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Abstract

We consider the problem of decomposing a group norm into a set of individual
obligations for the agents comprising the group, such that if the individual obliga-
tions are fulfilled, the group obligation is fulfilled. Such an assignment of tasks to
agents is often subject to additional social or organisational norms that specify per-
missible ways in which tasks can be assigned. An important role of social norms
is that they can be used to impose ‘fairness constraints’, which seek to distribute
individual responsibility for discharging the group norm in a ‘fair’ or ‘equitable’
way. We propose a simple language for this kind of fairness constraints and anal-
yse the problem of computing a fair decomposition of a group obligation, both for
non-repeating and for repeating group obligations.

Keywords: Multi-Agent Systems, group obligations, group norms, effectiveness, fair-
ness, minimality of norms.

1 Introduction
Norms have been widely proposed as a means of achieving coordination and guaran-
teeing desirable system-level properties in multi-agent systems (MAS). Much of the
literature on normative MAS has focussed on obligations and prohibitions associated
with roles in an organisational structure or directed to individual agents (see, for ex-
ample, [17]). However, many norms apply to groups of agents rather than to an agent
enacting a role, or a particular agent in a MAS. For example, the members of the
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programme committee for a workshop may have a collective obligation to review the
papers submitted to the workshop, or the occupants of a shared apartment may have
an obligation to keep the apartment clean (e.g., as part of the rental agreement). Such
group norms specify a sequence of actions that should be performed by members of the
group, leaving the details of how the norm is to be complied with to the members of the
group themselves. In general, there will be many possible ways to comply with a group
norm, i.e., several different assignments of agents to particular tasks. Each assignment
gives rise to a set of individual obligations that specify what each agent should do in
order to discharge the group obligation. (Note that this paper will focus on ought-to-do
norms, rather norms for ought-to-be. The two are closely related, see e.g., [16]).

The assignment of agents to tasks specified by a group norm is often subject to
additional social or organisational norms that specify permissible ways in which tasks
can be assigned. An important type of social norms are ‘fairness constraints’, that
seek to distribute individual responsibility for discharging the group norm in a ‘fair’
or ‘equitable’ way. For example, there may be a constraint that no single agent should
be required to do all the work necessary to discharge the group norm, or that no agent
should have to do a particular task more than once a week, etc. The social norms
codifying what counts as ‘fair’ vary from organisation to organisation. For example, in
some computer science departments, all members of academic staff may be assigned
teaching duties, while in other departments, more senior academics are not obliged to
teach. A key problem in normative MAS with group norms is determining whether a
particular task allocation is both effective (i.e., it discharges the group norm) and fair,
in the sense of respecting the social norms or fairness constraints in force within the
organisation of which the group is a part.

This paper builds upon and extends [4], in which we made a first step towards defin-
ing the notion of a fair decomposition of a group obligation into individual obligations
for agents in the group. In [4], a group obligation is considered to be a sequential or
parallel composition of actions that have to be performed by the agents in the group,
either once or repeated indefinitely (for example, the obligation to keep the household
running involves repeated execution of the same sequence of cleaning, cooking etc.
actions). In this paper, we generalise this by relaxing the requirement of a fixed se-
quence of actions to allow disjunctions over different orders of executing actions. We
generalise results from [4] to this new setting, and prove new results (Theorem 3). We
also give additional examples and expand related work. As in [4], we show how to
specify agents’ individual offers to contribute to a group norm, and analyse the prob-
lem of producing a set of individual obligations for the agents in the group, such that if
those individual obligations are fulfilled, the group obligation is fulfilled (i.e., an imple-
mentation of the group norm). We propose a simple language for fairness constraints
and analyse the problem of computing a fair implementation of a group obligation,
for both non-repeating and repeating group obligations. We also address the notion of
minimality: an implementation should not unnecessarily demand contributions from
agents.

The structure of the paper is as follows. In Section 2 we introduce the formal
preliminaries, including the formal language we use to talk about group obligations
and the structures used to interpret the language. In Section 3 we introduce the basic
setting of non-repeating group obligations and prove that the problem of whether an
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implementation of a group norm exists is NP-complete. We also analyse the problem
of the existence of minimal and fair implementations. In Section 4 we analyse similar
problems for repeating group obligations. We place our work in the context of existing
research in Section 5 and discuss future work in Section 6.

2 Formal setting
Several approaches to norms have been proposed in the literature, including state-based
norms (where norms are defined in terms of states that should or should not occur), e.g.,
[25], and event or action-based norms (where norms are defined in terms of what agents
should or should not do), e.g., [20, 14]. In this paper we take an action-based view of
norms, in which norms are interpreted as specifying a sequence of actions (possibly
containing gaps) that should occur, either once or repeatedly.1

We work in a propositional language of linear-time temporal logic. We assume that
we have a set of propositional variables Prop that, in addition to ‘normal’ propositional
variables such as c for ‘the room is clean’, contain a special kind of variables of the form
done(a, i), where a is a type of action from a set of actionsAc (which includes the no-
op action skip) and i is the name of an agent in the set of agent namesAg = {1, . . . n}.
Intuitively, done(a, i) is true in a state if immediately before that state, agent i has
performed action a.

The syntax of Linear Time Temporal Logic (LTL), see, e.g., [30], is defined as
follows:

φ, ψ := p | ¬φ | φ ∧ ψ | © φ | φUψ

where p ∈ Prop,© means next state, and U means until.

Definition 1. A transition system for a set Ag of n agents and a set Ac of actions is a
tuple 〈S,R, V, sI〉, where

• S is a non-empty set of states;

• R ⊆ Acn × S × S. Intuitively, (〈a1, . . . , an〉, s, s′) ∈ R means that there
is a transition from s to s′ which corresponds to actions a1, . . . , an executed
by agents 1, . . . , n in parallel. (For ~a = 〈a1, . . . , an〉 ∈ Acn, we will write
(s, s′) ∈ R~a instead of (~a, s, s′) ∈ R);

• V : S × Prop → {true, false} assigns a truth value to each proposition in
each state;

• sI ∈ S is the initial state.

In addition, the following conditions are satisfied:

1State-based norms require a state of affairs to be achieved rather than particular actions to be executed.
Grossi et al [23] argue that a complex action or plan may be seen as equivalent to an action of the form
achieve(α) where α is a state of affairs. This means that action- and state-based norms can be considered
equivalent on the assumption that there is a single agreed action or sequence of actions that achieves the
desired state.

