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Advances 

 Stomatal responses to changing environmental conditions can be an order of 
magnitude slower than photosynthetic responses, leading to a disconnection 
between gs and A, influencing Wi. This is particularly important considering the 
dynamic conditions in a field environment.  

 Stomatal density is not the only target for manipulating gs, as the speed of stomatal 
responses to environmental fluctuations is critical when assessing carbon uptake and 
water use efficiency, which is often determined by both guard cell anatomical 
characteristics and biochemistry. 

 Current models calculate gs in steady-state or rely on estimating steady-state gs that 
may not be realised in the field and therefore do not take into account temporal 
(and spatial) heterogeneity in gs observed in the natural environment, limiting the 
predictive power of such models at ecosystem and global scales as well as the 
possible impact of future climate change. 

 

Outstanding questions 

 The importance of the temporal response of gs is largely unknown and 
underestimated, and there is currently no ‘standard method’ to estimate temporal 
responses to single or multiple environmental signals.  

 What are the mechanisms that control or determine the speed of stomatal 
responses and the magnitude of change in order to exploit the rapidity of stomatal 
movements as a previously unexplored target for improving plant productivity and 
water use? 

 Further development in dynamic models of guard cell and gs behaviour is limited by 
a lack of quantitative data on the rapidity of stomatal response under different 
environmental conditions, as well as an understanding of the mechanisms that link 
guard cell biochemistry with gs, A and Wi.  

 

ABSTRACT 

Stomata control gaseous exchange between the leaf and bulk atmosphere limiting CO2 uptake for 

photosynthesis and water loss by transpiration, and therefore determine plant productivity and 

water use efficiency. In order to function efficiently, stomata must respond to internal and external 

signals to balance these two diffusional processes. However, stomatal responses are an order of 

magnitude slower than photosynthetic responses, which lead to a disconnection between gs and A. 

Here we discuss the influence of anatomical features on the rapidity of stomatal movement, and 

explore the temporal relationship between A and gs responses. We describe how these mechanisms 

have been included into recent modelling efforts, increasing the accuracy and predictive power 

under dynamic environmental conditions, such as those experienced in the field.  

 

1. INTRODUCTION 



Stomatal anatomical characteristics and behaviour control gaseous fluxes between the internal leaf 

environment and the external atmosphere with major implications for photosynthesis, plant water 

status, evaporative cooling and nutrient uptake. The capacity of stomata to allow CO2 into the leaf or 

lose water is known as stomatal conductance (gs) measured as a mole flux per unit area (mol m-2 s-1). 

Stomatal conductance is the reciprocal of stomatal resistance and primarily determined by stomatal 

density, distribution and pore area. Global water usage is predicted to double before 2030 (UNESCO, 

2009) due to the rising global population, increasing the need for greater crop yields but with 

reductions in the amount of water available for their growth. This along with more erratic 

precipitation episodes is putting increasing pressure on breeders and scientists to find new crop 

varieties or breeding targets that would result in sustained or increased crops yields with less inputs 

of water. Most crop species are not indigenous to where they are currently cultivated and are often 

not fully adapted to the environmental conditions, potentially increasing the level of stress that the 

plant experiences. For decades, breeders focused mainly on selecting varieties for increased yield, 

decreasing the diversity of other traits of interest (e.g. stomatal behaviour) and potential targets for 

selection. As stomata are key to plant photosynthesis and water use this makes them attractive 

targets for manipulation to improve carbon uptake, optimise water use and reduce drought stress. 

Earlier work used stable carbon isotopic discrimination as a proxy for time integrated water use 

efficiency and revealed that higher stomatal conductance in wheat resulted in a lower level of 

limitation of net CO2 assimilation (A) and higher yield (Fischer et al., 1998). For this reason, previous 

research explored improving gas exchange via specific manipulation of steady-state gs (for example 

by manipulating stomatal density), whilst we have taken a less obvious approach and are exploring 

the rapidity of stomatal responses that synchronize gs with mesophyll demands for CO2 (Lawson et 

al., 2010; Lawson and Blatt, 2014; Raven, 2014) for improving A, water use efficiency (WUE) and leaf 

temperature.  

