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Abstract

Proteins are a diverse class of molecules that can act as cat-
alysts and structural components. Interest in their interactions
with ionic solvents is on the increase due to the tuneable
possibilities for non-aqueous biocatalysis, improved thermo-
stability of biomaterials, and possible roles in medicine, such
as drug delivery and use as cell-growth scaffolds. We sum-
marise here the recent examples of these exciting new aspects
of protein-ionic solvent interactions, highlighting future
directions.
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Introduction
In the last few years, the tunability of ionic liquids has
been recognised as a solution to many challenges in
bioscience, including issues with contrasting solubility of
enzymes and substrates that impact catalyst accessi-

bility; challenges in separations; problems with proteine
drug aggregation, stability, and delivery [1]; and as an
opportunity for improving the green credentials and
economics of protein-based processes. We address here a
selection of studies from the past three years, building on
our previous review [2] and highlighting the increasing
scope of protein-based chemistry using ionic liquids
(ILs) as solvents. We further provide a perspective on
where this combination of biomaterials and ionic sol-
vents may be deployed for greater sustainability impact,
with the chemical structures of selected IL cations and

anions appearing in this review highlighted in Figure 1.
While imidazolium-based (general formula [CnCmIm]þ,
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as seen for cations 1e3) cations are still a popular feature
of many of the processes studied in the last few years,
there is an increasing shift towards bio-based and

biocompatible ILs [1], including those based on the
cholinium [Ch]þ cation. This shift has been driven both
by a strong awareness of the need for more sustainable
ILs, paired with the increasing understanding of the
properties of ions and how they relate to function [3].
Much recent work in this latter aspect is directed to
going beyond the early Hofmeister series-based obser-
vations [4,5] to encompass a more nuanced ‘specific-ion’
model that is more relevant for complex biological and IL
structures [5,6]. Such foundational models will not be
discussed in detail in this review, which concentrates

more on recent application highlights, but have been
comprehensively covered by others [7].
Dissolving proteins – catalyst accessibility,
resistance to the detrimental impacts of
ionic liquid, and processing
Biocatalysis with ionic liquids and their mixtures has
continued to attract significant interest in recent years
[8e10]. The solubilisation of proteins in ionic liquids
has provided an important route to addressing chal-
lenges of substrate access to enzyme active sites,
particularly in the processing of recalcitrant bio-
materials, such as lignocellulose.

Cellulases are extremely important in industrial biomass
conversions, with limitations brought about by the
inactivation of these enzymes by residual ionic liquids
used in pretreatment [11]. Recently, a rational under-
standing of the impact of [C4C1Im][Cl] 2g using a
combination of experimental and computational ap-
proaches provided design routes to a more stable cellu-
lase. In particular, minimisation of ionic liquid-induced
enzyme aggregation by mediating protein dynamics
through engineered structural changes led to a signifi-

cant improvement in observed activity (Figure 2(a)).
This work provides a basis for the importance of protein
dynamics, and mediation of this dynamic behaviour
through IL-protein interactions, in controlling reaction
outcomes.

Laccases are also industrially important enzymes utilis-
ed in waste-water treatment and lignin degradation
[12]. ILs can enhance substrate availability, and
imidazolium-based ILs have been utilised as a surface
modifier for chitosan to create magnetic immobilised

nanoparticles (Figure 2(b)) [13]. The presence of the
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Figure 1

Cations and anions utilised in some recent protein-IL studies.

2 Ionic Liquids
IL-based linker enhances laccase loading onto the
nanoparticles by over 25%, with an increased expressed
activity of 1.6-fold. In this environment, with added

Cu2þ, the laccase could achieve a specific activity of
more than 65%, relative to free laccase, with the added
benefits of being recyclable, having an improved sub-
strate removal efficiency, being less temperature sensi-
tive, and being more storage stable.

Although different ionic liquids can be selected to match
against enzyme activity, an alternative approach involves
either evolution or design of enzymes that are more
tolerant to specific ILs and mixtures containing them.
Rational design rules have been difficult to achieve due

to the complexity of possible interactions, with recent
progress being made in this area. Structure-based mod-
ifications of proteins to enable resistance to the
damaging impacts of ionic liquids in aqueous solutions
have been systematically evaluated for Bacillus subtilis
lipase A [14]. Here, data-driven approaches, directed by
an experimental site-saturation mutagenesis library, have
been used to reveal stabilising mutations towards
Current Opinion in Green and Sustainable Chemistry 2022, 36:100637
aqueous [C4C1Im]þ-based ILs (2d, 2g, 2h and 2i). By
analysing a number of previously used approaches, five
key calculable properties of a protein (solvent accessi-

bility, relative volume, hydropathy, unfolding energy, and
residue conservation) were identified that, when com-
bined, contributed to the most effective identification of
relevant single-point mutants conferring stability of the
enzyme (and hence function) in mixtures containing
each of the four ILs. This approach was improved further
by integration with molecular dynamics (MD) pre-
dictions of structural stability (or structural weak spots)
in the protein, where previous work had shown multi-ms
simulations of this type predict IL interactions with the
surface protein residues that induce long-range pertur-

bations of the non-covalent forces within the structure
[15]. This study brings computational screening for
functional outcomes one step closer.