3



sI s
a, b

tI

t2 t4

t1 t3

a

b

skip

skip

skip

skip

Figure 1: A transition system that does not satisfy (1) and (2) (left) and the correspond-
ing system that satisfies (1) and (2) (right).

1. existence of successor: for each state there exists a tuple of actions ~a such that
∃s′((s, s′) ∈ R~a);

2. individual determinacy: if (s′, s) ∈ R~a and (s′′, s) ∈ R~b then for all i, ai = bi
(this means that s is the result of a unique combination of actions executed in
parallel by the agents);

3. meaning of action propositions: V (s,done(ai, i)) = true iff ∃s′((s′, s) ∈
R〈a1,...,ai,...,an〉).

The first condition is a standard simplifying condition for temporal logics [30]. A
transition system that does not satisfy it can easily be transformed into one where all
states with no outgoing transitions have a self-loop that can be interpreted as a no-op
skip action performed by each agent. (To be precise, to satisfy Condition (1), from
the terminal state we add a skip link to a new state which has a skip link to itself.)
Condition (2) requires that for each state there should be a unique tuple of actions by all
agents that produces it (note this is not the same as requiring that each state has a unique
predecessor state; it is possible that (s1, s) ∈ R~a and (s2, s) ∈ R~a, s1 6= s2, however ~a
is the unique tuple of actions generating s). Conditions (2) and (3) are related and are
imposed in order to be able to correctly interpret propositions of the form done(ai, i)
which mean that agent i has just executed action ai. Together, (2) and (3) imply that
for each state s and agent i, there is at most one action a such that done(a, i) holds in
s. This is also a standard feature in agent logics, for example [15], that need to be able
to express which action or event causes the current state. Again, it is easy to transform
any transition system into a system that satisfies condition (2), by unravelling it [7].

Note that our transitions between states is general, in the sense that we assume
each agent to contribute to the transition (more precisely, in R, each agents chooses
an action). Here again, the no-op skip action can be of use, this time to model non-
parallel actions, or actions that are performed by only a subset of the agents (the others
perform skip, i.e., they wait.

For example, consider the transition system on the left in Figure 1 (with a single
agent 1). There are no actions executable in s, so condition (1) is violated. If the
agent executes action a in sI , the resulting state is s, and the same holds if the agent
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executes action b. So condition (2) is also violated. We can transform the system
to the system on the right in Figure 1 that encodes the same information but has a
successor for every state and allows us to make an assignment to action propositions
done(a, 1) and done(b, 1) in a meaningful way. In the new system, t1 and t2 have the
same propositional assignment as s apart from the action propositions, and t3 and t4
have the same assignment (apart from satisfying the action proposition done(skip, 1)
where skip stands for the no-op action).

Given a transition system M = (S,R, V, sI), a path through M is a sequence
s0, s1, s2, . . . of states such that (si, si+1) ∈ R~a for i = 0, 1, 2, . . .. A fullpath is a
maximal path (where every element in the sequence has a successor) and a run of M is
a fullpath which starts from a state sI ∈ S. We denote runs by ρ, ρ′, . . . , and the state
at position i on ρ by ρ[i].

The truth definition for formulas is given relative to a model, a run ρ and the state
at position i on ρ:

M,ρ, i |= p iff V (ρ[i], p) = true

M, ρ, i |= ¬φ iff M,ρ, i 6|= φ

M, ρ, i |= φ ∧ ψ iff M,ρ, i |= φ and M,ρ, i |= ψ

M, ρ, i |=©φ iff M,ρ, i+ 1 |= φ

M, ρ, i |= φUψ iff ∃j ≥ i such that M,ρ, j |= ψ and ∀k : i ≤ k < j, M,ρ, k |= φ

Other boolean connectives are defined as usual, for example φ → ψ := ¬(φ ∧ ¬ψ).
3φ (some time in the future) is defined as >Uφ, 2φ (always in the future) is defined
as ¬3¬φ. We use©m, m ∈ N, to denote a sequence of© modalities of length m.

We say that a run ρ in a transition systemM = (S,R, V, sI) satisfies φ (M,ρ |= φ)
if M,ρ, 0 |= φ. We say that M satisfies φ (M |= φ) if for all runs ρ in M , M,ρ |= φ.
A formula φ is valid if for all transition systems M , M |= φ. A set of formulas Γ
logically entails φ (Γ |= φ) if for every M and ρ, if M and ρ satisfy all formulas in Γ,
then M,ρ |= φ.

3 Non-repeating norms
In this setting, a group obligation specifies a sequence of actions that should be per-
formed collectively by a group of agents. Each step in the sequence specifies some
actions that must be performed in parallel by the agents in the group. We allow actions
that must be performed by more than one agent simultaneously, e.g., if two agents are
necessary to move a table. The obligation specifies what must be done, and in which
order; however it does not specify which actions should be performed by each agent
in the group. For example a group of agents may be required to clean a room, where
‘cleaning the room’ is interpreted as “some agent has to vacuum the room and some
agent has to do the dusting”. We also consider group obligations where the order of
actions is not specified, but the number of times or frequency of some action is; for
example, someone has to water the plants twice a week (at least two days apart). This
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can be easily expressed as a disjunction of group obligations of the first kind (the plants
have to be watered on Monday and Thursday, or on Monday and Friday, or on Monday
and Saturday, or on Monday and Sunday, or on Tuesday and Friday, etc.).

We assume that each agent in the group proposes one or more individual contri-
butions to implementing the group norm. Each contribution specifies a set of actions
the agent is prepared to perform in order to discharge the group norm. For example,
an agent may specify that it is prepared to vacuum but not to dust. Where the group
obligation specifies that the same action must be performed several times, we allow
an agent’s individual contribution to specify the maximum number of times the agent
is prepared to perform the action. For example, if a group obligation for a week in
a shared house involves cooking dinner each evening, an agent may specify that it is
prepared to cook dinner at most twice during the week.