Stomata balance CO2 uptake and water loss by adjusting pore aperture to changing environmental 

and internal cues. In general stomata of C3 and C4 plants open with increasing or high light, low [CO2] 

and low vapour pressure deficit (VPD), whilst closure is driven by the reverse, low light, high [CO2] 

and high VPD (Raschke, 1975; Outlaw, 2003). However, it should be kept in mind that these 

environmental stimuli are rarely experienced by the plant in isolation, and therefore stomata must 

respond to multiple signals in a hierarchical manner (Lawson and Morison 2004; Lawson et al., 2010; 

Aasamaa and Sober, 2011). Although stomatal conductance is closely linked with mesophyll 

demands for CO2 (Wong et al., 1979; Farquhar and Sharkey, 1982; Mansfield et al., 1990; Buckley 

and Mott, 2013), stomatal responses to changing conditions can be an order of magnitude and more 

slower than photosynthetic responses. Reports of correlations between photosynthetic CO2 

assimilation (A) and gs often refer to steady state measurements or long term observations that do 

not reflect the reality of field conditions, as short-term fluctuations in environmental conditions can 

lead to a temporal disconnection between A and gs (Kirschbaum and Pearcy, 1988; Tinoco-

Ojanguren and Pearcy, 1993; Lawson and Weyers, 1999; Lawson et al., 2010; McAusland et al., 

2016). The lack in temporal synchronicity between A and gs under natural fluctuating light 

conditions, has important implications for photosynthetic carbon gain and for the ratio of CO2 gained 

through photosynthesis to water lost by transpiration, known as water use efficiency (WUE), as well 

as resulting in heterogeneity in gas exchange over individual leaves (Lawson and Weyers, 1999; 

McAusland et al 2013) and within canopies (Weyers and Lawson, 1997). In this review we will 

explore the temporal relationship between A and gs responses, the impact on WUE and the 
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influence of anatomical characters on stomatal responses. Although we recognise the impact of 

environmental variables such as [CO2], relative humidity and soil water content on the temporal 

response of gs, here we will only focus on changes in light intensity.  As part of describing temporal 

responses in gs we will explore the use of models to better describe and allow a comparison of 

responses between different species. Many current and early models calculate gs in steady state and 

although useful as a predictive tool for assessing the role of gs on gaseous fluxes at the local and 

regional scale, fail to incorporate temporal (and spatial) heterogeneity in gs observed in the natural 

environment due to the ever-changing environmental conditions.  

2. IMPACT OF THE TEMPORAL RESPONSE OF STOMATAL CONDUCTANCE ON PHOTOSYNTHESIS 

Temporal response of stomatal conductance 

Due to technical considerations, most studies regarding stomatal behaviour on intact leaves have 

used gs as a proxy to investigate stomatal movements instead of directly measuring pore area. 

Despite this being a useful tool for understanding stomatal dynamics, it should be kept in mind that 

the relationship between gs and pore area is not linear, as the influence of pore area on gs decreases 

rapidly with the magnitude of stomatal opening (Kaiser et al., 2001). Nevertheless, Kaiser and co-

workers (1997, 2000, 2001) showed that gs and pore area measurements, although on different 

scales, generally lead to the same conclusion regarding limitations of photosynthesis (A) and water 

loss. It is well known that a low gs or slow stomatal opening can restrict the uptake of CO2 and 

therefore A (Farquhar and Sharkey, 1982; Barradas et al., 1994; Barradas and Jones, 1996; 

McAusland et al 2016), whilst high gs facilitates higher rates of A, but inevitably at the ‘cost’ of 

greater water loss through transpiration (E) (Barradas et al, 1994; Naumburg and Ellsworth, 2000; 

Lebaudy et al, 2008; Lawson et al, 2010; Lawson and Blatt, 2014; McAusland et al, 2013; 2016). In 

response to fluctuations in environmental parameters, it is commonly assumed that plants try to 

synchronize stomatal opening with the mesophyll demand for CO2, and stomatal closure with the 

need to minimize water loss through transpiration (Cowan and Farquhar, 1977; Farquhar et al 1980; 

Mott, 2009; Drake et al 2013; Lawson et al 2012; Jones 2013). However, slow gs kinetics (e.g. 

McAusland et al, 2016) means that stomatal aperture lags behind the steady state target (Kaiser et 

al, 2000).  

Light is the greatest environmental driver of photosynthesis, and stomatal response to light is one of 

the most well researched stomatal behaviours (Shimazaki et al, 2007). Numerous studies have 

investigated steady-state stomatal responses to light, however as these responses are measured 

under constant conditions they represent situations that are rarely found in nature (Jones, 2013). 

Measurements of gs collected under field conditions are highly variable and therefore correlate 

poorly with those measured under steady-state conditions in the laboratory (Poorter et al, 2016), 

usually due to slow gs kinetics (e.g. McAusland et al, 2016) meaning that when measured, stomatal 

have not yet reached the new steady state target (Kaiser et al, 2000; Whitehead and Teskey, 1995; 

Lawson et al, 2010).  

