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Abstract

An on-line generalised model predictive control (GMPC) strategy is designed and opti-
mised with a novel identification procedure in the presence of different disturbances. The
principle of MPC is utilising a discrete-time model of a system to reach the control vari-
ables with a prediction over these values, which is followed by computing a cost function
for the control aims. Non-inverting buck–boost converter is a non-minimum phase sys-
tem based on its boost mode, which makes a challenging condition for designing a stable
controller. The proposed control technique described in this paper removes the require-
ment for a system mathematical model adopting a black-box identification method which
can decrease the computational burden. Numerous harmful disturbances can affect a DC–
DC converter; thus, the GMPC scheme is used along with a novel improved exponential
regressive least identification algorithm as an adaptive strategy for the controller to opti-
mise the gains of the controller in an on-line way resulting in better disturbance rejection.
A PID controller with particle swarm optimisation algorithm is designed for this converter
to be compared with the GMPC controller. Finally, the efficiency of the GMPC is verified
in various performances with experimental and simulation results.

1 INTRODUCTION

Nowadays, DC–DC power converters are playing an influential
role in producing electrical power for industrial users. The
main goal behind using power converters is the regulation of
output voltage of a load and providing appropriate dynamic
performance [1–4]. To fulfil this aim plenty of controllers have
been designed for converters to enhance their operation [5, 6],
limit switching losses [7], and increase efficiency [8, 9]. Based on
some working characteristics of a power converter, controllers
with a flexible and well-behaved dynamics are needed. The
important concern about a converter is its good performance
during disturbances which cannot be guaranteed by the control
strategies with fixed compensation parameters. Meanwhile, a
popularity is growing for the control techniques containing
more well-behaved structures, which has led to the digital con-
trollers in switching circuits. Because of the switching properties
of buck–boost converters and the non-minimum structure
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presented by boost typologies, methods such as sliding-mode
[10], dead beat [11], and internal model controllers [12, 13]
are proposed which using an adaptive mechanism. The pri-
mary pros of dead beat, internal model, and sliding-mode
structures is providing output voltage without overshoot and
ringing. Meanwhile, the complexity of dead beat and internal
model control schemes makes them unpopular alternatives [14,
15]. For example, sliding-mode technique behaves better in
transients, parametric alterations, and chattering issues.

The fundamental theory behind model predictive control
(MPC) built with a horizon method which calculates control
signals with an optimising process for a future time step. One
of the major issues for power converters is their stability and
MPC is a promising technique since it is fundamentally robust
enough of systematically compensating non-linearity of sys-
tem, state and input constraints along with ensuring optimally
considering the cost functions. However, these benefits suffer
from a large computational burden in the controller. In refs.
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[16–18], a general review is reported based on MPC for switch-
ing power converters. Furthermore, two types of MPC strategies
are illustrated as continuous control set MPC (Ccs-MPC) and
finite control set MPC (Fcs-MPC) approaches. It is presented
that in Fcs-MPC, the cost function and system states are pre-
dicted regarding the switching conditions which is driven for
the following period. Fcs-MPC yields fast and robust closed-
loop dynamics; yet, is limited in prediction horizon based on the
significant growth of prediction horizon length with the switch-
ing combinations in the range of one or two prediction steps
[19–22]. In most cases of Ccs-MPC, pulse width modulation
(PWM) technique is utilised in generating control signal based
on the duty cycle [23, 24]. An online optimisation of the system
is the major concern of this strategy which is handled offline
by explicit model predictive control (EMPC) [25–28]. EMPC
produces some feedback control laws along with tree searches
to reach the state feed-back laws which needs a large storing
capacity and short prediction horizons. Different approaches
are presented to tackle the online optimisation issue with a fast
calculation time and better prediction horizons [29–31]. These
papers provide on-line optimisation strategies of MPC for dif-
ferent converters with less calculation time and a prediction
horizon of around 400 to 600 𝜇s. Despite the better results
presented by these papers in comparison with FCS-MPC or E-
MPC alternatives, they are not completely satisfying. To provide
less complex structures model free methods, which can use sys-
tem identification to get the system dynamic without knowing
the actual dynamic, are introduced. In refs. [32–34], an ANN-
based control is proposed for different applications such as
power converters. In these approaches, since the whole system
is a black-box, the requirement for the mathematical model is
removed and the performance of the controller is optimised
by a better parametric tuning. However, the main drawback of
this type of methodology is their dependence on a wide range
of training data. In refs. [35–37], a robust self-tuning adaptive
controller is designed with a novel identification technique for
power converters using black-box scheme with a great conver-
gence and a robust dynamics in disturbances. The estimation
method was improved in these works to provide better paramet-
ric tuning; yet, the robustness of the controller is focused on the
estimator. This paper describes an online optimised MPC strat-
egy with a novel improved exponential regressive least-square
(IERLS) identification technique providing a low computational
burden and more prediction horizons. Contributions provided
by this method are:

