9 FinalSolution.add(NonConflictPaths(sub_sol));
10 for g € O do

1 | cRepair_sol(q) = cplex.solve(q);

12 end

13 FinalSolution.add(cRepair_sol);

14 T’ = T .notAssignedIn(FinalSolution);

15 Update_AvailableWorkforce(K);

16 until No assignment made ;

step and improving the overall solution quality. While the GDRC method described above
sets the sub-problem size at 20 locations, RDCR sets it at 20 tasks (a reduction in size because
one location can be associated to multiple tasks). Also, RDCR uses the decomposition and
conflicts repair stages repeatedly until no assignment can be made. The aim is to have a higher
utilization of the MIP solver instead of relying in the heuristic assignment stage. Moreover,
we investigate different criteria for the decomposition besides geographical regions aiming
to further reduce the computational time.

Figure 6 shows the outline of the RDCR in two parts. The upper part is the problem
decomposition and the lower part is the conflicts repair, these two are used iteratively to find
an overall solution. Algorithm 6 outlines the RDCR method. Compared to GDCR, the RDCR
approach drops the heuristic assignment stage and relies on the problem decomposition and
conflicts repair stages only. Details if the RDCR method are explained in the subsections
below.

6.1 Problem decomposition

As before, we split the problem into several smaller sub-problems. The outline of this process
remains like in GDCR, see Algorithm 3. However, here we use different approaches for task
partition and workforce selection as describe next.

6.1.1 Tasks partition

Besides partitioning tasks based on their location, we also use a clustering algorithm, namely
k-medoids, to define the partition based on distance between locations. The k-medoids algo-
rithm works in the same way as the k-means algorithm (Park and Jun 2009). It finds k clusters
based on the distance between the items. For better computational efficiency when tackling
the sub-problems with the MIP solver, it is also desirable that the clusters are of similar size.
Therefore, we propose three rules for tasks partitioning as described next.

@ Springer

Ann Oper Res

5]
i Solve by MIP :

I !

| Nl K |

: | ub- Worker o
i ask s :

i Taskset 1 | |problem 1 | set 1 : g
! | 3
! | Sub- : Worker i"é
: ™ Required tasks Task set 2 ’—:—{ problem 2 set 2 Available workers |« il Z.
! | s =
! | | E
! 0 ' Sub- | [Worker i

1 T'ask set n i . !

i : problem n i setn i

3 PR i

i !

| !

i I

: Repair by i

i \ MIP i

: Assigned path : -
i No End :§
! =
| !

| Yes Yes v [

i |

: Unassigned tasks Unassigned workers i

i |
S SO UUUU

Fig. 6 Overview of Repeated Decomposition and Conflict Repair method

Algorithm 7: Task Partition: Location Based With Uniform Partition (LBU)
Data: {Tasks} T, subProblemSize

Result: {{Tasks}} TP ={T,|n =1, ..., |S|}; Partition set of tasks
1 begin
2 tasksList = GroupByLocation(7');
3 n=0;
4 for j € tasksList do
5 form=1,...,.ndo
6 if |T;,,| < subproblemSize or j.shareLocation(Ty,) then
7 | Tin.add(j):
8 end
9 end
10 if j.isNotAllocated then
11 n=n++1;
12 Ty.add(j);
13 end
14 end
15 end

Location based with uniform partition (LBU) This procedure partitions tasks according
to their location while also aiming to limit the size of each subset. The procedure is shown in
Algorithm 7. First, tasks are ordered by location into tasksList and processed one at a time.
Task j in tasksList is allocated to subset T, if the task has the same location as any task
already in the subset or if the maximum size of the subset has not been reached. If task j
is not allocated to an existing subset then a new subset is created. We set subproblemSize to
20 tasks. Since most of our 42 HHC instances have locations with no more than 5 tasks, this
LBU procedure mostly generates subsets within the size limit or at most a handful of more
tasks.

@ Springer

Ann Oper Res

Algorithm 8: Task Partition: Region Based With k-medoids Clustering Partition (RBK)
Data: {Tasks} T, subProblemSize

Result: {{Tasks}} TP={Tyln=1,..., |S|}; Partition set of tasks
1 begin
2 {{Tasks}} A = firstPartition(splitTaskByRegion(T));
3 for T, € Ado
4 if |7y | > subProblemSize then
5 {{Tasks}} W = kMedoidCluster(7,,subProblemSize);
6 TP.addAllSetIn(W);
7 else
8 \ TP.add(7y,);
9 end
10 end
11 end

Region based with k-medoids clustering partition (RBK) This procedure partitions tasks
according to geographical regions and then splits too large subsets (regions with a high density
of tasks) using the k-medoids clustering algorithm. The result is a set of sub-problems where
tasks within the same sub-problem share the same region and are separated by short travelling
distances. The procedure is shown in Algorithm 8. First, tasks are partitioned by geographical
regions into A and each subset 7, is processed one at a time. Then, the k-medoids clustering
algorithm is applied to those subsets that have a size larger than subproblemSize (20 tasks).
The clustering algorithms seeks to minimize travelling distance between tasks in the same
cluster and the number of clusters size is calculated by dividing the number of tasks in the
subset T, by subProblemSize.

Skills based with k-medoids clustering partition (SBK) This procedure is a variant of
RBK explained above. The only difference is that the first partitioning level is based on the
skills required by tasks instead of by geographical regions. Then, in Algorithm 8, we replace
splitTaskByRegion at line 2 by splitTaskBySkill. The first partitioning level gives subsets with
tasks that require the same set of skills. This helps to group tasks that may require specialist
workers. Such workers with specific skills are usually low in numbers but may be required
to cover tasks in a wide area. The second partitioning level using k-medoids clustering is
applied next to reduce the size of larger subsets, those including tasks that require more
general skills.

6.1.2 Workforce selection

We propose three workforce selection methods as described next, to complete the sub-
problems in RDCR. The aim is to select a not too large subset of workers that are suitable
for the tasks already in the sub-problem.

Best fitness selection (BF) This procedure finds a set of best workers, where each worker is
one of the best candidates for each task in the subset. For each task j in a subset 7,, we identify
the best worker by partially computing the objective function (14). For this, the assignment of
each worker to task j is evaluated by computing three components of the objective function:
monetary cost, preferences penalty, and soft constraints penalty. The worker must also have
the required skills for the task. If the best worker identified for task j has been already selected
for another task in the same 7},, then the next best worker is selected and so on. This selection
method guarantees that all tasks can be assigned unless there is no worker with the required
skills for the task. The resulting sub-problem has at most one worker for each task.

@ Springer

Ann Oper Res

Best average fitness selection (AF) This procedure finds a set of good average workers,
where each worker is a good candidate for all the tasks in the subset. Similarly to the BF
procedure, for each task j € T, and each worker, we partially compute the objective function
(14). But instead of selecting the best worker for the task, we select the next best average
worker. Workers are listed in decreasing order of their average partial objective function value
considering all tasks in the subset 7. The next available best average worker is selected for
the subset until we have the same number of workers as tasks in the subset.