Stomatal response to dynamic light 

Several studies have investigated the dynamics of stomatal response and photosynthesis to 

fluctuations in environmental variables, especially light (Knapp and Smith, 1987; Kirschbaum et al, 

1988; Tinoco-Ojanguren and Pearcy, 1993; Barradas et al, 1994; Lawson et al, 2010; Wong et al, 



2012; McAusland et al 2016). However, the majority of these have concentrated on the influence of 

sun and shade flecks on carbon gain in understory forest dwelling species (Chazdon, 1988; Chazdon 

and Pearcy, 1991; Tinoco-Ojanguren and Pearcy, 1993; Pearcy, 1994; Leakey et al, 2005) and for 

plants that have developmentally acclimated to shaded or exposed conditions (Knapp and Smith 

1987, 1988), often ignoring dynamic stomatal response and the potential limitation on carbon gain 

or water loss. Over the diurnal period, these fluctuations in light (sun/shade flecks) drive temporal 

and spatial dynamics of carbon gain and water loss (Lawson and Blatt 2014). It is often the speed of 

stomatal response to environmental fluctuations that is critical when assessing carbon uptake and 

water use efficiency (WUE) (Raschke, 1975; Kirschbaum and Pearcy, 1988; Lawson and Morison, 

2004; Lawson et al, 2010). In the field the response of A and gs is largely dominated by fluctuations 

in photosynthetic photon flux density (PPFD) (Pearcy, 1990; Way and Pearcy, 2012), which can vary 

on a scale of seconds, minutes, days, and even seasons (Assmann and Wang, 2001), and is driven by 

sun angle, cloud cover, and shading from overlapping leaves (Pearcy, 1990; Chazdon and Pearcy, 

1991; Way and Pearcy, 2012), as a consequence  leaves are subjected to varying spectral qualities 

and light intensities. It is noteworthy that such rapid changes in PPFD will result in rapid intense 

modifications to leaf temperature, with greater gs providing enhanced evaporative cooling and 

possible protection against heat damage (Schymanski et al, 2013).  

In the 1980s to early 1990s, Pearcy and colleagues investigated the impacts of sun flecks, primarily 

on carbon gain and later on stomatal dynamics. They dissected the temporal photosynthetic and gs 

response into different phases, to explain the periods of response associated with limitations in A 

and overshoots of gs leading to excess water loss. The initial phase was termed the induction and 

represents periods of up to 10 minutes where biochemical processes rather than CO2 supply limit 

carbon assimilation (Barradas and Jones, 1996). The second phase, dominated by stomatal 

limitation, describes slow gs responses that constrain CO2 diffusion and A (Lawson et al, 2010, 2012; 

Vialet-Chabrand et al, 2013; McAusland et al, 2016); the third phase explains the period in which gs 

remains high, exceeding the amount of gs required for maximum rates of carbon assimilation 

(Kirschbaum et al, 1988; Tinoco-Ojanguren and Pearcy, 1993; Lawson et al, 2010), leading to excess 

water loss (relative to carbon gained) and effectively a drop in water use efficiency (McAusland et al, 

2016). Studies mainly on forest understory species have reported that sun flecks may contribute 

between 10 to 60% of the total daily carbon gain (Way and Pearcy, 2012), depending on forest type 

and plant age. Stomatal limitations on A have been estimated at up to 30%, with significant 

implications for carbon sequestration and crop yields (Fischer et al 1998; Lawson and Blatt, 2014). 

Indeed Kirschbaum et al (1988) found that if initial gs values were high, A could be six times higher 

one minute after an increase in PPFD than if initial gs was low, an 82% gs limitation on A, illustrating 

the importance of gs in natural dynamic conditions such as those found in the field. Continued 

increases in gs after A has reached light saturation, have also been reported which led to a decrease 

in intrinsic water use efficiency (Wi) with higher water loss for no CO2 gain (Kirschbaum et al, 1988; 

Tinoco-Ojanguren and Pearcy, 1993; Lawson et al, 2010).  

Differences in the speed of stomatal opening and closing and the magnitude of change in gs in 

response to sun and shade flecks, are known to exist between species and within individual plants 

(Assmann and Grantz, 1990; Ooba and Takahashi, 2003; Franks and Farquhar, 2007; Vico et al, 2011; 