∙ An advance control method is designed, which has reached
a good performance with an excellent stability without the
mathematical model of the converter and without a prede-
fined cost function to be minimised at each sampling time
(Ts) that is called end-to-end technique.

∙ Fast dynamic performance, less computational cost, and
improved steady-space performance are provided.

∙ The prediction horizons are increased presenting accurate
trajectory tracking control.

∙ Challenging constrains are discussed on the system, which are
solved by the controller.

FIGURE 1 Non-inverting buck–boost converter

∙ Significant adaptation of MPC to model parameters vari-
ations with better parametric estimation is proposed for
system identification.

2 DC–DC NON-INVERTING
BUCK–BOOST CONVERTER MODELLING

Buck–boost converter is classified in the class of attenuation
or chopper circuits (Figure 1). This topology is built by differ-
ent components as follows: capacitor C, inductor L, resistor R
(load), and voltage source E as well as diodes (T2 and T1) and
switches (Q2 and Q1).

Transistor-diode symbols are used to form circuit schematic
of the converter in Figure 1. Also, two operational modes are
introduced based on u that is the switching function. Two dif-
ferent modes are classified by this topology for buck and boost
mode. Overall, to present buck functional state, the controller
must operate such that the level of the output voltage on the
load be lower than supply voltage. Consequently, to satisfy this
condition, Q1 switch will be fired while Q2 is off. However,
when the higher output voltage is produced compared to input
voltage, the converter works in boost mode (Q2 starts to fire
when Q1 stays constantly on). Linearising the state-space aver-
aging model around the operating point is used to get the
system’s small signal transfer function. The transfer functions
for buck and boost modes are driven based on output voltage
(V̂C) and control input (d̂ ) in Equations (1) and (2) [38].
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where D1 and D2 show the duty cycles of switches. Also, the
superscript “ ”̂ illustrates a minimal AC variation around the
steady-state operating point. Considering the transfer function
of the converter, the impact of capacitor resistance (RC) among
the parasitic elements is the only effective factor providing a
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FIGURE 2 Pole and zero placement of the system

zero in the transfer function. It should be noted that the series
diodes have a small range threshold voltage and it is possi-
ble to be ignored; also, the on-resistance of switches can be
estimated about 0.8 ohm that can be ignored since it has a
small amount. Thus, one can omit other parasitic elements from
small-signal analysis of the circuit; however, their influence are
applied in both experimental and simulation results. The rela-
tion between the capacitor voltage and the output voltage is
shown in Equation (3).

V̂o = (1 + RCCs)V̂C (3)

A combination of Equations (1)–(3) without considering the
input voltage dynamics can calculate the transfer function of the
control input (duty cycle) to the output voltage for both buck
and boost modes as below:
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It should be noted that the role of Rc can play a crucial impact
on the ripple of output voltage and generates a ripple voltage.
Also, the boost mode consists of a right half plane zero (RHPZ),
which adjusts a hard constraint on the achievable performance
and makes the system a non-minimum structure as depicted in
Figure 2.

To function the digital GPC technique, digital discrete trans-
fer function of the proposed system is needed ,which zero-order
hold drives this duty.

G (z ) =
Y (z )
U (z )

=
b0z + b1

z2 + a1z + a2z
(6)

Furthermore, to estimate b1, b0, a2, and a1 parameters, an iden-
tification method is used that has been explained in more details
in the following sections.

3 RLS IDENTIFICATION PROCESS

RLS identification technique is a well-known estimator owing to
its prominent benefits, namely: easy implementation, high effi-
ciency in real-time operations, dynamical adaptability, and low
memory capacity [39–41]. Equation (7) shows the cost function
of RLS technique.