Workers suitability selection (WS) This procedure finds a set of suitable workers, based
on skills and locations, for all the tasks in the subset. All workers that have the required skills
and location availability for at least one task in the subset are selected for the subset. This
selection procedure results in larger number of workers for each sub-problem, which would
demand more computational time when solving the sub-problems but could result in higher
quality solutions.

6.1.3 Repeated sub-problems solving

Solving the sub-problems with the MIP solver is carried out iteratively until a final solution
with a set of valid paths (with no conflicting assignments) is obtained. As before, the sub-
problems generated with the above procedures are defined by the MIP model presented in
Sect. 2 [notincluding constraints (15) and (16)]. There are no conflicting assignments between
the paths in the same sub-problem solution, but there might be conflicting assignments
between paths in different sub-problems. Instead of using the heuristic assignment procedure
as in GDCR, only the MIP solver is used in an iterative process of generating sub-problems
and solving them (repairing the solution). In our experiments, small instances required 2 or
3 iterations of RDCR while larger instances required 5-6 or a few more iterations. Always
the first iteration was the most time consuming with the later ones (repeated repairs) being
much faster.

6.2 Experimental study on the sub-problem generation methods

We now present experimental results to investigate how the three procedures to partition
tasks (LBU, RBK and SBK) and the three procedures to select workforce (BF, AF and WS)
contribute to generating a final solution to the whole problem instance. The nine combinations
are tested on the 42 problem instances and results are collected in terms of the solution quality
and computation time. In the results presented here, LBU-BF denotes location based with
uniform tasks partition followed by best fitness workforce, similar naming convention is used
for the other sub-problem generation procedures.

Figure 7 presents the summary of results comparing the nine sub-problem generation
methods. From left to right, the figure shows the number of best solutions (#BestSolutions),
average objective value (AverageObj) and average computational time (AverageTime) in
seconds. Each bar in each sub-figure shows the results obtained for all the 42 instances when
using one particular sub-problem generation method within RDCR.

In terms of number of best solutions, LBU-WS and SBK-WS achieve the highest number
of best solutions (10 instances), followed by LBU-BF, RBK-BF and SBK-BF with 9 best
solutions each. In terms of average objective value, eight of the methods gave very com-
petitive results while only RBK-WS showing considerable lower performance. In terms of
average computational time, the figure seems to indicate that the LBU tasks partitioning
procedure combined with either BF or AF workforce selection are the fastest methods. The
next fastest ones are the RBK tasks partitioning procedure combined with either BF or AF.

@ Springer

Ann Oper Res

x10° x10°

10 3

1
2 — -

g 0.5

1

0 0 0

#BestSolutions AverageObj AverageTime(s)

I nLBU-BF NR RBK-BF H # SBK-BF I 1 LBU-AF § §RBK-AF
8 SBK-AF I 0 LBU-WS RS RBK-WS i # SBK-WS

Fig. 7 Overall results using the nine decomposition procedures within RDCR on the 42 problem instances.
The sub-figure on the /eft shows the number of best known solutions found with each procedure. The sub-figure
in the middle shows the average objective value obtained with each procedure. The sub-figure on the right
shows the average computational time in seconds when using each procedure

The three methods using the WS workforce selection method are the most time consuming.
As mentioned before, we were expecting this to be the case as selecting all suitable workers
increases the sub-problem size. However, we though that this workforce selection method
would result is better solutions but this was not the case as it can be seen in the other sub-
figures. We should note that there was a time limit set for solving each sub-problem of 30
seconds per task.

We also conducted a statistical analysis using the non-parametric Friedman’s ANOVA test
to determine any statistical significant difference, in terms of solution quality and computation
time, between the sub-problem generation methods. We used SPSS (Field 2013) and set the
main significant level of the test at 0.05. Based on the results of this study we selected the
LBU-BF method to be used within RDCR. Detailed results of this study are presented in the
“Appendix”.

6.3 Experimental study on solution improvement in RDCR

This section presents experimental results to assess the improvements achieved in RDCR
from the repeated use of the MIP solver. For this, both GDCR and RDCR are run using the
same decomposition rule LBU-BF and their performance compared. Table 2 compares the
solutions obtained by the two methods on the 42 HHC instances from the six behnchmark
scenarios. Column GDCR %Heur shows the percentage of assignments to be made by the
heuristic assignment step in GDCR. In RDCR, these assignments are tackled by the second
and following iterations (remeber that the first decomposition and conflict repair of both
algorithms provides the same solution). Column RDCR #Iter shows the number of iterations
used in RDCR. Columns GDCR Obj and RDCR Obj show the objective value for each solu-
tion found by GDCR and RDCR, respectively. Finally, column %Diff shows the difference
between the two solutions, where a positive value indicates that the RDCR solution is better
and a negative value indicates the opposite.

The results in Table 2 show that the first decomposition and conflict repair steps find a
solution to the whole problem for six instances: WSRP-A-05, WSRP-A-07, WSRP-B-02,
WSRP-C-02, WSRP-C-04, and WSRP-C-07, i.e. both GDCR and RDCR produce the same
solution quality in these cases. The table also shows that RDCR produces better solutions

@ Springer

Ann Oper Res

LO'T S8'E0L 4 EPIIL €1°sT €0-d-dASM 99L— €Ty v (14 S0°sT €0-9-dASM
Tel— 8€°50ST S LTEITT LY'0€ 20-A-ddSM TiL— e v LST LTTT T0-H-ddSM
99¢ 6L 6¥1T S TST6EE 12°0¢€ 10-4-ddSM I'LS— 61°S v 0€'e ¥9°81 10-H-ddSM

01— $8°20¢C v SH00T Y661 LO-A-dASM 00°0 (117 I (117 000 LO-D-dYSM

€01 68'861 v 96°00C 69°61 90-A-dUSM 96'1— 06961 € Tre6l 1S°0b 90-D-ddSM

o'l £L°€81 4 18981 LO°0T S0-A-dASM 7o sTst z 9TSI 06'9 S0-D-dASM

PeET— 6L 11T 4 00607 [4%°14 PO-A-dASM 000 80°€l I 80°€l 000 $0-D-ddSM

0€0 L8'LOT 4 6°80C 11°€T €0-A-dASM 86°0 vh 6ST € 20191 L9°9T €0-D-dASM

18°¢C 8L'861 v T$P0T 96T 20-A-dASM 0070 STE I SI'E 000 20-D0-ddSM
8T'Y 97507 v Saats L6°ST 10-A-dASM 89°€T LSTIET € 8€°TLI 09°CC 10-D-ddSM