Drake et al, 2013; Vialet‐Chabrand et al, 2013). Response times are also dependent upon the plant 

water status (Lawson and Blatt, 2014), leaf age (Urban et al, 2008), the history of stress (Pearcy and 
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Way, 2012; Porcar-Castell and Palmroth, 2012; Wong et al, 2012; Zhang et al, 2012), and the 

duration and magnitude of changes in PPFD (Weyers and Lawson, 1997; Lawson et al, 1998; Lawson 

et al, 2012; Lawson and Blatt, 2014). There is also evidence to suggest changes in growth 

environment during stomatal development influences the speed of response in mature leaves (Arve 

et al, 2017). The speeds of opening and closing in response to changing PPFD in many species are not 

correlated (Ooba and Takahashi 2003); however, Vico et al (2011) compared 60 published gas 

exchange data sets on stomatal response to PPFD, to determine the impact of stomatal delays on 

photosynthesis and found a general parallel relationship in the rates of stomatal response, 

concluding that rates of stomatal opening were essentially correlated with the rate of closure. If we 

assumed there is no delay in stomatal opening or closing, optimal leaf gas exchange would be 

achievable (Cowan and Farquhar, 1977; Lawson and Blatt, 2014), but it is important to consider the 

fact that specific delays in stomatal movement may be indicators of the current needs of the plant 

(Ooba and Takahashi, 2003; Manzoni et al, 2011; Vico et al, 2011; Drake et al, 2013). The response of 

gs is thought to reflect this priority; where under well-watered conditions in the canopy, stomata will 

remain open (particularly lower down in the canopy where VPD will be lower) in order to utilise light 

energy from sunflecks to maximize CO2 diffusion into the leaf (Way and Pearcy 2012; Lawson et al 

2012), even at the cost of further water loss (Allen and Pearcy, 2000), whilst under drought or water-

limited conditions stomata will often close to conserve water at the expense of carbon gain (Knapp 

and Smith, 1988). 

Influence of anatomy on stomatal response 

Stomatal anatomical features such as stomatal density and size are known to determine steady-state 

gs (Franks and Farquhar, 2001), and are a key component for determining the maximum theoretical 

stomatal conductance (gsmax) of the plant (Dow et al, 2014). Stomatal size and density vary greatly 

between plant species, and are influenced by the growth environment (Willmer and Fricker, 1996; 

Hetherington and Woodward, 2003; Franks and Beerling, 2009). Stomatal density has often been 

negatively correlated with stomatal size (Hetherington and Woodward, 2003; Franks and Beerling, 

2009). Recently a great deal of consideration has been given to the impact of stomatal anatomical 

features on stomatal function and gas exchange, particularly to the morphological and mechanical 

diversity of stomata with reference to performance and plasticity (Franks and Farquhar, 2007). 

Recent studies and reviews have implied that stomatal response times to environmental 

perturbations are affected by physical attributes such as size and density (Drake et al 2013; Raven, 

2014), the presence or absence of subsidiary cells (Franks and Farquhar, 2001) as well as the shape 

of the guard cells (McAusland et al 2016) and their clustering (Papanatsiou et al, 2016), and that 

manipulation of these features could have positive effects for carbon gain and water use efficiency 

(Lawson et al 2012; Doheny-Adams et al 2012; Tanaka et al, 2013; Franks et al, 2015). 

Hetherington and Woodward (2003) first suggested that dumb-bell shaped stomata could open and 

close faster than kidney shaped stomata in response to environmental perturbations, as even small 

changes in volume in the smaller dumbbell shaped guard cells would lead to greater stomatal 

opening compared with the larger kidney shaped guard cells. Franks and Farquhar (2007) took this 

further by advocating other factors that may influence the speed of response, such as guard cell 

geometry, mechanical advantage, osmotic or turgor pressures, and the energetic cost of guard cell 

movements (as previously mentioned). A mechanical advantage of dumb-bell shaped stomata was 

suggested to be associated with reciprocal coupling of guard and subsidiary cell osmotic and turgor 



pressures leading to more rapid stomatal movements (Franks and Farquhar, 2007; Raven 2014). 

These findings underlie the potential of dumb-bell shaped stomata to track changes in 

environmental conditions, and maximise the efficiency of photosynthesis and water use through 

increased stomatal response times (Hetherington and Woodward, 2003; McAusland et al 2016), a 

point also highlighted by Chen et al, (2017) in their analysis of stomatal evolution. Drake et al, (2013) 

investigated the correlation between stomatal anatomy, specifically density and size, with stomatal 

opening speeds and found that the maximum rate of stomatal opening was driven by size and 

density. Although the work of Drake et al (2013) and review from Raven (2014) made significant 

progress in linking stomatal size to function, including speed of response to light and associated 

implications, the size of stomata is not the only and main determinant of the speed of response. For 

example, Papanatsiou et al, (2016) note that stomatal clustering can affect gs kinetics independent 

of stomatal dimensions and the available pool of osmotic solutes available for driving aperture 

changes. The results of Drake et al, (2013) could have been skewed also by the experimental 

condition as step changes in light from a state of darkness will not only incur biochemical limitations 

on stomatal movement and assimilation, but represent a state that is rarely seen in the natural 

environment except prior to dawn. Recent work from Kaiser et al, (2016) using similar experimental 

conditions, could have overestimated the biochemical limitation and underestimated the diffusional 

limitation on A due to the slow response of gs from dark. Producing a step change from low to high 

light is more representative of the conditions experienced in the field during a diurnal period from 

passing clouds and overlapping leaves (McAusland et al, 2016; Vialet-Chabrand et al, submitted), and 

therefore more relevant information can be gained regarding the speed of stomatal response and 

the implications this may have for carbon assimilation and water use efficiency. In a recent study, 

McAusland et al (2016) compared the speed of stomatal responses to a step change in light, in both 

dumbbell and elliptical-shaped guard cells in a range of species, including model species and crops. 