J =
1
N

N∑
n=1

eT (z )e(z )

e(z ) = y(z ) − ŷ(z ) (7)

In Equation (7), e(z ) shows the error function where Equation
(8) depicts the discrete digital transfer function.

y(z ) = −a1y(z − 1) + b0u(z − 1) (8)

Equation (8) can help to reach the Equation (9).

y(z ) = 𝜙(z )𝜃(z )

𝜙(z ) = [u(z − 1), u(z − 2), −y(z − 2), −y(z − 1)]

𝜃(z ) = [b1, a1, b0, a2]T

(9)

Equation (9) shows two coefficients of 𝜙 and 𝜃 that are vec-
tors depicts the gains of estimation and observation. However,
the past data-driven of u and y can be held in the 𝜙. Alterna-
tively, this estimator tries to update the cost function repeatedly.
Meanwhile, because the power converters are electrical devices
working in different applications, it is possible that various
disturbances can have a negative impact on their dynamics.
Compensating these disturbing effects can be satisfied with an
improvement over the identification algorithm.

Thus, to adopt this development, a factor called 𝜆 is applied
to the RLS estimator capable of expanding the weighing func-
tion. To main benefits can be provided by this factor: the range
of parametric estimation is widened, resulting in more accurate
results and regular update of parametric estimation consider-
ing the latest alterations. Equation (10) illustrates this algorithm,
so-called the “forgetting factor algorithm”.

𝜃
(
z
)
= [𝜃(z − 1)𝜙(z )T − y(z )]K (z ) + 𝜃

(
z − 1

)
]

K (z ) = (𝜆I + 𝜙T (z )P (k − 1)𝜙(z ))−1𝜙(z )P (k − 1)

P (z ) = P (k − 1)K (k)𝜙T (z ) − P (k − 1)

(10)

The extra factor of 𝜆 is called “time-varying forgetting fac-

tor”, which is defined by 𝜆 = e
− j

T f . In this definition, Tf and
j are time constant exponential forgetting and sampling cycle.
Equation (10) shows two functional matrices of P (z )and K (z ),
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TABLE 1 Buck mode estimation results with RLS identification strategy

Parameter Mathematical amounts Real-time values

a1 −1.049 −1.042

a2 0.136 0.125

b0 1.257 1.201

b1 −1.168 −1.096

TABLE 2 Boost mode estimation results with RLS identification strategy

Parameter Mathematical amounts Real-time values

a1 −1.049 −1.045

a2 0.1375 0.125

b0 0.838 0.789

b1 −0.779 −0.609

while there are known as adaption matrix and covariance
matrix. The following clarification is used to better describe the
role of 𝜆 in Equation (11): if the term of 1 > 𝜆 is reached,
the rate of K (z ) and P (z ) can be high. The primary bene-
fit of this algorithm is the constant strength that occurred in
tracking and compensating the variations that appeared in the
system dynamics.

This developed algorithm with 𝜆 is called “Exponential RLS”
algorithm or ERLS.

A range is introduced in Equation (11) to dedicate the rate of
𝜆.

𝜆(t ) = min[𝜆(t − 1)𝜆0 + (−𝜆0 + 1)], 1 −
𝜀2

Σ0
(11)

Assuming 𝜆 as the initial rate, the following procedure can be
defined for Equation (11): assuming the system is in the steady-
state condition, 𝜀 can be low or zero while, this can stimulate
the 𝜆 to be one or excess it. On the other hand, the level of 𝜀
goes up when some disturbances appear in the system leading a
significant drop over the 𝜆. This process influences on the K (z )
and P (z ) matrices which is followed by an improvement on the
parametric estimation of the identification method.

3.1 Identification procedure

Tables 1 and 2 depict the estimated values in the mathematical
and practical environments for both working modes.

It can be seen that there is a minimal difference between
these values which can appeared based on the real-time distur-
bance such as components’ tolerance or aging. However, this
distortion cannot make any difficulties for the control stage.

3.2 Improved ERLS identification method

The term of 𝜆, time variable feature, added to the RLS algorithm
performs as a speed convergence adjuster in the dynamical per-

formances. However, if the value of 𝜆 is minimal, the parametric
estimation can be fast; meanwhile, the negative impact of a
significantly large disturbance on the system can increase con-
sistently over the longer operations. The algorithm updated by
𝜆 is exponential RLS or “ERLS” method. Another issue associ-
ated with this technique is its poor performance in unactuated
conditions. In this condition, the regressive matrix is zero and
the following estimation relationships are reached:

P (t + 1) =
1
𝜆

P (t )

𝜃(t + 1) = 𝜃(t )
(12)