Separation processes are extremely important in bio-
processing, and optimising these is essential for indus-
trially efficient processes. Temperature-switchable,
sponge-like ionic liquids have been used as matrices for
www.sciencedirect.com
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Figure 2

Ionic liquids and their interactions with ILs when dissolving proteins. (a) Cellulase (1 ECE) shows highly dynamic regions (marked in red and orange) in
2g that can be stabilised through protein engineering. The key residue W213 (purple) is thought to interact specifically with the [C4C1Im]+ cation 2. (b)
An ionic liquid modified chitosan increases laccase loading on a nanoparticle, along with its specific activity. (c) The effects of different amounts of the
ionic liquid 4a on the biocatalytic efficiency of lipase in the preparation of cinnamoyl propionate. (Adapted with permission from E. Alvarez, J. Rodriguez,
R. Villa, C. Gomez, S. Nieto, A. Donaire, P. Lozano, Clean Enzymatic Production of Flavor Esters in Spongelike Ionic Liquids, ACS Sustainable Chem.
Eng. 7(15) (2019) 13,307–13314 [16]. Copyright 2019 American Chemical Society). (d) Extraction efficiencies (EE%) and recovery yields (RY%) of
ovalbumin from different IL mixtures. Reprinted in part from Purification and Separation Technology Science, 233, D.C.V. Belchior, M.V. Quental, M.M.
Pereira, C.M.N. Mendonça, I.F. Duarte, M.G. Freire, Performance of tetraalkylammonium-based ionic liquids as constituents of aqueous biphasic
systems in the extraction of ovalbumin and lysozyme, 116,019 (2020) [18], with permission from Elsevier. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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bioproduction, including the synthesis of 16 different
flavour esters using lipase B [16], and chemo-enzymatic
synthesis of glycerol carbonate (meth)acrylate using
carbon dioxide [17]. The hydrophobic nature of these
water-immiscible ILs with long alkyl side chains in the
cations (e.g. [C12C1Im][NTf2] 3a, [N1,1,1,16][NTf2] 4a)
could be exploited to solubilise the reagents and the
sponge-like properties enhanced clean separation,
either utilising a membrane [16], or with a combination
of cooling and centrifugation [17]. They additionally
afforded good recyclability (>99% yield for up to six

reaction cycles) of the IL/biocatalyst system affording a
potentially attractive and scalable process for industry,
with excellent yields maximised by a longer alkyl chain
length of the cation in combination with the [NTf2]

-

anion a. High IL: H2O weight ratios of 50% w/w
www.sciencedirect.com C
(cIL = 0.031) appeared to maximise the activity of
lipase through presumed protection against deactiva-
tion of the enzyme (Figure 2(c)) [16].

Protein fractionation and separation with ionic liquids
are exemplified in a study separating ovalbumin from
lysozyme, two of the major protein constituents of egg
white [18]. Tetraalkylammonium chlorides and bro-
mides were utilised for aqueous biphasic separations,
with the aqueous component varying in pH. Increased
aggregation of ovalbumin was seen at higher cation hy-

drophobicities, with best recovery for [N2,2,2,2]Cl 5g for
both lysozyme (99%) and ovalbumin (100%). Regener-
ation of lysozyme from the IL-rich phase was achieved
with cold ethanol precipitation. A similar strategy, but
utilising glycineebetaine analogue ionic liquids, was
urrent Opinion in Green and Sustainable Chemistry 2022, 36:100637
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4 Ionic Liquids
able to recover anti-interleukin-8 monoclonal antibodies
and IgG from Chinese hamster ovary cell culture [19].
The IL was able to be recycled without loss in separa-
tion performance, and the process shows good potential
for industrial purification of these high-value bio-
pharmaceuticals (Figure 2(d)).
How does protein structure change in
mixtures containing an ionic liquid?
The changing electrostatic and intermolecular in-
teractions induced by ionic liquids necessarily have an
impact on protein structure and dynamics, which
themselves relate to changes in the function of the
catalyst e both good and bad.
Elegant work by Hallett and coworkers has shown the
importance of addressing protein-ionic liquid interactions
by using a broad range of complementary techniques,
with the emphasis on multi-technique approaches being
required as a gold standard to analyse changes in protein

structure [20]. A combination of UVevis, circular di-
chroism (CD), fluorescence and NMR spectroscopies,
and SAXS provide a holistic approach that avoids the
pitfalls of using single methods. These methods were
Figure 3