These authors found that guard cell shape (dumbbell or elliptical) and potentially photosynthetic 

type (C3/C4) played a key role in determining the speed of stomatal response, with dumbbell shaped 

guard cells exhibiting faster responses than those with elliptical guard cells. Slow stomatal opening in 

response to increasing light was demonstrated to limit carbon assimilation by ca. 10%, which would 

equate to substantial losses in carbon gain over the course of the day, potentially negatively 

impacting productivity and yield. Whereas, slow stomatal closure when PPFD decreased resulted in a 

significant decrease in water use efficiency, as overshoots in gs by up to 80% were observed with 

only a negligible 5% gain in A. Closer coupling of A and gs therefore has the potential to enhance 

carbon gain and Wi, and in turn improve performance, productivity and yield (Lawson et al, 2010; 

Lawson and Blatt 2014; McAusland et al, 2016; Li et al, 2016; Qu et al, 2016). 

 

3. MODELLING THE TEMPORAL RESPONSE OF STOMATA 

As mentioned above dynamic stomatal behaviour plays a key role in regulating the flux of carbon 

and water through the soil-plant-atmosphere continuum, and is an important determinant for 

scaling leaf level measurements of water use efficiency and photosynthesis to the canopy level 

(Weyers et al, 1997). Modelling is generally considered the most effective tool for simulating 

stomatal responses to environmental conditions (Damour et al, 2010), and the importance of 

integrating stomatal behaviour into scaling models recognised (Weyers et al, 1997; Bernacchi et al, 

2007; Lawson et al, 2010; Bonan et al, 2014; Barman et al, 2014; De Kauwe et al, 2015). Many 



current models calculate steady state gs and have become successful tools for predicting the impact 

of gs on water and carbon fluxes at ecosystem and regional scales. However, heterogeneity in the 

spatial and temporal response of stomata are often overlooked (Weyers et al, 1997; Lawson and 

Weyers, 1999), therefore limiting the confidence with which these current models can predict larger 

scale responses or the impact of predicted climate change (Buckley et al, 2003; Dewar et al, 2009; 

Baldocchi 2014). The addition of stomatal dynamics to existing models has the potential to reveal 

the extent to which gs has been inaccurately predicted by steady-state models. As stomata are 

continuously responding to fluxes in environmental conditions and therefore gs is rarely in steady-

state, this reinforces the need for improved mechanistic models of gs (Damour et al, 2010; Vialet-

Chabrand et al, 2016). Greater focus in future modelling efforts attempting to scale from the leaf to 

canopy level should be given to the inclusion and integration of temporal stomatal dynamics to 

fluctuations in environmental signals (Vico et al, 2011; Vialet-Chabrand et al, 2013), to predict the 

impact of large-scale heterogeneity in stomatal traits on water and CO2 fluxes through the canopy, 

ecosystem and global scales. Furthermore, as stomata are exposed to constant fluctuations over the 

diurnal period, it is often the speed of stomatal response that are critical in determining CO2 uptake 

and transpiration dynamics over the course of the day (McAusland et al, 2016; Vialet-Chabrand et al, 

2016), rather than the steady state values that are often the basis of many existing models. Here we 

will review the existing dynamic models and the advantages and disadvantages of their use and 

predictive power, whilst also discussing the incorporation of dynamic models for greater accuracy in 

predicting stomatal impacts on A, gs and Wi in a natural environment.  