Equation (12) demonstrates that, the estimated values of 𝜃 with

all eigenvalues of one and P matrix with all eigenvalues of
1

𝜆
,

are unstable. Consequently, to clarify this condition, estimator
ending situation, the following assumption is presented: first,
estimation is constant; if 𝜆 < 1, P matrix will rise swiftly; also, a
large variation will occur. Thus, to compensate these outcomes,
a method is introduced known as conditional updating. Further-
more, in this new criterion the estimation regarding covariance
matrices is being updated under actuation. Finally, the estima-
tion procedure is enhanced by this factor that tries to update the
pattern of covariance matrix under the occurrence of Equation
(13) ,which can hinder this issue [42].

𝜙(t )T P (t )𝜙(t ) > 2(−𝜆 + 1) (13)

A novel method is used here to handle this issue which develops
the covariance matrix that is “fixed matrix rejection method”.
Subsequently, applying this method needs bounding of the coef-
ficients of covariance matrix resulting in robust performances
over the ratios of estimator. In addition, exerting this technique
in the estimator can hinder the exponential rise of covariance
matrix when the regressive matrix is constant. Equation (14)
depicts this new improved method.

𝜃(z ) =
[
y(k) − 𝜙(k)T 𝜃(−1 + z )

]
K (k) + 𝜃(−1 + k)

K (k) = 𝜙(z )P (−1 + z )[𝜆I + 𝜙T (z )𝜙(z )P (−1 + k)]−1

P (k) =
1
𝜆

[P (−1 + k) −

(
𝜙(z )P (−1 + k)𝜙(k)T P (−1 + k)

I

+𝜙T (z )P (−1 + k)𝜙(z )

)

P (k) = c1
P (k)

trP (k)
+ c2I

(14)

An assumption of c1 > 0 and 0 ≤ c2can be considered. The
parameters are selected as Equation (15):

c1
c2
≈ 104

𝜙(k)T 𝜙(k)c1 ≫ 1
(15)
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FIGURE 3 Comparison results between the presented identification procedures with a resistance load (R = 10 Ω); (a) parametric estimation for the value of
0.136 in buck mode, (b) parametric estimation for the value of 0.835 in boost mode, (c) parametric estimation of the parameter with the value of 0.136 with sudden
parametric variation, (d) parametric estimation of 0.835 with applied 0.01 variance noise

A general comparison is done in Figure 3 based on the perfor-
mance of these identification techniques in different scenarios
to observe their outcomes in challenging conditions.

In Figure 3, different operations are compiled to check
the identification methods efficiency. By a glance look on
Figure 3(a,b), it is vivid that a perfect convergence has reached
by RLS, ERLS, and IERLS methods to the real parameters of
0.136 and 0.835 in buck and boost modes , but a minimal differ-
ence can be seen for RLS estimation, that is not a serious matter.
In Figure 3(c), the operation of these estimators have been eval-
uated under sudden parametric variations, while IERLS and
ERLS strategies depict an excellent converging; however, RLS
method does not have the potential in managing the negative
impact of this deviation. Moreover, to check the influence of
noise on the performance of the identification methods, a noise
with 0.01 variance is applied in Figure 3(d), where RLS estimator
is unable to get the proper value and ERLS technique is show-
ing its effort to get the estimated parameters in longer terms
that provides a hard condition for GMPC to generate the con-
trol signal; meanwhile, IERLS technique demonstrates robust
dynamics in overcoming this disturbance, which proposes it as
the most suitable option for challenging conditions.

4 GENERALISED MODEL
PREDICTIVE CONTROL

The GMPC method is a well-known MPC method since it con-
tains a good performance with a great robustness for both

academia and industry [18]. The principle behind GMPC is
based on calculating a signal sequence of future control, while
the goal is to reach a minimum value of a multistage cost
function depicted on a prediction horizon. In addition, the
optimisation index is the expectation of a quadratic functions
calculating the difference among the predicted reference and
the predicted system outputs; also, this reference is obtained on
the horizon, where the control effort is measured by a quadratic
function [40, 43]. The general block diagram of GMPC is shown
in Figure 4.