Changing protein structure with ionic liquids. (a) A range of techniques, includ
fluorescence spectroscopy, are needed to fully understand IL-protein interact
mance score for transdermal delivery for a series of ionic liquids. (c) Melting te
concentrations of the ionic liquids shown. Reprinted from Journal of Molecular
Archer, Insights into the interaction of Bovine Serum Albumin with Surface-Activ
from Elsevier.
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utilised to provide a comprehensive view of green fluo-
rescent protein (GFP) interactions and structure changes
in mixtures containing imidazolium (1b, 1d and 1g) and
pyrrolidinium (6b, 6d and 6g) salts (Figure 3(a)). Native
and modified avidin in mixtures containing cholinium-
based ILs, studied using a combination of differential
scanning calorimetry (DSC), differential scanning fluo-
rimetry (DSF), dynamic light scattering (DLS), variable

temperature CD, thermogravimetric analysis (TGA), and
SAXS, indicated that rare conformations could be
accessed and stabilised through changes in the protein
energy landscape, and are dependent on the specific IL
used [21]. A similar suite of analytical approaches was
used to probe the structure of surface-modified avidin
that was stabilised with a surfactant to produce a ther-
mally stable biofluid [22]. Antibody formulations were
also able to show similar exploration of their conforma-
tional landscape accelerated by the presence of IL, with
variable-temperature CD and MD methods additionally

combining to provide insight into the controlling ther-
modynamics [23]. The key take-home messages from
these studies were that ionic liquideprotein interactions
are highly complex, with specific knowledge of the
binding location of individual ions with the protein
needed to understand underpinning structural changes.
ing temperature dependence studies, UV/vis, SAXS, NMR, CD and
ions (b) Change in proportion of a-helix in keratin and proposed perfor-
mperature data for Bovine Serum Albumin in the presence of increasing
Liquids, 322, M.M.S. Alves, J.M.M. Araújo, I.C. Martins, A.B. Pereiro, M.
e Ionic Liquids in aqueous solution, 114,537 (2021) [30], with permission
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Ionic liquids as solvents for proteins Hagen et al. 5
This molecular-level representation can be accessed as
seen already through techniques such as NMR spec-
troscopy [11,24] and computation [11]. In particular,
complementary interactions, which vary depending on
protein-IL combinations, strengthened observed molec-
ular confinement, impacting dynamics and conforma-
tional access of the proteins. Overall though, anion
composition plays a significant role in dictating the

nature of interactions, as has been seen in other studies.

Fourier Transform Infrared (FTIR) spectroscopy has
been a powerful tool to understand changes in protein
secondary structure, particularly keratin, within a bio-
matrix when assessing 31 ammonium-based ionic liquids
in studies towards transdermal drug delivery [25]. A loss
of a-helical content was identified as resulting in
destabilisation and denaturation of the protein and was
mitigated by unbranched anions such as decanoate f. A
properties-derived ‘performance score’ for each ionic

liquid, correlating well with Hansen solubility parame-
ters for that ionic liquid, identified cholinium decanoate
7f and the deep-eutectic variant cholinium geranate 7c
as preferred vectors for transdermal delivery
(Figure 3(b)). The minimal impact on ovalbumin a-
helices was also noted as a key factor in the development
of adjuvants for SARS Cov-2 spike-protein vaccines with
cholinium lactate 7e solutions [26]. Similarly,
cholinium-based ionic liquids have shown enhanced
intestinal absorption of drugs without substantial
mucosal layer disruption [27]. Sheer-thinning and

reduced viscosity of the glycoprotein-rich mucus was
observed in the presence of ionic liquids while main-
taining the viscoelastic gel behaviour seen naturally. The
topical application of nucleic acids was tested with six
choline-based ILs, and the best transdermal transport
was found with choline octanoate, with excellent sta-
bility of the nucleic acids [28]. A proposed mechanism
from 200 ns MD simulations, supporting the use of ionic
liquid 7c in insulin delivery, indicated nanostructure
formation with strong interaction of the geranate anion
with surrounding waters, minimising disruption to in-
sulin structure [29]. In combination, these works high-

light the potential of ionic liquids to act as carriers of
nanoparticles and other therapeutics across protein-
containing barriers with minimal structural disruption.