(S £0C T 65°C 6LTE LO-A-dYSM 00°0 L€ I L€ 000 LO-V-ddSM
95°¢ SL'T z 81 S0'IT 90-4-dASM €8°¢ 95°€ z oL'e 6Tl 90-V-ddSM

60"t 86'C € e $9°0¢ SO-9-dISM 000 4 & I 44 000 SO-V-dISM

1$°0 (4% z €1'e eeel YO-d-dASM 6T'¢ S6'1 z 10T 1L°01 YO-V-ddSM

SI'II S8'T € 80'C 1Tse €0-9-dASM T6°¢ 98'9 z YL S0'1T £0-V-ddSM

00°0 081 I 081 000 20-9-ddSM L1 £€6C z 86'C S 20-V-ddSM

879 9L'1 (4 88°1 Py 61 10-9-d¥SM 0S'1 0% T 90'F ST9 10-V-ddSM

a0 To# fao IN9H % a0 o lao INoH%

Has AOad AOAD QoueIsu] »av AOAY ¥OAD QoueIsu]

(I9-ng7) 2 uonisodwiodap awres Ay U0 YD PUL YDJD Udom)dq uostredwo) g Jqel,

pringer

as

Ann Oper Res

uonnjos 19)39q sapraoid YOO 1By} ISBI Y} 0} SIJOI DUAIIIP 33ejuao1ad dAneSoN
uonnjos 19)32q sapraoid YD 1ey) 258 AY) 0} SIAJAI OUAIAJIP oFejuadrad aAnISOq

uonn[os 19)9q sjuasaxd 1xa) pjog

SUOTINOS 0OM] A} USIM)AQ SIOUAIRJJIP oSejuadied pue
MDY Suisn woiy anfea 9AN2[QO “YD(Y Ul Pasn SUONBII JO Jaquunu) YOO SuIsn woly anfea 2A1393[(qo “YHO Ul apewt Juswudisse dnsunay Jo agejuadrad syussaxd a[qey,

0r'0 SHH09€ S 20°619¢ Sy'sT LO-A-dASM 8'8L— ILL 4 €y S8Ll LO-H-dISM

08’1 SETHL v 86°SSL 98°6T 90-d-dASM 1ol 0€T 4 LST 197 90-d-dASM

Sl P8 YIE S LY'61¢€ ss9T SO-d-ddSM 9'98— 9T'L 4 68°¢ €LTT SO-d-dISM

81°0 LS LYHL v 0S°0SH1 19°8C P0-A-dASM i 6L1 v LY'T L19T PO-H-dASM
a0 o fao IN9H% a0 RENET fao INOH%

Has ¥Oad ¥OAn QoueIsu] Waz AOad ¥OAD QoueIsu]

panunuod g 3[qey,

pringer

Qs

Ann Oper Res

Number of best solutions Average objective value
4
| | | | | .lq | | | |
48,089
30 - 27 N []
4 - -
20 |- -
15
5 (17,213 i
10 =
2
0 [0 338 320 446
05— T T T T 0= T T T T
GDCA GDCR RDCR Heur Human GDCA GDCR RDCR Heur Human

Fig. 8 Number of best known solutions (/eft sub-figure) and average objective function (right sub-figure) of
GDCA, GDCR, RDCR, heuristic assignment (Heur) and solution from a human planned (Human). A lower
objective value presents a better result

that GDCR for 28 instances while GDCR is better in 9 instances. This is a clear indication
that using the MIP solver iteratively in RDCR results in increased solution quality compared
to the using the heuristic assignment algorithm in GDCR. However, focusing in instance set
WSRP-E, we can see that GDCR clearly outperforms RDCR in 5 of the 7 instances by a
margin between 57 and 86 %. The improvement achieved by RDCR over GDCR in the other
two instances, WSRP-E-04 and WSRP-E-06, is by a margin of 27 and 10 %, respectively.
The instance set WSRP-E is a scenario where workers are mostly suitable to make every
visit. The iterative approach in RDCR might not work well in such conditions of over-fitting
workforce because splitting the decisions on assignments across sub-problems might prevent
RDCR to achieve the overall better solution. Since GDCR tackles the rest of the assignments
in one step, this might help the method to perform better in these cases. Therefore, we can
conclude that RDCR is better than GDCR in general but it is also clearly outperformed by
GDCR in most of the instances in group WSRP-E.

7 Experimental study on the decomposition methods

This section presents results from the experiments conducted to compare the overall per-
formance of the three decomposition methods variants described in this paper, geographical
decomposition with conflict avoidance (GDCA), geographical decomposition with conflict
repair (GDCR) and repeated decomposition and conflict repair (RDCR). Results obtained
with these three approaches are compared to solutions obtained from the greedy heuristic
assignment approach described in Algorithm 5, solutions produced by a human planner and
optimal solutions (when available) from the MIP solver.

First, overall results considering all 42 problem instances are presented in Fig. 8. The
graph on the left shows the number of best solutions obtained by each method. The graph
on the right shows the average objective function value (the lower the better) obtained by
each method. It can be observed that in terms of number of best solutions, RDCR is the
best method producing best known solutions for 27 of the 42 instances. The second best is
GDCR with 15 best solutions. The heuristic produced only 2 best solutions while GDCA and
the human planner did not produce best solutions. In terms of the average objective function
value, a similar trend can be observed with RDCR at the top followed by GDCR, the heuristic,
GDCA and the human planner respectively.

@ Springer

Ann Oper Res

Now, more detailed results are presented for each of the 42 problem instances. Table 3
shows results for the objective function value. These results also include the optimal solution,
only available for some small instances, obtained by solving the instance as a whole using the
MIP solver. The best results for each instance are shown in bold. The table shows that for most
instances in which the optimal solution is available, none of the methods is able to find an
optimal solution. The exceptions are RDCR finding optimal solutions for instances WSRP-
A-05, WSRP-A-07, WSRP-C-02 and WSRP-C-07, and GDCR finding optimal solutions
for instances WSRP-B-02, WSRP-C-02 and WSRP-C-07. For the small instances where no
optimal solution is available (WSRP-C-01, WSRP-C-03 and WSRP-C-06), RDCR found the
best known solutions. For the 21 larger instances, RDCR obtained best know solutions for
12 of them, GDCR obtained best know solutions for 9 of them (a tie with RDCR in one
instance), and the heuristic obtained best know solutions for 2 of them (a tie with RDCR in
one instance).

Table 4 shows results for the computational time in seconds. Note that the time spent
in generating the human planner solution is not available. As expected, the computational
time spent in finding the optimal solution (when available) is usually the highest, particularly
for instance WSRP-B-03. It is clear that the heuristic is the fastest method for all problem
instances taking a fraction of a second in most cases and less than 3 seconds in the others. The
second fastest times are shown in bold and we can see than for almost all problem instances
RDCR is the fastest method. The exception is instance WSRPA-03 for which GDCA is the
fastest method. An overall comparison of the three decomposition methods proposed here,
shows that RDCR is the fastest, followed by GDCR and GDCA.