The single input single output (SISO) system is assumed as
Equation (16).

y(t )A(z−1) = u(t )B(z−1) +C (z−1)e(t ) (16)

Here A,B, andC are system’s polynomials ,while u(t) is input,
y(t) is output, and e(t) is noise. Also, this function is controller
auto-regressive moving-average (CARMA) model. Based on the
points discussed in ref. [44] , an integrated CARMA model is the
most suitable alternative for many industrial applications with
the presence of non-stationary disturbances. This model is as
below

y(t )A(z−1) = u(t )B(z−1) +C (z−1)
(e(t ))
(Δ)

(17)

where Δ = 1 − z−1 and for white noise, the C is chosen as 1.
The generalised predictive control strategy contains of applying
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FIGURE 4 Block diagram of GMPC

a control sequence that minimises a multistage cost function of
the form

J (N2,N1,Nu ) =
Nu∑

j=N1

𝛿( j )
[̂
y(t + j |t ) − 𝜔( j + t )

]2

+

Nu∑
j=1

[
Δu( j + t − 1)]

2
𝜆( j )

(18)

In Equation (18), output system prediction over the optimum
j step is shown as ŷ(t + j |t ) , the control horizon is Nu , 𝜆( j ),
and 𝛿( j ) are weighting sequences, N2 and N1 are the maxi-
mum and minimum costing horizons, and 𝜔(t + j ) is the future
reference trajectory. Computing the future control sequence,
u(t ), u(t + 1), …, is the purpose of predictive control and must
be done as the future plant output y(t + j ) gets close to 𝜔(t +
j ), which is carried out by minimising J (N1,N2,Nu ).the opti-
mal predictions of j ⩾ N1and j ⩽ N2 are fundamental factors
in optimising the cost function y(t + j ). Equation (19) is the
diophantine equation:

1 = E j (z
−1)Δ̃A

(
z−1

)
+ z−1Fj (z

−1) (19)

where A(z−1)Δ = Ã(z−1). The polynomials E j and Fj are illus-
trated with degrees j − 1 and na , respectively. We obtain them
by dividing 1 by Ã(z−1) until the remainder can be factorised
asz−1Fj (z

−1). Therefore, E j (z
−1)and Fj (z

−1) are illustrated as
follows:

E j
(
z−1

)
= e j ,0 + e j ,1z−1 +⋯+ e j , j−1z−( j−1)

Fj
(
z−1

)
= f j ,0 + f j ,1z−1 +⋯+ f j ,naz−na

(20)

The best prediction of y(t + j ) is

y(t + j ) = ΔG j (z
−1)U ( j + t − 1) + Fj (z

−1)y(t ) (21)

U (t ) represents future horizons of the input signal and the term
of G j (z

−1) is shown as E j (z
−1)B(z−1). However, sum of the

past output term Fj (z
−1) is called free response, f , and system

response to future value is force response. One can reach to the
optimal control signal by minimising Equation (22).

The best prediction of y(t + j ) is

𝜕 j
𝜕U

= 2(G T G + 𝜆I )U + 2G T ( f − w)𝜆 (22)

where U = (w − f )(GG T + 𝜆I )1 G T . In Equation (22), f rep-
resents the free response of the system, 𝜆 is the weighting factor
and w is the reference trajectory. As noted before predictive con-
troller uses prediction horizons to track the reference signal. To
illustrate this process, four prediction horizons are shown for
output and control signals in Figure 5(a,b).

It can be seen that as the prediction horizons of the controller
increases, better output tracking signals will be generated for this
structure which shows the need for model predictive controllers
with higher number of horizons and less complex structures.
The GMPC is able to completely satisfy these factors.

5 PSO-PID CONTROLLER

This algorithm is an evolutionary computational method that
is using swarm as research engine and an evolutionary oper-
ator [45]. Handling the d-variable operating problem in the
d-dimensional search space requires an flock. Next, the best
fitted position and speed will be selected considering the data
achieved from the most suitable amounts. Figure 6 depicts
PSO-based block diagram.

6 SIMULATION RESULTS

Performance of the designed GMPC is verified using circuit
parameters shown in Table 3. Firstly, the converging results
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FIGURE 5 Operating modes of the converter for a resistance load with
GMPC; (a) four prediction horizons of control signal in buck mode for the
reference of 8 V, (b) four prediction horizons of output signal in boost mode
for the reference of 12 V

of the GMPC and PSO-PID strategies are driven in Figure 7
without applying harmful disturbances.

Table 4 has analysed the performance of the controllers
in Figure 7 to better clarify the superiority of GMPC over
conventional method in both moods. Observing the compar-
ison of Table 4, one can clearly understand the superiority of
GMPC with the least amount of error and faster settling period.
Additionally, the parameters of the PID method by proposed
algorithms are listed in Table 5.