Before giving formal definitions of group norms and individual contribution schemes,
we need some abbreviations. Let hapd(a1‖ . . . ‖am) (where {a1, . . . , am} is a multi-
set of actions) stand for actions ‘a1, . . . , am were executed in parallel’. This is defin-
able as

hapd(a1‖ . . . ‖am) =
∨

i1 6=···6=im

(done(a1, i1) ∧ . . . ∧ done(am, im))

If A = {a}, we write hapd(a) for hapd(A). Moreover, hapd(∅) is defined as true.
Let haps(A1; . . . ;AN ) where each Aj is a multiset of actions connected by ‖,

stand for a sequence of parallel executions of actions in multisets Aj . This is definable
as

haps(A1; . . . ;AN ) = g(hapd(A1)∧©(hapd(A2)∧©(. . .© hapd(AN )) . . .))

where each Ai is in the scope of i nested© operators. In particular,

haps(A1;A2) = g(hapd(A1) ∧©hapd(A2))

Note that in this definition, the actions start ‘tomorrow’ rather than ‘now’, which is
more or less an arbitrary decision, made for convenience. Finally, to allow expression
of additional constraints such as ‘watering plants should happen twice during the week,
at least two days apart’, we allow disjunctions of haps(Ap−1(1); . . . ;Ap−1(N)) for all
possible permutations p of multisets of actions A1, . . . , AN which satisfy some simple
condition. A permutation is a bijection p : {1, . . . , N} → {1, . . . , N} which shuffles
the multisets of actions in the sequence, that is, it changes their position, but does not
alter them internally, or their multiplicity in the sequence. For a permutation p, we will
abuse notation and write p(A1, . . . , AN ) to denote Ap−1(1); . . . ;Ap−1(N). Consider
the plant watering example. One sequence of executions that satisfies this norm is
haps(w; ∅; ∅;w; ∅; ∅; ∅). A possible permutation p of {1, . . . , 7} sends 1 to 2, 2 to 3,
. . . , 7 to 1; thus, p(w; ∅; ∅;w; ∅; ∅; ∅) = ∅;w; ∅; ∅;w; ∅; ∅. This satisfies the constraint
that the distance between the two occurrences of w is at least 2: |p(1) − p(4)| > 2
(since p(1) is 2 and p(4) is 5). Another permutation sends 2 to 4 and 4 to 2, and leaves
all other indices the same. It results in w;w; ∅; ∅; ∅; ∅; ∅, which does not satisfy the
constraint. To sum up, the norm can be expressed as∨

p:|p(1)−p(4)|>2

haps(p(w; ∅; ∅;w; ∅; ∅; ∅))
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Definition 2 (Non-repeating group norms). Given N ∈ N, a group norm η is defined
as follows:

η :=
∨

p:cond(p)

haps(p(A1; . . . ;AN ))

where p is a permutation, and cond(p) is a conjunctive condition on p expressed in
terms of arithmetic operators, equality, inequality, and natural numbers between 1 and
N .

We write group norms of the form∨
p:
∧

j∈{1,...,N} p(j)=j

haps(p(A1; . . . ;AN ))

(where p is an identity function) as

haps(A1; . . . ;AN )

and refer to them as non-disjunctive norms.

Again, the obligation starts being executed ‘tomorrow’ rather than ‘at some point in
the future’. All formal results in the paper would hold if we used 3

∨
p:cond(p) haps(p(A1; . . . ;AN ))

instead.

Example 1. Two flatmates need to decide who contributes in which way to the tasks of
dusting (d), doing groceries (g), vacuum cleaning (v) and watering the plants (w) for
the next week:

η = haps(w‖g; d‖v; ∅;w; ∅; d; ∅)
That is, on Monday groceries and watering need to be done, on Tuesday, dusting and
vacuuming, on Thursday the plants need to be watered again, and on Saturday dusting
needs to be done. There are no constraints for Wednesday, Friday, and Sunday.

Note that ∅ means that no actions are required to be performed, so the agents can
perform any action at this point in the sequence and still comply with the norm. In
this paper, we are only concerned with obligations, and not with prohibitions on ex-
ecuting actions. We can extend the framework to prohibitions by using ¬done(a, i)
expressions.

We will use do(a, i)m to indicate that i is prepared to perform a at most m times:

do(a, i)0 := 2(¬done(a, i))

and
do(a, i)m+1 := 2(done(a, i)→ gdo(a, i)m)

Definition 3 (Individual contribution schemes). Given an agent i, an individual con-
tribution scheme Di is defined as

∨
Cji (with j ranging over disjuncts) where

Cji :=
∧

ak∈Ac
do(ak, i)

nj
k

where njk ∈ N is the number of times i is prepared to perform ak as part of the offer
Cji . We will refer to Cji as individual contribution offers or simply offers.

7



Sometimes we will treatDi as a set and writeCji ∈ Di to mean thatCji is a disjunct
in Di.

Each Ci specifies a possible combination of actions i is prepared to contribute and
does not refer to actions by other agents. For example, do(a, i)2 ∧do(b, i)1 is an offer
by agent i to execute action a at most twice and action b at most once.

Example 2 (Example 1 continued). Consider the following offers by the agents:

D1 = do(d, 1)1 ∧ do(g, 1)7 ∧ do(v, 1)1 ∧ do(w, 1)7

D2 = do(d, 2)0 ∧ do(g, 2)1 ∧ do(v, 2)0 ∧ do(w, 2)0 ∨
do(d, 2)1 ∧ do(g, 2)0 ∧ do(v, 2)0 ∧ do(w, 2)2

The offer C1
1 = D1 expresses that agent 1 does not mind doing the groceries and

the watering, but is prepared to do the chores of dusting and vacuuming at most once.
Agent 2 (with individual contribution scheme C1

2 ∨ C2
2 ) is willing to either do the

groceries once (C1
2 ), or to do the dusting once and watering twice (C2

2 ).

Note that there is a gap between a group norm and the offers of the agents, in the
sense that although the agents may offer to perform all the actions needed for the group
norm, in order for the group norm to be discharged, the agents need to synchronise
and commit to performing actions at particular times. An implementation of a group
obligation is a set of individual obligations that particular agents should perform a sub-
set of the actions specified in one of their individual contribution offers (this is called
a complete decomposition of the group obligation in [23]). Clearly an implementa-
tion should be effective, that is, if the agents discharge their individual obligations,
the group norm is also discharged, and minimal, i.e., it should not create individual
obligations unnecessarily.