Then, considering both solution quality and computational efficiency, we can conclude
that the RDCR method is the best one overall as it ranked first in terms of solution quality
and second in terms of computational time. Among the three decomposition method variants,
RDCR is the fastest in terms of computational time while still making all task assignments
with the MIP solver. The reduction in computational time compared to GDCR and GDCA
is mainly from the reduced sub-problem size achieved in the decomposition step. Also, the
repeated process of generating and solving sub-problems is able to generate solutions of
higher quality. RDCR also shows that harnessing the power of the MIP solver produces
better results than the heuristic algorithm. It seems that although GDCR produces good
results, using the assignment heuristic brings a limitation on the quality of solutions obtained
compared to RDCR.

We also conducted a statistical analysis using the non-parametric Friedman’s ANOVA
test to determine any statistical significant difference in performance between the methods.
Based in the results from this study we conclude that in terms of objective function value,
the better ranked methods are RDCR and GDCR and in terms of the computational time
the better ranked methods are the heuristic and RDCR. Detailed results of this study are
presented in the “Appendix”.

8 Conclusions and future work

This paper has investigated decomposition techniques combining mixed-integer program-
ming (MIP) solvers and heuristics to tackle real-world instances of the home healthcare
planning (HHC) problem. The goal in this problem is to plan visits by workers (e.g. nurses
and care workers) to patients at their homes in order to carry out some healthcare related
tasks. HHC problems involve both scheduling and routing and it has been shown in the liter-

@ Springer

Ann Oper Res

uonnjos 19)3aq syuasaid 1xa) pjog
/N S& PayIew Saduejsul uo punoj jou st uonnjos fewndQ

YTSILI 6£Cy P09¢ 019¢ T¥S9L1 LO-A-ddSM L01 (459 ey (U5 4 6C°S (1158 4 LO-D-ddSM
9S oP1 798 L LyL LOO'9L 90-4-ddSM 98111 154 L6l 861 wle V/N 90-D-ddSM
¥89°9€¢ CSLT Sle L6¢T 8er 101 SO-d-ddSm SL 9Ll €6l y'ee 6'89 PeTl S0-O-ddSM
YO1°011 8661 1248 €Syl ¥66°C01 Y0-d-ddSM L66 S91 I'el I'ec €18 ST'TL Y0-D-ddSM
LTV 1¥1 6191 oL LOL SETSIT €0-d-ddSm S6TYT OLT 651 961 9811 VIN €0-O-ddSM
VLT LIT SECe S0s¢T (4.1 44 16T°€L 20d-ddSm 179 98y ST'E ST'E 19°¢ ST'E 20-D-ddSM
£8€°68 018¢ 0S1T 0rLT SOEY9 10-d-ddSMm T9°6T G81 I€1 €el S06 VIN 10-D-ddSM
S8y Tyl 89°¢ ILL wy 8¢y LO-d-ddSM VLY 1483 €0C ¥6'C 90 6L'T LO-d-ddSM
6L1°08 ev's 0€'c 0€CT 9ve 90-d-ddSm 41! 16C SL'T SL'1 (44 91 90-4-ddSM
SLO'CE ge8 9CT'L IL'E 0LT SO0-3-ddSM €79 88°C 86'C 145K LY (40} SO-d-ddSM
69¢°101 (5% 6L'1 6L'1 ¢'8¢C PO-H-ddSM (31 10°¢ e €r'e 1T L0C Y0-d-ddSM
¥29°19 LT8 €y €'l 0'6C €0-3-ddSMm 69 L6C S8l 681 90°¢C w1 €0-d-ddSM
T10°8L €8y e 1T¢ 09¢ 0-d-ddsSm ¥6'l £€8°C 08°1 SL'T 681 SL'T 20-9-ddSMm
£€9°081 LT9 61°¢S 69°¢ 0ee 10-d-ddSM 00¢ L8'C 9Ll 68’1 6L'1 0L'T 10-9-ddSM
¥6L°TT Lol €0¢ 81¢ €SL LO-A-ddSM L'Le ore ILe LOY 187 ILe LO-V-ddSM
698°€T 661 661 €CC 354! 90-A-ddSMm 9vC L9'S 9¢°¢ e L€ se'e 90-V-ddSM
SOL'€E 681 1218 0¢ Y¥e S0-Ad-ddSm e Sre we e ye'e we SO-V-ddSm
LL9'91 €CC (4 14 61¢C 611 Y0-d-ddSm 6 9¢'C S6'l 6v'¢C 60°¢ wl Y0-V-ddSM
616°9C Ice 80¢ 6CC €lce €0-d-ddSm ¥'89 L 989 €o'v 9°01 00°€ €0-V-ddSm
0€8°¢€1 e 661 90¢C €LE 0-a-ddsm €CL [44% £€6'C 9¢'¢ €Sy 6v'¢C 20-V-ddSm
98¢°L1 9¢¢ S0T 0lc 961 [0-A-ddsm LOE 'S 00¥ 8v'v S9°¢ 6v'e 10-V-ddSM

uewing InoH IOad dOan voaos due)suf uewny InoH JOad dOan vOoaon rewndo QdUE)SUL

sooue)sul gf oy uo Jouueld uewny pue (INSH) JUAWUIISSE ONSLINAY YDA “YDAD ‘VIAD Aq paureiqo pue ‘uonnjos fewrndo oy 10J sonfea 9A1309[qo uonnos ¢ Iqey,

pringer

as

Ann Oper Res

JUQWUSISSE OTISLINAY 0) STUOTq SAem[e T JsA)se]) Se awn) [euoneindwos 1saq puodas oy syuasaid 1xa) pjog
V/N SB PayIewl SaJURISUI U0 punoj jou st uonnjos fewmndQ spuodas ut sjuasard awry,