Different phenomena including aging or increasing tem-
perature of components are able to alter the amounts of
components resulting in the change of model parameters; thus,
changing model parameters can divert the control method from

TABLE 3 Values of buck–boost converter parameter

Description Parameters Values

Supply voltage E 10–20 V

Output voltage Vout 5–30 V

Load resistance R 10 Ω

Capacitor equivalent resistance RC 5 mΩ

Inductor equivalent resistance RL 2 mΩ

Diode resistance RD1,RD2 40 mΩ

Switch resistance Rs1,Rs2 3.7 mΩ

Inductor L 10 𝜇H

Capacitor C 1000 𝜇F

Diode threshold voltage VD 0.7 V

an ideal performance. Next, the operation of GMPC with
IERLS scheme is tested in sudden load variations as para-
metric variation. A sudden parametric variation is stimulated
in Figure 8 presenting the great response of GMPC under
parametric variations.

It is an indisputable fact that in the real environments the
level of reference voltage increases or decreases for the usage
of output load. Thus, the proposed controller must be robust
enough to track the reference alterations, which has been tested
in Figure 9 for two negative and positive changes. First varia-
tion is a level of 12 to 8 V and the second one is 8 to 11 V
that are significant variations for the control methods. Support-
ing the results shown in Figure 9, an analyse is done in Table 6
reaffirming the considerable strength of the GMPC under these
problematic situations.

On the other hand, the impact of noise is an inevitable dis-
turbance in industrial applications showing destructive impacts
on the control performance. So, Figures 10 and 11 are depicting
the effectiveness of the control strategies under the presence of
noise with rates of 0.1 and 0.01 variances.

The noises that are applied in Figures 10 and 11 over the
converter’s structure can result in difficulties for the control
methods. Clearly, the classical controller faces big deviations
in its performance, while GMPC illustrates significant perfor-
mances in handling the influence of noise introducing it as a
prominent choice for practical applications.

FIGURE 6 Flow chart of PSO
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FIGURE 7 Buck–boost output voltage tracking with GPC and PID controllers (Rload = 10 Ω)

TABLE 4 Detailed comparison based on Figure 6

Load GPC-buck PID-buck GPC-boost PID-boost

R Ω Overshoot ts,s Overshoot ts,s Overshoot ts,s Overshoot ts,s

5 Ω 0.22 V 0.04 s _ 0.41 s 0.22 V 0.035 s 1.85 V 1.05 s

8 Ω 0.34 V 0.04 s _ 0.53 s 0.44 V 0.035 s 2.15 V 1.2 s

10 Ω 0.37 V 0.04 s _ 0.56 s 0.54 V 0.035 s 2.3 V 1.4 s

12 Ω 0.4 V 0.04 s _ 0.72 s 0.65 V 0.035 s 2.4 V 1.6 s

TABLE 5 Parameters of the PID controller

Parameters Values

kp 0.875

ki 53.89

kd 1.0038

TABLE 6 Performance comparison based on Figure 8

GPC PID

Ref changes OS US St OS US St

Negative step _ _ 0.5 s _ _ _

Positive step 0.7 V _
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FIGURE 8 The impact of sudden load variation on control procedure of the controllers. (Rload = 10 Ω to Rload = 30 Ω)

FIGURE 9 The tracking performance of the controllers in negative and positive reference alterations

Furthermore, the experimental results are examined for this
converter to test the operation of the designed control method
in experimental situations.

7 EXPERIMENTAL RESULT

It should be noted that zero order hold (ZOH) technique is
utilised to discrete the controller. Also, PWM scheme is used
to fire the converter switches. To clarify this technique for bet-
ter understanding, one can assume the PWM as a block that
gets the control signal and compare it with a triangular signal,
then a square wave is generated that has the role of actuating
the switches. In Figure 12a hardware real-time implementa-

tion of converter is shown consisting of the power and control
realisation, simultaneously.

Prototype machine shown in Figure 12 was implanted to
analyse the accuracy of the GMPC for the topology. In addi-
tion, different segments and devices are included that are listed
in Table 7. Arduino is the core of this structure which gener-
ates the control signal, while non-inverting DC–DC buck–boost
converter is built based on the components listed in Table 3
with various loads to verify its performance under challenging
dynamical variations.