We introduce two types of individual obligation Oi. The first kind of obligation
makes sense when an action that needs to be performed by an agent has to be performed
in any case, regardless of whether the preceding actions have been performed.

Definition 4 (Unconditional individual obligation). An unconditional obligation for i
is a formula of the form©jdone(a, i), where j is a positive natural number.

Intuitively,©jdone(a, i) denotes an obligation to perform a at step j.
The second kind of individual obligation is similar to those considered in [23]. They

make sense for actions whose preconditions are created by the preceding actions. For
example, where an agent is required to decorate a house and the action of decorating
can only be carried out if other agents build the house first. In this case, it does not make
sense to require the agent assigned to the decorating task to execute it unconditionally.

Definition 5 (Conditional individual obligation). A conditional obligation for i is a
formula of the form

haps(A1; . . . ;Am)→ gm+1done(a, i)

That is, i has an individual obligation to do a if the group obligation haps(A1; . . . ;Am)
is discharged.
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An individual obligation Oi for agent i is a conjunction of unconditional and con-
ditional individual obligations for i.

Given a tuple of individual obligations by agents in a group G (consisting of k
agents), OG = 〈O1, . . . , Ok〉, we will identify OG with the conjunction of those Oi’s.
We say thatOG respects the individual offerCji of agent i ifOG∧Cji 6|= ⊥. Essentially
this means that OG does not require i to perform each action a more than the maximal
number of times specified by Cji .

Definition 6 (Implementation of a norm). Given a group norm η =
∨
η′, a set of

agents G ⊆ Ag and their individual contributions {Di | i ∈ G}, an implementation
of η by G is a conjunction OG of obligations Oi (i ∈ G) such that

∃η′∀i ∈ G ∃Cji ∈ Di : OG respects Cji & |= OG → η′

Note that the first actionA1 in any implementation of a group obligation haps(A1; . . . ;
AN ) can be implemented only by unconditional obligations. Note also that if OG is an
implementation of η, then OG is logically equivalent to a conjunction of unconditional
obligations.

Example 3 (Examples 1 and 2 continued.). There is no implementation that imple-
ments η using the contributions C1

1 and C1
2 , because on Tuesday both the dusting and

the vacuuming would have to be performed by agent 1, which is impossible given Defi-
nition 1 (condition 2): done(d, 1) and done(v, 1) cannot hold in the same state since
d and v are different actions. On the other hand, we can assign all individual actions
to agents consistently using C1

1 and C2
2 : agent 1 is assigned g on Monday, v on Tues-

day, w on Thursday, and d on Saturday. This is consistent with its offer C1
1 . Agent 2

is assigned w on Monday and d on Tuesday; this is consistent with its offer C2
2 . The

individual obligation for agent 1 isgdone(g, 1) ∧ g2done(v, 1) ∧ g4done(w, 1) ∧ g6done(d, 1)

and for agent 2 gdone(w, 2) ∧ g2done(d, 2). Together both obligations entail η.
Call this implementation I1. There is one other implementation, I2, which is as I1
except that it assigns the watering task on Thursday to agent 2.

In order to compute individual obligations, and hence an implementation of a group
norm η, we also need an auxiliary notion of an assignment of agents to actions in η.
Essentially, given a group norm η and a set of agent offers, an assignment specifies
which agent is asked to perform which individual action in η, and which agent offer
justifies the assumption that the agent is willing to perform the assigned action.

Definition 7 (Assignment). An assignment of agents in G ⊆ Ag to actions in η =∨
p:cond(p) haps(p(A1; . . . ;AN )) is a function f that for some disjunct η′ = haps(p(A1;

. . . ; AN )), for every Aj 6= ∅ in η′ assigns an agent i ∈ G and a contribution Ci to
every element a of Aj subject to the following constraints:2

2The arguments of f include the position of Aj in η′ and the position of a in Aj , since η′ may contain
several identical Aj and Aj may contain several occurrences of a.
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C1 if f(Aj , j, a, l) = (i, Ci) for k different j (in other words, the agent is assigned to
k different occurrences of a in η′) then do(a, i)m for m ≥ k is a conjunct in Ci;

C2 if f(Aj , j, a, l) = (i, Ci) and f(Aj , j, b, l
′) = (k,Ck) and a 6= b or l 6= l′, then

i 6= k (only one action can be executed by the agent i in a single transition); and

C3 if f(Aj , j, a, l) = (i, Ci) and f(Ak, k, b, l
′) = (i, C ′i), then Ci = C ′i (only one

offer by i is used by the assignment throughout).

Example 4 (Assignment). As in the previous examples, let the norm be

η = haps(w‖g; d‖v; ∅;w; ∅; d; ∅)

If the agents’ offers are specified by

C1
1 = do(d, 1)1 ∧ do(g, 1)7 ∧ do(v, 1)1 ∧ do(w, 1)7

C1
2 = do(d, 2)0 ∧ do(g, 2)1 ∧ do(v, 2)0 ∧ do(w, 2)0

C2
2 = do(d, 2)1 ∧ do(g, 2)0 ∧ do(v, 2)0 ∧ do(w, 2)2

then the following function describes an assignment:

• f(w‖g, 1, w, 1) = (2, C2
2 )

• f(w‖g, 1, g, 1) = (1, C1
1 )

• f(d‖v, 2, d, 1) = (2, C2
2 )

• f(d‖v, 2, v, 1) = (1, C1
1 )

• f(w, 4, w, 1) = (1, C1
1 )

• f(d, 6, d, 1) = (1, C1
1 )

It is clear that f above is a function (it assigns a value to every component of every
joint action in η apart from ∅). Condition C1 holds since no agent i is assigned two
different actions to perform at the same step (for the same joint action in η). Condition
C2 holds: agent 1 is assigned g, v, w and d to perform, which is consistent with its
offer to perform each of these actions at least once (more often for g and w), and agent
2 is assigned w and d, which is also consistent with C2

2 . Condition C3 holds because
only one offer is used for each agent (C1

1 for 1 and C2
2 for 2).

The following theorem will be useful for analysing the implementation of a norm
as a computational problem.

Theorem 1. Every assignment of agents to actions in η satisfying the conditions of
Definition 7 gives rise to an implementation of η, and every implementation gives rise
to such an assignment.