9 wr Ly81 ££8¢ LO-A-ddSM > 170 €C0 ¥Z0 1 LO-D-ddSM
16'1 (444 Y0CL 9696 90-d-ddSM 61°0 v6'vC LL'6Y SO'LY VIN 90-D-ddSM
16°1 06€ LEVE LST9 SO-d-ddSm > 1L°0 16'1 SO'1 Ss S0-O-ddSM
L9'1 09¢ 090L 6lcy Y0-d-ddSM 110 L0'1 8¢ 60°¢ 06 Y0-D-ddSM
1971 we 8061 SSSy €0-d-ddSm 920 (44} ¥8'LC £€°9¢ VIN €0-O-ddSM
0Tl 1sT 0cLT TT1T 20d-ddSm = o €90 LSO 9 20-D-ddSM
00°1 0sT 88LI orre 10-d-ddSMm €0 0S°'ST ¥Ce [4¢4 VIN 10-D-ddSM
LT0 LOT 788°€1 LSO'1S LO-d-ddSM > 148 147 79°€C 00¢ LO-d-ddSM
SI'o 09°s9 K419 ITye 90-d-ddSMm > 8L'8 08°'I¢C 1've P81 90-9-ddSM
S0 £9'86 0156 619°C€ S0-3-ddSm ['> 1€°8 cTee ge'se G8¢ SO-d-ddSM
81°0 LS'IL 86L8 061°S1 YO-H-ddSM ['> £€9°C 61¢Cl Seel 4 Y0-4-ddSM
o 101 TL8'TT LyL 0T €0-3-ddSM = 1S°01 L6°LE 98Ce €009 €0-d-ddSM
810 898 9086 8Y Tl 0-d-ddsm = 6L0 9¢'¢ 6C'Y [4 20-9-ddSM
610 IS°€6 9L9L 80¥8 10-d-ddSM "> L9v 96'9 L0'8 IC 10-d-ddSm
€0 (44! 2 AN ¢l LO0-A-ddSM "> 0L0 SS'1 9'1 1 LO-V-ddSM
[\ 0€T 901 (444! 90-A-ddSMm > LLT 08¢ we S 90-V-ddSM
81°0 811 L06 LOET S0-d-ddSm ['> 9IL'0 8C'1 LL'T I S0-V-ddSMm
LT°0 LTI S8L S00¢€ Y0-d-ddSMm > L8'T 6C'C 88'C S Y0-V-ddSM
810 LTI 201 60¢CI €0-d-ddSm = LTS 69'v 0L'e 4! €0-V-ddSm
10 601 90L o611 20-a-ddsm = 6€'C gee 86°¢ 8 20-V-ddSm
810 601 6LS 0901 10-A-ddsm "> €S°C 9L'¢ ILe L 10-V-ddSM
InoH dOad dOan vOodon due)suf oy dOad IOad vOoao rewndo QdUE)SUL

S9OUBISUT 7§ 9U) UO (INOH) JuewuSIsse onsunay pue YDA “YDAD VIO ‘uonnjos [ewndo 10J spuoods ur owr [euoneindwo)) ¢ d[qe],

pringer

Qs

Ann Oper Res

ature that these are very difficult problems to solve. This paper proposes effective approaches
to harness the power of modern MIP solvers by means decomposition in order to produce
high quality solutions in practical computation time. Experiments were conducted using 42
instances from 6 different real-world HHC scenarios provided by our industrial partner, a
provider of workforce management software as a service.

The paper investigated three variants of the problem decomposition approach at the cen-
tre of this research. The overall strategy is as follows. First, to generate sub-problems by
some decomposition method. Second, to solve the sub-problems with an MIP solver. Third
to integrate the sub-problem solutions into a valid solution to the whole problem. The decom-
position techniques proposed here differ in two main aspects: (1) the method to decompose
the problem into sub-problems and (2) the method to deal with conflicting assignments (a
worker assigned to more than one task at a given time).

The first decomposition method is called Geographical Decomposition with Conflict
Avoidance (GDCA). This approach decomposes the problems into sub-problems by split-
ting tasks according to geographical regions defined by the practitioner. After solving each
sub-problem, this method only considers the suitable workforce not used in the previous
solved sub-problems so that conflicting assignments are prevented. The main issue with this
approach is that the sequence in which sub-problems are solved influences the overall solution
quality obtained.

The second decomposition method is called Geographical Decomposition with Conflict
Repair (GDCR). This approach differs from GDCA 1in that the whole suitable workforce
is used when solving each sub-problems. This generates conflicting assignments than are
repaired later with some heuristic. The main issue with this approach is that it relies heavily
on the repair mechanism and that the problem decomposition stage consumes considerable
computational time.

The third decomposition method is called Repeated Decomposition and Conflict Repair
(RDCR). This approach seeks to decompose the problem in smaller sub-problems compared
to GDCA and GDCR. This is achieved by tailored strategies to select tasks and workers
for each sub-problem. Nine strategies for generating sub-problems were tested. This RDCR
approach applies the decomposition followed by the MIP solver in an iterative way in order
to repair conflicting assignments and obtain a valid overall solution. This results in RDCR
being the fastest of the decomposition approaches while also producing best results.

This paper also presented experimental results comparing the proposed heuristic decom-
position methods to solution generated in three other ways: optimal solutions (only for some
small instances) by the MIP solver, solutions generated by a fast baseline heuristic and solu-
tions generated by a human planner. Results of the comparison supported by a statistical
analysis study allow to arrive to several conclusions as follows:

1. The proposed RDCR decomposition method is the best one overall when considering
both solution quality and computational time.

2. The proposed GDCR decomposition method is slower than RDCR and appears to be the
second best in terms of solution quality (although showing no significant difference to
RDCR).

3. The GCDA decomposition method and the baseline heuristic show no significant differ-
ence in terms of solution quality, but the heuristic is the fastest method of all.

4. Compared to the reference solutions by the human planner, it is clear that any of the
algorithms produces solutions of considerably better quality.

The research presented in this paper shows that although real-world home healthcare plan-
ning is a very difficult optimization problem and heuristics are often proposed in the literature

@ Springer

Ann Oper Res

to tackle this type of problems, applying modern MIP solvers within a decomposition strategy
is an effective and efficient approach to tackle this problem.

Future work can be focused on the obvious aim of further improving the heuristic decom-
position methods for better solution quality and shorter computational time. One particular
direction to be explored is the implementation of the proposed heuristic decomposition meth-
ods using parallel computing as multiple sub-problems can be tackled simultaneously.

Acknowledgments We thank the anonymous reviewers because their comments helped us to improve this
paper. We also acknowledge the University of Nottingham High Performance Computing Facility for pro-
viding access to the facility in order to conduct experiments for this study. This work was supported by a
Knowledge Transfer Partnership between the Technology Strategy Board and the Engineering and Physical
Science Research Council (grant number KTP9240); and DPST Thailand (grant number 472067).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendices
Appendix 1: Statistical test on the RDCR experiments

In terms of solution quality, no statistical difference was found amongst the methods except
with LBU-AF. However, the methods that showed statistical significant difference to LBU-
AF were better, namely LBU-BF, RBK-BF, SBK-BF and SBK-WS. Table 5 reports results
of this test with the calculated statistic on the left and the mean ranks on the right. The
results show significantly difference between the nine methods with x2(8) = 35.112, p <
.001. Therefore, we followed this with pairwise comparisons to identify differences between
groups. The results showed significantly difference between the pairs LBU-AF:LBU-BF,
LBU-AF:SBK-BF, LBU-AF:SBK-WS and RBK-BF:LBU-AF. It was concluded that LBU-
AF produced lower solution quality (higher objective value). Then, we split the methods into
two groups. One group with those methods that showed no statistical significant difference
to LBU-AF, i.e. LBU-WS, SBK-AF, RBK-AF and RBK-WS. The other group with those
methods that showed statistical significant difference to LBU-AF, i.e. SBK-WS, SBK-BF,
RBK-BF and LBU-BF. The methods in the latter group achieved better solution quality on
average.