Furthermore, the voltage sensor is attached to the load to
transfer the output to the micro-processor to make the con-
trol signal by the aid of Matlab\Simulink ; also, the switching
frequency is in the range of 20 KHz. The micro-processor
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FIGURE 10 The performance of the proposed controllers in respond to noise; (a) noise with a variance of 0.01 in buck mode, (b) noise with a variance of 0.01
in boost mode

TABLE 7 Components of the structure

Components Type

Micro-processor Arduino (DUE )

Voltage sensor LV25-P

Switches IRF9630

Diodes UF4007

IC gate driver MOSFET TC4427

tries to convert the voltage measured by the sensor through
its analogue-to-digital block, then the average value generated
in this process will be used as the input of the control loop.
Two different level of output voltages including 8 and 12 V are
generated in Figures 13–15.

In this section, the converter is analysed in real-time situa-
tions using adaptive GMPC. Firstly, the operation of the control
strategy is tested without considering effective disturbances.

Figure 13 shows convergence of GMPC by a novel on-
line optimiser for the 8 and 12 V references which depicts
an excellent practical operation with no undershoot or
overshoot.

As a matter of fact, the industrial environments that the con-
verters are used do not an ideal condition; thus, there is a high
chance of parametric variations or output load changes.

To reaffirm high efficiency and robust dynamics of GMPC
in real-time applications, different load types will be fed to
the converter.

The load fed to the converter can have other structures rather
than the pure resistive load used here. Figure 14 shows the
response of the converter with the control technique in the
connection with resistive–capacitive load and resistive-inductive
load. Interestingly, from Figure 14, a change in the type of
load has no negative impact on the tracking response of the
control strategy.

At the next step, noises with 0.01 and 0.1 variances are
injected to the system of the converter with different levels of
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FIGURE 11 The performance of the proposed controllers in respond to noise; (a) 0.1 variance noise in buck mode, (b) 0.1 variance noise in boost mode

FIGURE 12 Topology of the non-inverting buck–boost converter in
experimental environment

reference signal. The outcomes are shown for reference voltages
of 8 and 12 V in Figures 15 and 16.

As it is vivid from Figures 15 and 16, by using the GMPC
with IERLS identification method the effect of high variance
noises on the converter can be compensated significantly that
can propose it as a robust alternative for practical applications.

7.1 Power efficiency

The total losses of the converter can be calculated by the
proposed equation [46]:

PT −L = PrL + PrC + PrT 1 + PrT 2 + PrQ1 + PrQ2 (23)

where PrL is inductor conduction loss, PrT 1 and PrT 2
are Diodes conduction loss, PrQ1 and PrQ2 are MOSFETs
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FIGURE 13 The GMPC with IERLS method on buck–boost converter.
(a) tracking reference signal by controller in buck mode with reference of 8 DC
voltage, (b) tracking reference signal by controller in boost mode with
reference of 12 DC voltage

TABLE 8 The value of on-resistances on the components

Symbols Values

rL 5 mΩ

rC 3 mΩ

rT1−2 0.01 Ω

rQ1−2 0.8 Ω

conduction loss, and PrC is conduction loss of the capacitor [46].
To reach the losses presented in Equation (23), the calculations
related to each loss is depicted in the following equations:

PrL = rL × I 2
L

PrC = rC × I 2
C

PrT 1 = rT 1 × I 2
T 1

PrT 2 = rT 2 × I 2
T 2

PrQ1 = rQ1 × I 2
Q1

PrQ2 = rQ2 × I 2
Q2

(24)

In the above equation, the symbols of rL and rC are the resis-
tances of inductor and capacitor; also, rT 1−2 and rQ1−2 are the
on-resistance of the diodes and the switches. The on- resistances
related to these components are listed in Table 8.