Proof. Assume that we have an assignment f for a group norm η that uses some dis-
junct η′ = haps(p(A1; . . . ;AN )) of η. Let η′ = haps(A′1; . . . ;A′N ) By C3, for
each agent i involved in the assignment, there is a single contribution Ci. Given the
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assignment, generate Oi as
∧
f(A′j ,j,a,l)=(i,Ci)

©jdone(a, i). Clearly
∧
Oi respects

Ci by C1.
∧
i∈GOi is satisfiable by C2. Finally since f is an assignment, any run that

satisfies
∧
i∈GOi also satisfies η′. Hence,

∧
iOi is an implementation of η.

Now assume that we have an implementation
∧
i∈GOi for η =

∨
p:cond(p) haps(p(A1; . . . ;

AN )). By definition, at least one of the disjuncts η′ = haps(p(A1; . . . ;AN )) is en-
tailed by the implementation. Let η′ = haps(A′1; . . . ;A′N ). We will show how to ex-
tract an assignment f for η′ from the implementation. First of all, to satisfy C3, we as-
sign only one contributionCi with whichOi is consistent to every i ∈ G. Now we con-
struct f for each of A′1, . . . , A

′
N in turn. Since

∧
Oi |= η′ and η′ |= haps(A′1), there

are enough conjuncts in
∧
Oi to make sure done(a, ij) holds for every a ∈ A′1 and

there are enough different ij to for every occurrence of a inA′1 (no agent is asked to per-
form more than one action in parallel since

∧
Oi is satisfiable). We take some subset of

those to assign to f(A′1, a). Similarly in order for
∧
Oi to entail haps(A′1; . . . ;A′m+1)

provided it entails haps(A′1; . . . ;A′m) there must be contributions in
∧
Oi of agents

promising to execute an action in A′m+1 after haps(A′1; . . . ;A′m) (or in m + 1 time
steps unconditionally), and enough of them to entail haps(A′1; . . . ; A′m+1). Assign
some subset of those agents to actions in A′m+1.

Now we consider the complexity of the problem whether an implementation of η
by G exists. In the statement of the theorem below, the size of the input to the prob-
lem is measured in the size of the compact representation of η (the size of expression∨
p:cond(p) haps()) and Di (using do(a, i)j), rather than the size of the underlying

LTL expressions. Otherwise, since the LTL expressions are exponential in the size of
the compact representation, there exists a trivially polynomial algorithm for solving the
problem.

Theorem 2. Given a group norm η, a group of agents G, and agent contributions Di

for i ∈ G, the problem of whether an implementation of η by G exists is NP-complete.

Proof. By Theorem 1, the problem of finding an implementation can be reduced to the
problem of finding an assignment. For membership of NP, observe that an assignment
can be guessed in time polynomial in the size of the group norm and checked that it
satisfies the conditions C1-C3 in time polynomial in the group norm and the set of
agents’ contributions. For NP-hardness, we reduce SAT to the problem of finding an
assignment of agents to actions in a simple non-disjunctive group norm. Let φ be a
propositional formula in CNF containing n variables and k clauses. Without loss of
generality, we assume that each clause is unique and none of them contains both pi and
¬pi for some variable pi. The corresponding group norm will be

ηφ = c1; . . . ; ck

where cj is an action corresponding to making the jth clause in φ true. Let G contain
n agents, one for each propositional variable pi in φ. Each agent i has two offers.
Intuitively, the offer Cti corresponds to setting pi to true and the offer Cfi corresponds
to setting pi to false.

Cti =
∧
pi∈cj

done(cj , i), Cfi =
∧
¬pi∈cj

done(cj , i)
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Since we assume that each clause is unique, the agents offer to make each cj true at
most once. Now assume that we have a function f that assigns to clauses pairs (i, Cti )

or (i, Cfi ). By C3, only one of Cti or Cfi is used for each i in this assignment. Hence
for each pi where i ∈ G (i was used in the assignment of agents), we can extract a
unique assignment of a truth value true or false to pi. Because of the way the offers
were defined, this assignments of truth values to pi for i ∈ G will make all the clauses
true.

However, there is a natural special case for which the problem of whether an im-
plementation of a group obligation exists is tractable.

Theorem 3. Given a non-disjunctive group norm η, a group of agents G, and agent
contributions where

1. all agent contributions Di are identical

2. Di does not contain disjunctions

the problem of whether an implementation of η by G exists is in PTIME.

Proof. Intuitively, the algorithm to solve the problem would simply allocate arbitrary
agents to arbitrary actions in η while ensuring that: (i) the same agent is not assigned
to two action executed in parallel, and (ii) the agent’s offer is respected. This process
continues until all actions have an assigned agent, or no agent can be assigned to an
action without violating constraints (i) and (ii). A simple check is sufficient to ensure
that it is possible to complete an assignment without violating conditions (i) and (ii). In
order to make sure that (i) is not violated, we need to check that the maximal number
of actions that must be executed in parallel at any step in η (that is, maxN1 (|Aj |) where
η = haps(A1; . . . ;AN )) is at most |G|. To make sure that (ii) is not violated, we need
to count, for each action type a occurring in η, how many times it occurs in η, and
compare this number with the number of times the action is offered in Di multiplied
by |G|. If each action is offered at least as many times as it is required by η, an
implementation exists.

3.1 Minimality
A natural and desirable property of an implementation of a group norm is that the
agents are not obliged to do more than the norm requires.

Definition 8 (Minimality). Let η be a group norm. Let O1, . . . , Ok be individual obli-
gations for agents in G, and I = O1 ∧ · · · ∧Ok.

• I is a minimal implementation of η if it is an implementation of η and there is no
implementation I ′ = O′1∧· · ·∧O′k of η for which both |= I → I ′ and 6|= I ′ → I .

• I is an i-minimal implementation of η if there is no obligation O′i for i such that
(O1 ∧ · · · ∧O′i ∧ . . . Ok) is an implementation of η for which both |= Oi → O′i
and 6|= O′i → Oi.
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• I is an individually minimal implementation of η if it is an i-minimal implemen-
tation for every i ∈ G.