In terms of computational time, the study identified three groups, with the methods giving
lower computational time being LBU-BF and LBU-AF. Table 6 reports results of this test
with the calculated statistic on the left and the mean ranks on the right. Statistical signif-
icant differences were found among the nine methods. Furthermore, Table 7 summarises

Table 5 Friedman statistical test Friedman Test Mean Ranks

and mean .ra.mks for ﬂ.le 0 . Workforce Task Partition

decomposition rules in RDCR in N D) Selection

respect of objective value ¥2 | 34.146 LBU RBK SBK
df 8 BF 4.44 4.50 4.31
p .000 AF 6.70 5.18 5.08

A lower mean rank indicates WS 4.98 5.83 3.98

better better solution quality

@ Springer

http://creativecommons.org/licenses/by/4.0/

Ann Oper Res

Table 6 Friedman statistical test Friedman Test Mean Ranks

and mean 'ra.mks for ﬂ,le 9 . Workforce Task Partition

decomposition rules in RDCR in N 12 Selection

respect of computational time ¥2 | 161.118 LBU RBK SBK
o df 8 BF 2.25 3.44 5.25

A lower mean rank mdlcgtes p .000 AF 3.33 3.94 5.64

better (shorter) computational WS 6.88 6.19 8.07

time

Table 7 Summation of
differences in pairwise

comparison between the 9 Negative Indifferent Positive
decomposition rules

Decomposition rule Number of pairwise differences

LBU-BF
RBK-BF
SBK-BF
LBU-AF
RBK-AF
SBK-AF
LBU-WS
RBK-WS
SBK-WS

S O = =N W = W W
DA WA LW R AW
AN B RW = O W= O

the pairwise comparisons into three categories. The Positive column shows the number of
other methods against which the method in the row spent more computational time with
statistical significant difference. Similarly, the Negative column shows the number of other
methods against which the method in the row spent less computational time with statistical
significant difference. Then, the Indifferent column shows the shows the number of other
methods against which the method did not reflect a significant difference on the computa-
tional time spent. As a result of this comparisons, we split the methods into three groups.
In the first group are the faster methods: LBU-BF and LBU-AF. In the second group are
those with mixed results hence in the middle of the ranking: RBK-BF, SBK-BF, RBK-AF,
SBK-AF and LBU-WS. In the last group are the slower methods: RBK-WS and SBK-WS
(Tables 8, 9).

Appendix 2: Statistical test on the compariosn between decomposition methods

Table 10 shows the results of this analysis. On the left, results in terms of the objective function
value (with X2(4) = 136.63, p < .001) are shown for all five methods. On the right, results
in terms of the computational time (with x2(3) = 111.71, p < .001) are shown for all
methods except the human planner as that solution was generated manually. With respect to
the objective function value, results of the pairwise comparisons showed that almost all pairs
of algorithm produced statistical significant different results. The exception were the pairs
RDCR:GDCR and Heuristic:GDCA. With respect to the objective function value, results of
the pairwise comparisons showed that there is statistical significant difference between the
four methods, except between the pair GDCR:GDCA. Then, from this analysis, we conclude

@ Springer

Ann Oper Res

Table 8 Detailed results of the pairwise comparison between the 9 decomposition methods in RDCR, in
respect of objective function value

Tested pair Statistic SE Std. statistic Sig. Adj. sig.
IS-SBK:BF-LBU 464 598 177 437 1.000
IS-SBK:BF-SBK 333 .598 .558 577 1.000
IS-SBK:BF-RBK 524 .598 877 381 1.000
IS-SBK:IS-LBU 1.000 .598 1.673 .094 1.000
IS-SBK:AF-SBK 1.107 .598 1.853 .064 1.000
IS-SBK:AF-RBK 1.202 598 2.012 .044 1.000
IS-SBK:IS-RBK 1.857 598 3.108 .002 .068
IS-SBK:AF-LBU 2.726 598 4.562 .000 .000x
BF-LBU:BF-SBK —.131 .598 —.219 .827 1.000
BF-LBU:BF-RBK —.060 .598 —.100 921 1.000
BF-LBU:IS-LBU —.536 .598 —.896 .370 1.000
BF-LBU:AF-SBK —.643 .598 —1.076 282 1.000
BF-LBU:AF-RBK —.7.38 598 —1.235 217 1.000
BF-LBU:IS-RBK —1.393 598 —2.331 .020 712
BF-LBU:AF-LBU —2.262 598 —3.785 .000 .006x
BF-SBK:BF-RBK .190 .598 319 750 1.000
BF-SBK:IS-LBU .667 .598 1.116 .265 1.000
BF-SBK:AF-SBK —.774 .598 —1.295 .195 1.000
BF-SBK:AF-RBK .869 .598 —1.454 .149 1.000
BF-SBK:IS-RBK 1.524 598 2.550 011 .388
BF-SBK:AF-LBU 2.393 598 4.004 .000 .002x
BF-RBK:IS-LBU 476 .598 197 426 1.000
BF-RBK:AF-SBK —.583 .598 —.976 329 1.000
BF-RBK:AF-RBK —.679 .598 —1.135 256 1.000
BF-RBK-IS-RBK —1.333 598 —2.231 .026 924
BF-RBK:AF-LBU 2.202 .598 3.685 .00 008
IS-LBU:AF-SBK —.107 .598 —.179 .858 1.000
IS-LBU:AF-RBK —.202 598 —.339 735 1.000
IS-LBU:IS-RBK —.857 .598 —1.434 151 1.000
IS-LBU:AF-LBU 1.726 .598 2.888 .004 139
AF-SBK:AF-RBK .095 .598 159 .873 1.000
AF-SBK:IS-RBK 750 .598 1.255 209 1.000
AF-SBK:AF-LBU 1.619 598 2.709 .007 243
AF-RBK:IS-RBK —.655 598 —1.096 273 1.000
AF-RBK:AF-LBU 1.524 598 2.550 .011 .388
IS-RBK:AF-LBU .869 .598 1.454 .146 1.000

* Statistically significant difference between pair at significant level 0.05

@ Springer

Ann Oper Res

Table 9 Detailed results of the pairwise comparison between the 9 decomposition methods in RDCR, in
respect of computational time