FIGURE 14 The performance of the adaptive GMPC method on buck–boost converter in the connection with different loads. (a) Tracking reference signal in
resistive-inductive load in buck mode (R = 30 Ω,L = 1 𝜇H), (b) tracking reference signal in resistive-inductive load in boost mode (R = 30 Ω,L = 1 𝜇H), (c)
tracking reference signal by controller in resistive-capacitive load in buck mode (R = 50 Ω,C = 10 𝜇F), (d) tracking reference signal by controller in
resistive-capacitive load in boost mode (R = 50 Ω,C = 10 𝜇F)
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FIGURE 15 GPC controller on buck–boost converter with IERLS identification method by 0.01 variance noise for different tracking reference signals of; (a)8
V, (b)12 V

TABLE 9 The efficiency measured based on buck–boost converter

Vout

Measured

efficiency (%)

Calculated

efficiency (%)

15 V 94.56 98.12

20 V 93.42 96.27

25 V 92.47 94.53

30 V 90.63 92.34

Based on the output power of system (Po), one can
reach the total efficiency of the structure with the presented
equation:

𝜂 =
Po

Po + PTotal lossess
(25)

Considering the factors given in these equations, the level of
efficiency of this structure is given in Table 9. It should be

TABLE 10 Comparison between the proposed controller and previous works. (Good=✓, very good=✓✓, high = +, very high=++)

Ref.

Control

method

Dynamic

complexity

Voltage

tracking

Robustness in

load disturbances Optimisation Robustness in noise

Maximum

output power

[10] SMC + ✓ ✓ Off-line Not tested 27.8 W

[11] SMC ++ ✓ ✓ Off-line Not tested 33 W

[12] IMC ++ ✓✓ ✓ Off-line Not tested 22 W

[14] IMC + ✓ ✓ Off-line Not tested 7 W

[15] DBC + ✓ ✓ Off-line Not tested 35.2 W

[19] FCS-MPC ++ ✓✓ Not tested Off-line Not tested 3 kW

[22] CCS-MPC + ✓✓ ✓ Off-line Not tested 18.5 W

[24] FCS-MPC + ✓ ✓ Off-line Not tested 32.4 W

[26] EMPC ++ ✓✓ ✓✓ Off-line Not tested 18.8 W

[29] NMPC ++ ✓ Not tested Off-line Not tested 15 W

[30] RMPC ++ ✓✓ Not tested Off-line Not tested 14.5 W

[31] PSO-MPC + ✓✓ Not tested Off-line Not tested 24.5 W

[32] NNMPC + ✓✓ ✓ On-line Not tested 6.5 W

[33] PSO-NNC ++ ✓✓ ✓✓ On-line Not tested 120 W

[35] STRAC + ✓✓ ✓✓ On-line ✓✓ 20 W

[40] PNNC ++ ✓✓ ✓ On-line Not tested 28.4 W

[42] CNAC ++ ✓✓ ✓ On-line Not tested 22 W

[44] MPC ++ ✓✓ ✓✓ On-line Not tested 24 W

[47] MPC ++ ✓✓ ✓ Off-line Not tested 15.8 W

[48] LM-MPC ++ ✓✓ ✓✓ Off-line Not tested 22.6 W

[49] MPC + ✓ ✓✓ Off-line Not tested 194.6 W

[50] NMPC + ✓✓ ✓ Off-line Not tested 150 W

This work GMPC + ✓✓ ✓✓ On-line ✓✓ 180 W
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noted that as the level of duty cycle increases, the total efficiency
decreases, respectively.

8 COMPARISON WITH PREVIOUS
WORKS

To better clarify the merits of the designed GMPC, a detailed
analyse is carried out in Table 10 based on different characteris-
tics.

Considering the comparison illustrated in the above table, the
efficiency of the presented work is higher in different working
condition which can be introduced as an appropriate technique
for industrial applications. In other words, the influence of noise
is an inevitable phenomena in real-time applications which is
not tested with almost none of the presented strategies but the
proposed technique shows a great noise compensation result
in both buck and boost modes. In addition, output generated
power by this structure has a good practical level which can be
used for supply of different loads and consumers.

9 CONCLUSIONS

In this paper, GMPC with a novel IERLS identification method
is applied on a non-inverting buck–boost DC–DC converter.
The identification scheme considers the system as a black-
box system that can decreases the computational burden of
the controller. The GMPC uses an on-line optimisation struc-
ture based on IERLS that can improve the performance of
the controller in harmful disturbance in both simulation and
experimental environments. This discussed approach can main-
tain the stability margin in the desired limit under the presence
of the parametric variations and large signal transients on the
DC–DC converter. Additionally, both parts including the esti-
mator and the GMPC are implemented by digital transfer
function and have provided better performances against high
variance noises and disturbing criterion. This predictive strat-
egy shows much better responses in challenging conditions in
comparison with other types of MPCs and conventional con-
trollers as shown in Table 10. These results illustrate that by
applying the adaptive GMPC, remarkable improvements occur
in the performance of the converter over different operating
conditions.
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