Clear stabilisation of protein structure was also shown in
the surface association of fluorinated ionic liquids 1o and
7o with bovine serum albumin [30], relative to other
previously studied systems involving lysozyme. Assess-
ment of key properties was achieved through a combi-
nation of DSF, nano-differential scanning fluorimetry
(nanoDSF), DSC, CD, conductometry, and isothermal

titration calorimetry (ITC) and is clearly seen in the
melting temperature data shown in Figure 3(c). The
maximum impact on thermostability was around 20e
30 �C, relative to when cholinium dihydrogen phosphate
www.sciencedirect.com C
was used. CD showed a relative increase in a-helical
content (8%) on IL addition, with a concomitant
decrease in b-sheet and random coil structure.

With a focus on membrane proteins, bacteriorhodopsin
and its plasma-treated counterpart (to simulate oxida-
tive damage) were used as models to investigate the
impact of three tetrabutylammonium ILs 8k, 8l and 8o
using a combined experimental (UVevis) and compu-
tational (MD) approach [31]. An absence of effect on
the UVevis spectrum in the presence of ionic liquid 8l,
compared with quenching seen on the addition of either
salt 8k or 8o was interpreted as mesylate 8l maintaining
the structural stability of the native protein. This
observation was supported through slightly lower

average RMSD values, Ca-atomic positional fluctua-
tions, and solvent accessible surface area values after 100
ns of MD simulation. None of the ILs prevented
plasma-induced degradation of the protein. These
studies, thus, point to the protein context being
important in assessing anion effects on structure.

Changes in protein structure can induce aggregation,
which is critical in disease processes and to be avoided in
the preparation of protein-based medicines but can also
be exploited. Cholinium tosylate 7p generates fibrils of
egg-white proteins, upon which cytochrome c could be
immobilised with enhanced activity [32]. CD, FTIR
and UVevis spectroscopies confirmed a transition of a-
secondary structure to increased b-sheet content,
consistent with the changes expected to form fibrils and
the involvement of hydrophobic and p-p interactions

presumably through the interaction of the tosylate anion
p with phenylalanine and tyrosine residues.

Related fibrillation has been extensively studied for the
amyloid-b peptides implicated in Alzheimer’s disease.
Recent MD simulations in aqueous ethylammonium- 9
[33] and triethylammonium-based 10 [33,34] ILs
supported experimental observations that amyloid-b fi-
brils can be destabilised with [TEA][H2PO4] 10j and
especially [TEA][OMs] 10l by driving a reduction in b-
sheet content mediated through the increased van der
Waals interactions of the TEA cation 10 and affinity for
mesylate anions l.
Avoiding protein–protein and protein-
surface interactions
Tanner and coworkers exploited the tunability of ionic
liquids to reduce protein interactions and absorption

onto biomedical surfaces [35]. Here choline hexenoate
acted as a biocompatible surface modifier that resisted
protein adhesion under in vitro conditions, and indicated
opportunities for selective drug delivery in vivo.

To investigate anti-fouling surfaces, Level et al. [36]
utilised myoglobin as a probe to understand protein
urrent Opinion in Green and Sustainable Chemistry 2022, 36:100637
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6 Ionic Liquids
interactions with 10e50 mM solutions of zwitterionic
[Nn,n,n,PrSO3] bromides in detail. They surmised that
no interaction was present with these species from the
lack of change in the UVevis spectrum at 409 nm,
indicating these IL functionalities could be integrated
into surfaces to prevent protein adhesion (Figure 4(a)).

Reduction in proteineprotein aggregation could also be

achieved through forming tuned mixtures of ionic liq-
uids [37]. Monitoring with UVevis, CD, DLS and
fluorescence spectroscopies established that the
detrimental impact of cholinium iodide inducing ag-
gregation of b-lactoglobulin was attenuated through
binary mixing with cholinium salts of acetate, bitar-
trate, chloride and dihydrogen phosphate, enhancing
protein stability. This tuning of protein interactions
with ILs demonstrates how structural/functional
behaviour might be systematically controlled for
different outcomes.
Figure 4