Modelling temporal response of stomatal conductance to changes in light intensity 

In the early seventies, temporal responses of stomatal conductance (gs) were examined to 

determine the degree of limitation on A and the regulation of water loss (Woods and Turner, 1971; 

Davies and Kozlowski, 1974; Horie, 1978). Most of these early studies were based on step increases 

and decreases in light intensity revealing a slow exponential or sigmoidal variation in gs with time 

(e.g. Fig. 1). The response of gs to a step change in light intensity was initially evaluated as the time 

for gs to reach the new steady state (Gs) at the new light level, or a percentage of this value as an 

estimator of the rapidity of response (Woods and Turner, 1971; Davies and Kozlowski, 1974; Grantz 

and Zeiger, 1986; Dumont et al, 2013). More recently, the rapidity of response has been estimated 

using a regression fit to the linear part of the gs response, providing an estimate of the maximum 

rate of gs increase (Tinoco-Ojanguren and Pearcy, 1992; Fay and Knapp, 1995; Naumburg et al, 2001; 

Drake et al, 2013). Temporal responses of gs assessed using these approaches are prone to errors as 

they are largely dependent on the estimation of Gs that may never be reached and the linearity of 

the initial part of the curve. The lack of a ‘standard method’ to estimate the temporal response of gs, 

(for example in the choice of the linear part of the curve), prevents a direct comparison of results 

from different studies. A more robust approach is to use normalised observations of gs between the 

initial and final Gs (Laffray et al, 1982; Iino et al, 1985; Barradas et al, 1994; Mencuccini et al, 2000; 

Drake et al, 2013). This approach not only provides a visual representation of the differences in 

temporal gs responses, but is also independent of the magnitude of the gs response, however it is 

unable to summarize the overall response in one descriptive statistic. Moreover, if a steady state is 

not reached during the measurement period, it is difficult to normalise data.  

 



Dynamic models of stomatal conductance 

An alternative to these earlier error prone approaches is to fit a model to the temporal response of 

gs following a step change in light intensity and determine a set of parameter values to describe and 

enable an evaluation of specific parts of the response curve. In general, such models require the 

following parameters; an initial and final value of gs, and a time constant. These parameters are 

targets, which means that if Gs is not reached during the response, the model can constrain the 

parameter value based on the shape of the response curve. Parameter values can be adjusted using 

a statistical method that provides the best set of values based on the comparison of the 

observations and the model outputs. 

Typically, two empirical models based on the shape of the variation of gs are commonly used, an 

exponential and a sigmoidal model. For both models, a set of differential equations and associated 

analytical solutions are available. To date a large number of studies have used the analytical 

equations of the exponential response of gs (Horie, 1978; Knapp, 1993; Whitehead and Teskey, 

1995; Naumburg and Ellsworth, 2000; Naumburg et al, 2001; Franks and Farqhuar, 2001, 2007; Vico 

et al, 2011; Martins et al, 2016; Qu et al, 2016) that can be formulated for an increase (Eq. 1) or 

decrease (Eq. 2) in gs: 

𝑔𝑠 =  𝐺𝑚𝑎𝑥 + (𝐺𝑚𝑖𝑛 − 𝐺𝑚𝑎𝑥)𝑒
−𝑡

𝜏𝑖⁄   (1) 

𝑔𝑠 =  𝐺𝑚𝑖𝑛 + (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)𝑒
−𝑡

𝜏𝑑⁄  
 

 (2) 

where Gmin and Gmax represented the minimum and maximum steady state gs, τi and τd the time 

constants for the increase and decrease in gs, and t the time at which gs is estimated starting from 

time 0. In this model, the time constants represent the time required to reach 63% of the total 

variation (when 𝜏𝑑 = 𝑡, 
𝑔𝑠−𝐺𝑚𝑖𝑛

𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛
= 1 − 𝑒−1~0.63). The large number of studies using the 

exponential model is due to its ease of use and the fact that most of the observed temporal 

responses of gs have an exponential shape. 

A delay in the increase in gs responses after a step increase in light has been reported for several 

species (Barradas et al, 1994; Naumburg and Ellsworth., 2000; Drake et al, 2013; McAusland et al, 

2016; Elliot-Kingston et al, 2016) and the shape of this type of response can be described by a 

sigmoidal equation: 

𝑔𝑠 = (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)𝑒−𝑒
(

𝜆−𝑡
𝑘𝑖

+1)

+ 𝐺𝑚𝑖𝑛 
 (3) 

𝑔𝑠 = (𝐺𝑚𝑖𝑛 − 𝐺𝑚𝑎𝑥)𝑒−𝑒
(

𝜆−𝑡
𝑘𝑑

+1)

+ 𝐺𝑚𝑎𝑥 
 

 (4) 

where ki and kd represent the time constants for the increase (Eq. 3) or decrease (Eq. 4) of gs and 𝜆 

the initial lag time. Time constants ki and kd do not directly represent a time to reach a percentage of 

Gs but also depend on 𝜆. However, the time to reach any value of gs can be calculated by solving the 

previous equation as a function of time: 

𝑡 =  𝜆 − 𝑘𝑖 ∙ [𝑙𝑛 (−𝑙𝑛 (
𝑔𝑠 − 𝐺𝑚𝑖𝑛

𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛
)) − 1] 

 

 (5) 



Using equation 5, the equivalence between the exponential and sigmoidal time constants can be 
written as: 

𝜏𝑖 =  𝜆 − 𝑘𝑖 ∙ [𝑙𝑛(−𝑙𝑛(1 − 𝑒−1)) − 1]  (6) 

where τ represents the time to reach 63% of the total gs variation including the initial lag time. 