Tested Pair Statistic SE Std. statistic Sig. Adj. sig.
BF-RBK:BF-LBU 1.190 .598 1.992 .046 1.000
BF-RBK:AF-RBK —.500 .598 —.937 403 1.000
BF-RBK:AF-LBU 107 .598 179 .858 1.000
BF-RBK:BF-SBK —1.810 .598 —3.028 .002 .089
BF-RBK:AF-SBK —2.202 .598 —3.685 .000 008
BF-RBK:IS-RBK —2.750 .598 —4.602 .000 .000x
BF-RBK:IS-LBU 3.440 .598 5.757 .000 .000x
BF-RBK:IS-SBK —4.631 .598 —7.749 .000 000
BF-LBU:AF-RBK —1.690 .598 —2.829 .005 .168
BF-LBU:AF-LBU —1.083 .598 —1.813 .070 1.000
BF-LBU:BF-SBK —3.000 .598 —5.020 .000 .000x
BF-LBU:AF-SBK —3.393 .598 —5.677 .000 .000x
BF-LBU:IS-RBK —3.940 .598 —6.594 .000 .000x
BF-LBU:IS-LBU —4.631 598 —7.749 .000 .000x
BF-LBU:IS-SBK —5.821 .598 —9.741 .000 000
AF-RBK:AF-LBU .607 .598 1.016 310 1.000
AF-RBK:BF-SBK —1.310 .598 —2.191 .028 1.000
AF-RBK:AF-SBK —1.702 .598 —2.849 .004 158
AF-RBK:IS-RBK —2.250 .598 —3.765 .000 006
AF-RBK:IS-LBU 2.940 598 4.920 .000 .000x
AF-RBK:IS-SBK —4.131 .598 —6.912 .000 .000x
AF-LBU:BF-SBK —-1.917 .598 —3.207 .001 .048x%
AF-LBU:AF-SBK —2.310 .598 —3.865 .000 004
AF-LBU:IS-RBK —2.857 .598 —4.781 .000 000
AF-LBU:IS-LBU —3.354 .598 —5.936 .000 .000x
AF-LBU:IS-SBK —4.738 .598 —7.928 .000 000
BF-SBK:AF-SBK —.3.93 598 —.657 Sl 1.000
BF-SBK:IS-RBK 940 598 1.574 .116 1.000
BF-SBK:IS-LBU 1.631 .598 2.729 .006 .229x%
BF-SBK:IS-SBK —2.821 .598 —4.721 .000 000
AF-SBK:IS-RBK .548 .598 916 .359 1.000
AF-SBK:IS-LBU 1.238 .598 2.072 .038 1.000
AF-SBK:IS-SBK —2.429 .598 —4.064 .000 002
IS-RBK:IS-LBU .69 598 1.155 248 1.000
IS-RBK:IS-SBK —1.881 .598 —3.147 .002 .059
IS-LBU:IS-SBK —1.190 .598 —1.992 .046 1.000

* Statistically significant difference between pair at significant level 0.05

@ Springer

Ann Oper Res

Table 10 Friedman statistical test on objective value (left) and computational time (right) on five solution
methods: GDCA, GDCR, RDCR, heuristic assignments and practitioner solution (objective value only)

Objective value

Computational time

Friedman Test

N 42
x? | 136.63
df 4
P .000

Mean Ranks
GDCA | 3.79
GDCR | 1.86
RDCR | 1.45

Heur 2.95
Human | 4.95

Friedman Test Mean Ranks
N 42 GDCA | 3.67
x2 | 111.71 GDCR | 3.29
df 3 RDCR | 2.05
D .000 Heur 1.00

A lower rank presents a better approach

Table 11 Detailed results of the pairwise comparison between the five solution methods, in respect of objective

function value

Tested Pair Statistic SE Std. statistic Sig. Adj.sig.
RDCR:GDCR 405 .345 1.173 241 1.000

RDCR:Heuristic 1.500 .345 4.347 .000 000
RDCR:GDCA 2.333 .345 6.763 .000 .000:
RDCR:PT 3.500 .345 10.144 .000 .000x
GDCR:Heuristic —1.095 .345 —3.174 .002 .015x%
GDCR:GDCA 1.929 .345 5.590 .000 .000x
GDCR:PT —3.095 .345 —8.971 .000 .000x
Heuristic:GDCA .833 .345 2.415 .016 157

Heuristic:PT —2.000 .345 —-5.797 .000 .000:
GDCA:PT —1.167 .345 —3.381 .001 007

* Statistically significant difference between pair at significant level 0.05

Table 12 Detailed results of the pairwise comparison between the four automated solution methods, in respect

of computational time

Tested Pair Statistic SE Std. statistic Sig. Adj.sig.
Heuristic:RDCR 1.048 282 3.719 .000 001
Heuristic:GDCR 2.286 282 8.113 .000 .000x
Heuristic:GDCA 2.667 282 9.466 .000 .000x
RDCR:GDCR 1.238 282 4.395 .000 .000x
RDCR:GDCA 1.619 282 5.747 .000 .000x
GDCR:GDCA .381 282 1.352 176 1.000

* Statistically significant difference between pair at significant level 0.05

that in terms of objective function value, the better ranked methods are RDCR and GDCR
and in terms of the computational time the better ranked methods are the heuristic and RDCR
(Tables 11, 12).

@ Springer

Ann Oper Res

References

Akjiratikarl, C., Yenradee, P., & Drake, P. R. (2007). PSO-based algorithm for home care worker scheduling
in the UK. Computers and Industrial Engineering, 53(4), 559-583.

Algethami, H., & Landa-Silva, D. (2015). A study of genetic operators for the workforce scheduling and routing
problem. In Proceedings of the XI metaheuristics international conference (MIC 2015) (pp 75.1-75.11)

Bassett, M. H., Pekny, J. F., & Reklaitis, G. V. (1996). Decomposition techniques for the solution of large-scale
scheduling problems. AIChE Journal, 42(12), 3373-3387.

Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik, 4(1), 238-252.

Borsani, V., Matta, A., Beschi, G., & Sommaruga, F. (2006). A home care scheduling model for human
resources. In 2006 International conference on service systems and service management, vol. 1 (pp
449-454)

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations
Research, 41(3), 157-183.

Bredstrom, D., & Ronnqvist, M. (2007). A branch and price algorithm for the combined vehicle routing and
scheduling problem with synchronization constraints. NHH Dept of Finance & Management Science
Discussion Paper No 2007/7

Bredstrom, D., & Ronnqvist, M. (2008). Combined vehicle routing and scheduling with temporal precedence
and synchronization constraints. European Journal of Operational Research, 191(1), 19-31.

Campbell, A. M., & Savelsbergh, M. W. P. (2004). A decomposition approach for the inventory-routing
problem. Transportation Science, 38(4), 488-502.

Castillo-Salazar,J. A., Landa-Silva, D., & Qu, R. (2014). Workforce scheduling and routing problems: literature
survey and computational study. Annals of Operations Research,. doi:10.1007/s10479-014-1687-2.

Cordeau, J. F, Stojkovi¢, G., Soumis, F., & Desrosiers, J. (2001). Benders decomposition for simultaneous
aircraft routing and crew scheduling. Transportation Science, 35(4), 375-388.