Clearly, a minimal implementation I of η is individually minimal. The opposite
also holds:

Theorem 4. Let I = O1 ∧ · · · ∧ Ok be an implementation of a group norm η =∨
p:con(p) haps(p(A1; . . . ;AN )) by G. Then I is a minimal implementation iff I is an

individually minimal implementation.

Proof. The left to right direction is obvious, so consider I = O1 ∧ · · · ∧ Ok. Since it
is an implementation of η, using Theorem 1 we can use an assignment f to write each
individual obligation Oi in the following normal form:

Oi = g(γi1 ∧ g(γi2 ∧ . . . gγiN ) . . . )

where each γik is of the form done(a, i) (i is required to do a at step k) or > (no
requirement for i at step k), and there is a contribution Ci so that the number of times
done(a, i) occurs for every a is consistent with Ci. Now let Γj =

∧
i≤n γik . It is not

difficult to see that I is equivalent to

O = g(Γ1 ∧ g(Γ2 ∧ . . . gΓN ) . . . )

Now, if I is not minimal, there is a logically weaker implementation I ′ = g(Γ′1 ∧g(Γ′2∧. . . gΓ′N ) . . . ). However, since no done(a, i) entails any done(a′, i′) unless
a = a′ and i = i′, the implementation I ′ can only be weaker than I if there is some Γj
and Γ′j for which some |= Γj → done(a, i) while 6|= Γ′j → done(b, i) for any action
b (that is, Γj requires i to do a at step j, while Γ′j does not impose a requirement on i
at j). But then, Oi is not minimal, since replacing done(a, i) by > in Oi would be a
weaker obligation for i, and hence I is not individually minimal.

Given the result above, it is clear that the problem of computing a minimal im-
plementation is no harder than the problem of computing an implementation, since it
is possible to check if an implementation (or rather the corresponding assignment) is
individually minimal in polynomial time.

3.2 Fairness
Now we arrive at the main concern of this paper, that is how to define a notion of group
norm implementation that agrees with the social norms accepted by the agents as a way
to regulate the fairness of task assignments.

Some implementations of a group norm may be better than others from the point of
view of the group’s or the wider organisation’s notion of fairness as captured in social
norms. For example, fairness may require that all agents should contribute equally to
the implementation of the group norm, or that agents with less experience are required
to contribute less. LTL offers a natural setting to consider fairness constraints on im-
plementations. By fairness constraints in this setting we do not mean just the notion
of fairness as defined for processes in computer science (e.g., every request will be
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eventually granted). Instead we mean some additional constraints on possible imple-
mentations that reflect the organisation’s view of what is reasonable to require from the
agents. For example, it could be that the organisation does not consider it fair that the
same agent performs an action a (for example, a work shift) twice in a row:

2(
∧
i∈G

(done(a, i)→ g¬done(a, i)))

Another example is that each agent gets a rest from all chores every seventh day:

2(
∧
i∈G

(¬χi ∨ g¬χi ∨ . . . ∨ g6¬χi))

where χi =
∨
a∈{d,g,v,w} done(a, i).

Definition 9 (Fair implementation). Let φ be an LTL formula expressing a fairness
constraint. An implementation I of a group norm is fair with respect to φ (or φ-fair) if
6|= I → ¬φ (in other words, if I is consistent with φ).

Checking fairness of an implementation can be done by checking whether I ∧ φ is
satisfiable.

If group norms are assumed to be fixed length sequences of actions, it arguably does
not make sense to consider arbitrary LTL formulas as fairness constraints. In fact, most
natural fairness constraints in human work allocation do not have the form ‘everyone
eventually gets a holiday’ but ‘everyone gets a holiday after working for n months’.
We therefore restrict the syntax of fairness constraints to talk about fixed finite patterns
of actions.

Definition 10 (Fairness constraint). An LTL formula φ is a fairness constraint if it is
of the form 2ψ, where ψ only contains gmodalities.

Examples of fairness constraints 2ψ are as follows, where N is a given number:
(1) no agent i performs an action a twice in the next N steps, without another agent i
performing it in between those occurrences; (2) agents i1, . . . , im take perfect turns in
all occurrences of action a; (3) if action a happens k times in the next N steps, then at
least m different agents should be involved in their execution; (4) agent i is allowed to
do something other than any of a1, . . . , ak at least once in every k steps; and (5) if i
does a then j does it within k steps.

Example 5. Consider the implementation that we gave in Example 3. Implementation
I1 satisfies fairness constraint (1) above, but I2 does not; likewise for (2). Constraint
(3) holds for I1 in the sense that every action a that occurs twice in the week is assigned
to a different agent, again I2 does not have this property. Regarding (4), note that each
agent is allowed to do anything other than one of the duties {w, g, d, v} in any three
steps; however, none of the implementations allows agent 1 to do anything other than
{g, v} at least once in every 2 steps, throughout the week. Finally, constraint (5) does
not hold for I2, with a = w and k = 4, but does hold for I1 for those values.
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4 Repeating norms
In the previous section, we looked at group norms that correspond to performing some
group task/obligation once. In state-based terms, such norms correspond to achieve-
ment goals: a sequence of actions that must be executed in order to achieve a certain
desirable state. In this section, we consider the case where a group norm relates, in
state-based terms, to a maintenance goal: some condition needs to be maintained in
perpetuity. In order to achieve this condition, some group task has to be executed pe-
riodically. For example, every week the agents in a household need to execute some
combination of cleaning, shopping and cooking tasks: A1; . . . ;A7.

The norm itself requires them to iterate this sequence forever, which we write as
haps(A1; . . . ;A7)∞. We will refer to the number of sequentially composed actions in
the repeated sequence in η as the cycle of η, c(η) (in the example above, c(η) = 7).

An infinite repetition of a sequence A1; . . . ;AN can be defined in LTL as follows:

haps(A1; . . . ;AN )∞ = haps(A1; . . . ;AN )∧
2(haps(A1; . . . ;AN )→ gNhaps(A1; . . . ;AN ))

similarly for disjunctive norms.