Another interesting property that has been used in numerous studies to describe the “speed of 

stomatal response” is the maximum slope of gs increase, which is calculated based on the previously 

described parameters: 

𝑆𝑙𝑚𝑎𝑥 =  𝑘 ∙
𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

𝑒
 

 (7) 

Equation 7 relates the effect on gs of stomatal density (approximated by G) and the speed of 

response of stomata (estimated by k), highlighting the importance of differences in SD when drawing 

conclusions from differences in Slmax. It should be kept in mind that as previously mentioned, the 

scaling up from stoma to leaf level is not a linear process and caution should be taken when 

interpreting temporal response of gs in term of stomatal behaviour (Kaiser et al, 2001; Vialet-

chabrand et al, 2016). 

Both the exponential (see Fig. 1A) and sigmoidal (see Fig. 1B) models can be fitted on data collected 

using a generic protocol that consists of a step increase in light intensity from 100 to 1000 µmol m-2 

s-1 whilst other environmental variables are held constant (e.g. relative humidity). This generic 

protocol has been used in numerous publications and can be adapted depending on the species. 

Although a step changes in light intensity is often used as the standard method to assess temporal 

responses in gs, this approach is not fully representative of natural environmental variation, but is 

close to what a plant may experience during a sun-fleck in the field. We provide a curve fitting 

routine in Microsoft Excel to illustrate the use of the exponential and sigmodal models described 

above, in an accessible format (see supplementary GS_Fit.xlsm). Despite differences in timing or 

light intensities, the parameters derived from this protocol can be compared to characterize the 

differences in temporal response of gs. Under a continuously changing light environment, the 

analytical models presented above can be biased as they assume a constant Gs between each 

calculated time point. In the case of a dynamic light environment, differential equations would be 

preferred for their accurate and continuous descriptions of the gs response. A differential equation 

describing an exponential response of gs has been described previously (Horie, 1978; Noe and 

Giersch, 2004; Vico et al, 2011) but requires a larger number of steps to be solved and has therefore 

rarely been used (Kirshbaum et al, 1988; Noe and Giersch., 2003; Vialet-Chabrand et al, 2016): 

𝑑𝑔𝑡

𝑑𝑡
=

(𝐺𝑠 − 𝑔𝑠)

𝜏
 

 (8) 

Alternatively, a differential equation for a sigmoidal variation of gs can be used (Vialet-Chabrand et 

al, 2013; Moualeu-Ngangue et al, 2016) providing a control on the initial lag experienced by stomata 

after a change in light intensity: 

𝑑𝑔𝑡

𝑑𝑡
= 𝑘 ∙ (𝑙𝑛 (

𝐺 − 𝑔0

𝑔𝑡 − 𝑔0
)) ∙ (𝑔𝑡 − 𝑔0) 

 (9) 

http://frontiersin.org/people/u/217123


 
Alternative more complex equations than equation 8 have been proposed by Kirschbaum et al, 

(1988), but can be more difficult to parameterize due to their large number of parameters. The use 

of a differential equation required the calculation of the steady state target Gs at any point of time, 

Vialet-chabrand et al, (2013) proposed the use of a spline function to estimate the light intensity (or 

any environmental variable) continuously and then use these values to predict Gs using any already 

available steady-state model. Therefore, this approach to model the temporal response of gs can be 

used in existing steady state gs models to predict the transient states of gs resulting from the 

previous variations in light intensity. 

In many studies, the temporal response of gs has been associated with stomatal behaviour and 

focused on the rapidity of stomatal movements (Franks and Farquhar, 2007; Drake et al, 2013; 

Raven, 2014). However, it is important to note that the rapidity of stomatal movements is not 

necessarily correlated to the rapidity of the variations of gs (Vialet-Chabrand et al, 2016). For 

example, a higher stomatal density can result in a higher rate of gs increase (Slmax) without changes 

in stomatal behaviour (McAusland et al, 2016). Both anatomical (e.g. stomatal density and size) and 

biochemical traits (e.g. number and regulation of ion channels) describing stomatal behaviour need 

to be considered to fully understand the kinetic of gs responses following a change in light intensity 

or any other environmental parameter. To this extent, empirical analysis of stomatal conductance 

may also be extracted from mechanistic models of guard cells, notably OnGuard that yields outputs 

in stomatal aperture that connect directly to the underlying processes of solute transport and 

metabolism (Hills et al, (2012), Chen et al, (2012), Wang et al, 2012). Indeed, Wang et al, (2014) have 

used this platform to undertake a study of stomatal kinetics, incorporating a first-order sensitivity 

analysis of the dependence on individual ion channels and pumps at the plasma membrane and 

tonoplast. Their study yielded a number of unexpected results as noted below. 