Corréa, A. 1., Langevin, A., & Rousseau, L. M. (2007). Scheduling and routing of automated guided vehicles: A
hybrid approach. Computers and Operations Research, 34(6), 1688—1707. part Special Issue: Odysseus
2003 Second International Workshop on Freight Transportation Logistics.

Costa, A. M. (2005). A survey on benders decomposition applied to fixed-charge network design problems.
Computers and Operations Research, 32(6), 1429-1450.

Dohn, A., Kolind, E., & Clausen, J. (2009). The manpower allocation problem with time windows and job-
teaming constraints: A branch-and-price approach. Computers and Operations Research, 36(4), 1145—
1157.

Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (4th ed.). London: SAGE Publication Ltd.

Fisher, M. L. (2004). The lagrangian relaxation method for solving integer programming problems. Manage-
ment Science, 50(12 Supplement), 1861-1871.

Harjunkoski, I., & Grossmann, I. E. (2001). A decomposition approach for the scheduling of a steel plant
production. Computers and Chemical Engineering, 25(1112), 1647-1660.

Kelley, J. E. (1960). The cutting-plane method for solving convex programs. Journal of the Society for Industrial
and Applied Mathematics, 8(4), 703-712.

Laesanklang, W., Landa-Silva, D., & Castillo-Salazar, JA. (2015). Mixed integer programming with decom-
position to solve a workforce scheduling and routing problem. In Proceedings of the 4th international
conference on operations research and enterprise systems (ICORES 2015) (pp. 283-293)

Landa-Silva, D., Wang, Y., Donovan, P., Kendall, G., & Way, S. (2011). Hybrid heuristic for multi-carrier
transportation plans. In The 9th Metaheuristics international conference (MIC 2011) (pp. 221-229)

Ni, H., & Abeledo, H. (2007). A branch-and-price approach for large-scale employee tour scheduling problems.
Annals of Operations Research, 155(1), 167-176.

Park, H. S., & Jun, C. H. (2009). A simple and fast algorithm for k-medoids clustering. Expert Systems with
Applications, 36(2, Part 2), 3336-3341.

Perl, J., & Daskin, M. S. (1985). A warehouse location-routing problem. Transportation Research Part B:
Methodological, 19(5), 381-396.

Pillac, V., Gueret, C., & Medaglia, A. (2012). On the dynamic technician routing and scheduling problem.
In Proceedings of the 5th international workshop on freight transportation and logistics (ODYSSEUS
2012), Mikonos, Greece

Pinheiro, RL., & Landa-Silva, D. (2014). A development and integration framwork for optimisation-based
enterprise solutions. In Proceedings of the 3rd international conference on operations research and
enterprise systems (ICORES 2014) (pp. 233-240)

Pinheiro, RL., Laesanklang, W., Landa-Silva, D., Qu, R., Ward, R., & Doades, G.(2016). Benchmark dataset
and results for a real-world workforce scheduling and routing problem in healthcare delivery (in revision)

@ Springer

http://dx.doi.org/10.1007/s10479-014-1687-2

Ann Oper Res

Pinheiro, RL., Landa-Silva, D., & Atkin, J. (2015). A variable neighbourhood search for the workforce
scheduling and routing problem. In Advances in nature and biologically inspired computing. Springer
International Publishing, pp. 247-259. doi:10.1007/978-3-319-27400-3_22

Ralphs, T. K., & Galati, M. V. (2010). Decomposition methods for integer programming. Wiley Encyclopedia
of Operations Research and Management Science.

Rasmussen, M. S., Justesen, T., Dohn, A., & Larsen, J. (2012). The home care crew scheduling problem:
Preference-based visit clustering and temporal dependencies. European Journal of Operational Research,
219(3), 598-610.

Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-Ants: Savings based ants divide and conquer the vehicle
routing problem. Computers and Operations Research, 31(4), 563-591.

Rekik, M., Cordeau, J. F., & Soumis, F. (2004). Using benders decomposition to implicitly model tour schedul-
ing. Annals of Operations Research, 128(1-4), 111-133.

Ruszczyniski, A. (1989). An augmented lagrangian decomposition method for block diagonal linear program-
ming problems. Operations Research Letters, 8(5), 287-294.

Salazar-Gonzdlez, J. J. (2014). Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and
crew-rostering problems of a regional carrier. Omega, 43, 71-82.

Subrahmanyam, S., Pekny, J. F., & Reklaitis, G. V. (1996). Decomposition approaches to batch plant design
and planning. Industrial and Engineering Chemistry Research, 35(6), 1866—-1876.

Taillard, E. (1993). Parallel iterative search methods for vehicle routing problems. Networks, 23(8), 661-673.

Trautsamwieser, A., & Hirsch, P. (2011). Optimization of daily scheduling for home health care services.
Journal of Applied Operational Research, 3, 124—136.

Vanderbeck, F. (2000). On dantzig-wolfe decomposition in integer programming and ways to perform branch-
ing in a branch-and-price algorithm. Operations Research, 48(1), 111-128.

Vanderbeck, F., & Wolsey, L. A. (2010). Reformulation and decomposition of integer programs. In M. Jiinger,
T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, & L. A. Wolsey
(Eds.), 50 Years of integer programming 1958-2008 (pp. 431-502). Berlin: Springer.

Wu, T. H., Low, C., & Bai, J. W. (2002). Heuristic solutions to multi-depot location-routing problems. Com-
puters and Operations Research, 29(10), 1393-1415.

@ Springer

http://dx.doi.org/10.1007/978-3-319-27400-3_22

	Decomposition techniques with mixed integer programming and heuristics for home healthcare planning
	Abstract
	1 Introduction
	2 The home healthcare planning problem
	2.1 Formulation of constraints
	2.2 Formulation of the objective function
	2.3 Real-world problem instances

	3 Literature review
	3.1 Traditional decomposition methods
	3.2 Heuristic decomposition methods

	4 Geographical decomposition with conflict avoidance (GDCA)
	5 Geographical decomposition with conflict repair (GDCR)
	5.1 Geographical decomposition
	5.1.1 Tasks partition
	5.1.2 Workforce selection

	5.2 Conflicting assignments repair
	5.3 Heuristic assignment
	5.4 Experimental study on the stages of GDCR

	6 Repeated decomposition and conflict repair (RDCR)
	6.1 Problem decomposition
	6.1.1 Tasks partition
	6.1.2 Workforce selection
	6.1.3 Repeated sub-problems solving

	6.2 Experimental study on the sub-problem generation methods
	6.3 Experimental study on solution improvement in RDCR

	7 Experimental study on the decomposition methods
	8 Conclusions and future work
	Acknowledgments
	Appendices
	Appendix 1: Statistical test on the RDCR experiments
	Appendix 2: Statistical test on the compariosn between decomposition methods

	References