Definition 11 (Repeating group norm with cycleN ). A repeating norm with cycleN is
an obligation to repeat A1; . . . ;AN infinitely often: η =

∨
p:cond(p) haps(p(A1; . . . ;

AN ))∞ where p is a permutation, and cond(p) is a conjunctive condition on p ex-
pressed in terms of arithmetic operators, equality, inequality, and natural numbers
between 1 and N . As before, we refer to norms where cond(p) is identity as non-
disjunctive repeating norms, and write them as η = haps(A1; . . . ;AN )∞

The syntax of agents’ individual contribution schemes is similar to Definition 3,
apart from the addition of the norm cycle N : do(a, i)m,N means that the agent offers
to perform a at most m times in every N = c(η). The most straightforward way to
define this in LTL is to rule out all patterns of length N where the agent performs a
more than m times, or, equivalently, to state that in every pattern of length N there
are at least N − m steps when the agent is not performing a. Let Km,N = {K ⊆
{1, . . . N} | |K| = N −m}. Intuitively, this defines all possible combinations of a-
free steps in a pattern of length N if the agent does a at most m times. Let notK(a, i)
for k ∈ Km,N stand for

∧
k∈K

gk¬done(a, i). This formula says that the agent does
not do a on each of the time steps in K. Then do(a, i)m,N =

∨
K∈Km,N notK(a, i)

says that the agent does a at most m times in N steps. Finally, to make this apply not
just to the first N steps but indefinitely, the offer is prefixed with 2.

Definition 12 (Individual contribution schemes for repeating norms). Given an agent
i, and a repeating norm η with cycle N , an individual contribution scheme Di for η is
defined as

∨
Ci where

Cji :=
∧

ak∈Ac
2do(ak, i)

nj
k,N

where njk ≤ N for all k.
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Example 6. The existing examples 1 and 2 can be straightforwardly transformed in the
setting of repeating norms. That is, haps(w‖g; d‖v; ∅;w; ∅; d; ∅)∞ expresses that in
all coming weeks, on Monday watering and groceries need to be done, etc. Moreover,
the offer from Example 2 for agent 1 becomes

C1
1 = 2do(d, 1)1,7 ∧2do(g, 1)7,7 ∧2do(v, 1)1,7 ∧2do(w, 1)7,7

When an agent commits to a repeated group obligation, it may need to commit
to several different ‘shift patterns’: for example, one week the agent will be working
on Mondays, and in another week on Tuesdays. This means that the definition of an
individual obligation for repeated norms becomes a sequence of shift patterns:

Definition 13 (Unconditional individual obligation for repeating norms). Given an
agent i, and a repeating norm η with cycle N , an unconditional individual obligation
for i with respect to η is a formula of the form

2(Γ1 →©(Γ2 ∧ . . . ∧©NΓm ∧©N+1Γ1) . . .)

for some natural number m, where each Γn, 1 ≤ n ≤ m, describes all actions agent i
is committed to perform in the nth N -step period, or ‘shift’. Γn is of the form©γ1 ∧
©2γ2 ∧ . . .∧©Nγn where each γj is either done(aj , i) or > if i is not committed to
performing any action at step j.

An implementation of a repeating norm by a set of agents G is as before a con-
junction of obligations I =

∧
Oi∈G such that |= I → η and I is consistent with agent

offers. A minimal implementation is defined as before, and the same type of fairness
constraints as in the previous section can be applied to repeating norms.

A single cycle assignment of agents to actions in η =
∨
p:cond(p) haps(p(A1; . . . ;AN ))∞

is defined as an assignment for a non-repeating norm η′ =
∨
p:cond(p) haps(p(A1; . . . ;AN )).

Clearly any single cycle assignment repeated every N steps gives rise to an implemen-
tation for a repeating norm. However for repeating norms it makes sense to consider
implementations obtained by ‘gluing’ several different assignments together and re-
peating the resulting pattern, as repetition affects fairness in a non-trivial way. Consid-
ering the example fairness constraints in the previous section, we can see that ‘gluing’
together two (even identical) assignments satisfying fairness constraint (2) stated at the
end of Section 3 may make the resulting implementation unfair (if the last occurrence
of a in the implementation is done by ik with k < m), and also two unfair implementa-
tions (not satisfying fairness constraint (5) in Section 3, for instance) may become fair
when glued together.

A consequence of this is that when solving the problem of finding a φ-fair imple-
mentation of a repeating obligation η, it is not sufficient to consider only single cycle
assignments. If none of those when repeated correspond to a fair implementation of
η, this does not mean that η has no fair implementation. We may need to consider a
combination of several assignments. For example, let φ = 2(

∧
i∈G(done(a, i) →g¬done(a, i))) and η = haps(a)∞. The cycle of η is 1. Suppose there are two

possible one cycle assignments for η, one where agent 1 does a, and another where
agent 2 does a. If either of them alone is repeated, the resulting implementation is not
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fair: either all occurrences of action a are done by agent 1, or all of them are done
by agent 2. Clearly, if we combine these two one cycle assignments or produce a one
cycle assignment to an ‘unravelling’ of η of length two: η2 = haps(a; a)∞, we can
produce an assignment that gives rise to a fair implementation: for example, the first a
is done by agent 1 and the second by agent 2. However to solve the problem of finding
a φ-fair implementation of a repeating norm η (if it exists) we need to know how long
such an unravelling should get before we give up.

For η =
∨
p:cond(p) haps(p(A1; . . . ;AN ))∞, we will call

ηm = haps(A′1; . . . ;A′N ; . . . ;A′1; . . . ;A′N )∞ (m times)

where each A′1; . . . ;A′N is a (possibly different) disjunct of η, an m-unravelling of η.

Theorem 5. Let η be a group obligation with cycle N that has k different one cycle
assignments S1, . . . , Sk (for different disjuncts and different assignments to each dis-
junct), and φ be a fairness constraint of modal depth d.3 If a φ-fair implementation
of η exists, then there exists a φ-fair implementation of η based on the a single cycle
assignment to an m-unravelling of η, where m ≤ max(k, kd/N+1).

Proof. Let τ be an assignment corresponding to a fair implementation of η. Without
loss of generality, we can assume that τ corresponds to a (possibly infinite) sequence
of one cycle assignments for η, Si1 , . . . , Sit , . . .. Given τ , we are going to construct
a sequence of assignments of length m, that is, some sequence τ ′ = S′1, . . . , S

′
m (a

single cycle assignment to ηm) that when repeated infinitely often, gives rise to a φ-fair
implementation of η.