An example of dynamic modelling of stomatal conductance 

To illustrate the use of models to describe temporal gs responses and the effect of physical and 

functional stomatal attributes, we compared the rapidity of the temporal response of gs in two 

Arabidopsis genotypes to the ecotype Col-0; one with altered stomatal distribution (wer1-1; Lee and 

Schiefelbein, 1999) and the second with impaired stomatal closure (gork1-1; Hosy et al, 2003). 

Compared to Col-0, the ectopic stomata of wer1-1 resulted in a faster stomatal response as 

illustrated by the lower Gs (Fig. 2A and 2B) and lower 𝜏𝑖 and 𝜏𝑑 (Fig. 2C and 2D). The ectopic 

anatomy of the wer1-1 stomata potentially allows faster pore opening as there is no back pressure 

from the surrounding epidermal cells because the stomatal guard cells are above and not in line with 

the epidermal cells, resulting in faster movements for the same energy cost. This change in stomatal 

anatomy also lead to a lower Gs compared with the WT control, although the mechanism for this is 

unknown and needs further investigation. As previously shown by Hosy et al, (2003), plants with 

impaired outward K+ channels (gork1-1) have greater 𝜏𝑖 and 𝜏𝑑, and higher Gs resulting in a large 

unnecessary water loss during stomatal closure, but little effect on stomatal limitation of A due to 

the relatively high values of gs. The strong reduction of the outwardly rectifying K+ channel activity in 

the guard cell membrane prevents K+ release and increases stomatal aperture by maintaining 

membrane depolarization at membrane potentials more positive than the K+ equilibrium potential, 

This imbalance in osmoregulation induced a slow stomatal response by potentially slowing down K+ 

uptake. Although there were small but significant differences in anatomical features such as 



stomatal density (SD, Fig. 2E) and guard cell length (GC length, Fig. 2F) they cannot explain the 

different temporal response of gs in these plants, highlighting the importance of other parameters 

such as the biochemistry and mechanics of stomatal movement as previously describe in Section 2. 

The same conclusions can be drawn, for example, from studies of slac1 (Wang, et al, 2012), amy3 

and bam1 (Horrer, et al, 2016), and other mutant and transgenic plants (see Jezek and Blatt 2017, 

this issue; De Angeli and Eisenach 2017, this issue; Lunn and Santelia 2017, this issue). These findings 

illustrate the plasticity of temporal gs responses and the potential impact that manipulating the 

speed of stomatal responses could have on A and WUE. For example, the fast gs response in the 

wer1-1 plants reduced gs limitation of A under an increase in light (Fig. 2A; Fig. 3), and reduced 

potential water loss when subjected to a decrease in light (Fig. 2B). These plants exhibited a 

potential for increased/greater synchronisation between A and gs (see Fig. 3), which may lead to 

higher water use efficiency over the course of the day (McAusland et al, 2016). 

4. CONCLUSION 

Despite stomatal behaviour occurring at the micro-scale, it is important to recognise the impact they 

have on cycles of carbon and water at large-scale global systems. Although stomata typically occupy 

only a small portion of the leaf surface (0.3 to 5%), they are known to control ca. 95% of all gas 

exchange between the leaf and environment, and estimations show that 98% of all water taken up 

through the roots may be transpired through stomatal pores (Morison, 2003), potentially translating 

to 60% of all terrestrial precipitation (Katul et al, 2012). Indeed, most crop plants will transpire over 

twice their fresh weight in water every day (Chaumont and Tyerman, 2014). With this in mind, 

stomata represent important targets, for manipulating crop photosynthetic productivity and water 

use which is particularly important considering that the allocation of fresh water resources which is 

becoming a significant global concern. As highlighted in this review, the importance in the temporal 

response of gs is largely unknown and underestimated, and understanding this variation will aid 

future scaling efforts from individual stoma to leaf and canopy levels. What is apparent, is the lack of 

quantitative data on the rapidity of stomatal response under different environmental conditions 

making it difficult to describe the mechanisms of guard cell movement and assess the impact of 

uncoordinated responses on leaf level gas exchange. By integrating the dynamic responses or 

stomatal to changing environmental conditions, and taking account of different stomatal 

morphology, as well as sensing and signalling systems, we may be able to maximise the benefit of 

photosynthesis (in terms of carbon gain) relative to the cost of water, and translate these findings 

into more sustainable crop production systems for the future.  
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