Protein surface interactions and forming stable materials. (a) Stability of myogl
bromide 13h. Reprinted from Journal of Colloids and Interfacial Science, 562
Nockemann, M. Blesic, Multicharge zwitterionic molecules: Hydration, kosmot
from Elsevier. (b) The effect of two ionic liquids on the absorption of carbon diox
Lange, Y. Huang, S. Zhang, Inozyme: ionic liquids as solvent and stabiliser fo
with permission from the Royal Society of Chemistry [38]. (c) A schema for the
convert these to cationic centres; the cationised protein is then encased in an
generate the stable liquid form. Adapted from A.P.S. Brogan: Preparation and
anhydrous stabilities, New J. Chem. 45(15) (2021) 6577–6585 [48]. (For inte
referred to the Web version of this article.)
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Creating stable materials
Gels and nanocomposites comprising protein/peptide

scaffolds and containing ionic liquids are being increas-
ingly developed for a range of applications, including
drug delivery [39,40], functional scaffolds [41,42],
membranes [43], and bioprocess [38,44,45]. A focus on
renewable sources has meant that materials such as
packaging films for food with antibiotic and antioxidant
properties could be produced from gelatin, the alkaloid
and Chinese medicine matrine, and coconut acids (e.g.
lauric acid, capric acid, caprylic acid, caproic acid, and
other fatty acids) [46].

Chemical modification of the surface protein coat of
filamentous bacteriophage M13 enabled it to be
converted into thermally stabilised nanoconjugates
compatible with ionic liquids [47]. Here, a-helicity,
monitored by synchrotron radiation circular dichroism
spectroscopy, increases significantly (25%e49%) on
obin in increasing concentration of zwitterionic liquids 11 and 12 and the
, G. Level, J. Zhang, J. Brown, O. Hammond, B. Hannigan, L. Stella, P.
ropicity and anti-fouling potential, 391–399 (2020) [36], with permission
ide. Reproduce in part from X. Ji, Y. Xue, Z. Li, Y. Liu, L. Liu, P.K. Busk, L.
r efficient bioactivation of CO2, Green Chem. 23(18) (2021) 6990–7000
formation of stable liquid proteins. Protein is reacted at anionic centres to
ionic surfactant, water removed and material suspended in ionic liquid to
application of solvent-free liquid proteins with enhanced thermal and

rpretation of the references to colour in this figure legend, the reader is

www.sciencedirect.com
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Ionic liquids as solvents for proteins Hagen et al. 7
nanoconjugate formation; this level was maintained
both once solvent-free (42%) and in the presence of
selected pyrrolidinium-based ionic liquids (39e44%).
These IL-stabilised materials exhibited thermal sta-
bilities w60e120 �C higher than the corresponding
aqueous nanoconjugates. The role of ILs in protein
nanoconjugate stabilisation was further indicated by
the preparation of a surface-modified a-chymotrypsin

conjugate, which could be solubilised in neat
imidazolium-based IL [45]. The overall process has
been generalised, as illustrated in Figure 4(c) [48].
Chemical modification of the outer-surface protein af-
fords consistent electrostatic anchor points for a
complementarily charged ionic surfactant. The resul-
tant surfactant coat provides the main stabilising
interaction, also limiting protein dynamics and
unfolding, consistent with the improved stability
against heat. A further advantage of the liquid form is
that this can be induced with either a hydrophobic or

hydrophilic ionic liquid, offering significant scope in
mix-and-match systems. This approach shows good
promise for similar modification strategies to avoid the
cold chain and exploit anhydrous environments [48].
Of practical significance in potential climate change
mitigation, an ionic liquid-stable formate dehydrogenase
afforded efficient CO2 conversion to formate when a
nanoconjugate of this enzyme was created with a
mixture of choline prolinate 7m and tetramethylguani-
dinium phenolate 16q [38]. Here synergistic intensifi-
cation (Figure 4(b)) and activation of CO2 were
attributed to reaction at the anions to provide an
enriched substrate environment for the enzyme. MD
simulation suggested further activation of the enzyme

from enhanced action of the NADH cofactor, affected
by IL stabilisation of the protein structure.
Future perspectives
The rational understanding of protein-ionic liquid in-
teractions, including in aqueous media, is improving,
pushing forward the boundaries on using these systems
for biocatalysis, and leading to a broader range of ap-

plications in the medical sector. This is supported by an
increasing number of complementary techniques to
examine complex, and particularly protic, systems (see,
for example, the use of Far IR spectroscopy to under-
stand hydrogen bonding [49]; new computational
methods for protic ILs [50,51]). Upcoming advances in
machine learning applied to ionic liquid properties will
enable even more rapid in silico screening, optimising
these goals further [52e55]. In addition, there is an
increasing exploration of ionic liquids that are not just
biocompatible but also able to be sourced from renew-

ables, providing a trajectory towards fully bio-sourced
materials and processes as needed to tackle both
climate change and circular environments needed for
off-planet living.
www.sciencedirect.com C
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