Note that τ (or any other assignment of agents to actions) corresponds to a descrip-
tion of a run in terms of action propositions. Observe that a run violates φ if it has
a pattern of d consecutive states s1, . . . , sd that is a counterexample to φ. Clearly, τ
describes a run that does not contain such a counterexample sequence of states (since it
corresponds to a fair implementation). Note also that none of single-cycle implemen-
tations of η that occur in τ contain such a sequence of states (otherwise τ would not
satisfy φ).

Let us first consider a simpler case when d < N . Then the only way a sequence
of single-cycle assignments Sj1 , . . . , Sjn would violate φ is when there is a sequence
on the ‘joint’ between two assignments Sjl and Sjl+1

that violates it. Let us build a
sequence of assignments of length at most k that does not have such a violating joint.
For convenience, let us say that Sjl and Sjl+1

compose if their concatenation does not
contain a subsequence violating φ. To start building our sequence of length at most k,

3Modal depth is the depth of nesting of modal operators. Formally, md(φ) (for modal depth of φ) is
defined as follows:

• md(p) = 0

• md(¬φ) = md(φ)

• md(φ ∧ ψ) = max(md(φ),md(ψ))

• md(©φ) = 1 +md(φ)

• md(φUψ) = 1 +max(md(φ),md(ψ)).

For the defined connective 2, md(2φ) = md(¬>U¬φ) = 1 +md(φ).
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take the first assignments in τ , Sj1 . Clearly it composes with some other assignments,
since τ does not violate φ. If Sj1 composes with itself (there is a subsequence in τ that
has Sj1 ;Sj1 ), we are done: τ ′ = Sj1 . Otherwise we consider the first two assignments
in τ , Sj1 ;Sj2 . If Sj2 composes with itself, we are done and τ ′ = Sj2 , or if it composes
with Sj1 , then τ ′ = Sj1 ;Sj2 . Otherwise we consider a 3-element prefix of τ . Note
that eventually we are going to encounter Sjf which composes with Sjf+1

that already
occurs in the prefix of the sequence (the maximal possible value for f is k, the total
number of single-cycle implementations). Then we set τ ′ to be the subsequence of
the current sequence that starts from the first occurrence of Sjf+1

and continues until
Sjf . Clearly, τ ′ has length at most k and nowhere in the ‘joints’ of the single cycle
implementations in τ ′ there is a counterexample to φ (including the joint of τ ′ to itself).

Now let d ≥ N . Then a counterexample sequence s1, . . . , sd can span multiple
single cycle assignments. Let d ≤ p · N (p iterations of N are required to produce a
counterexample to φ, so p ≤ (d/N) + 1). Then we make a set of ‘viable multi-cycle
assignments’ Z1, . . . , Zkp of all p-sequences of single-cycle assignments occurring in
τ . We treat them as we treated single cycle assignments Si before, as the building
blocks for τ ′. Similarly to the previous construction, we are bound to start to encounter
the same ‘viable multi-cycle assignments’ after kp steps. So τ ′ is of length at most
kd/N+1.

This means that to construct a φ-fair implementation of η, we only need to consider
assignments to sequences of actions of length m ≤ max(k, kd/N+1). This gives us
an (exponential) algorithm for finding a φ-fair implementation of a repeating norm η
(generate all possible one cycle assignments and then check all concatenations of them
of length m for consistency with φ).

5 Related work
Social laws have long been recognised as an important mechanism to facilitate coor-
dination in multi-agent systems [12], and there exists an extensive literature on formal
approaches to social laws and norms, for example, [33, 28, 35, 32, 1, 8, 17, 10, 11, 3].
Logics for social laws often build upon dynamic or temporal logics such as LTL, CTL,
ATL and STIT. (A recent paper that questions the suitability of temporal logic as a
framework to model norms is [21]; a response is given in [5]). Most of this work
specifies norms and their effects on the multi-agent system semantically by labelling
certain transitions as forbidden (in the case of prohibitions) or labelling certain states
as ‘green’ (good, or encouraged states) or ‘red’ (forbidden ones, see, e.g., [27]). In this
paper, we model only obligations (and not prohibitions) and specify obligations in the
object language.

Group norms have been studied in, for example, [2, 23]. Our definition of non-
repeating group norms is a generalisation of that given in [23]. However in [23] the
emphasis is on formalising synchronisation, and they abstract from the problem of
computing individual obligations necessary to implement a group norm. In [2] group
norms are considered at a much more abstract level. In that framework, a group norm is
defined as making a state formula φ true, and the set of agents responsible for carrying
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out (an abstract STIT-like) action to achieve φ and the set of agents responsible for the
violation are explicitly given as part of the norm. Our approach is closer to [23], in that
the notion of agents responsible for the violation of a group norm given a particular
implementation is definable in terms of the set of individual obligations. An agent that
does not fulfil an unconditional obligation is responsible for a violation, and an agent
with a conditional obligation where the condition of which has not been made true, is
not responsible.

Team formation and coordination of joint actions has been extensively studied in
Artificial Intelligence, for example [18, 24, 34]. However the emphasis of that work
is on efficient and flexible team work rather than on fairness. An exception is the
work in [6], where the authors consider the problem of repeatedly choosing actions
(which could, for example, be actions that assign jobs to people) in a fair way, where
fairness has a decision theoretic interpretation in terms of minimising loss for worse-
off beneficiaries of actions. The motivation of their work is very similar to our problem
of finding a fair implementation of a repeated norm, but they have a specific notion of
fairness and reduce the problem of fair selection of actions to an optimisation problem.

Another strand of related work is found in the behaviour composition literature,
e.g., [36, 29]. The behaviour composition problem aims at the synthesis of a con-
troller which can implement a desired target specification by controlling a collection
of behaviours, running in some environment. Roughly, a controller corresponds to
our notion of implementation, the target specification corresponds to our norm, and
the behaviours correspond to our individual contribution schemes. However, standard
behaviour composition does not consider parallel composition of actions, nor fairness
constraints.

The problem we address is also somewhat related to several other topics in AI and
Computer Science generally. In the remainder of this section, we briefly summarise
the key similarities and differences between our approach and some of this work.

Our setting has some similarities to resource allocation problems discussed in the
social choice literature [9] and in particular the fair allocation of indivisible goods [13].
However, there are some important differences. In fair allocation, a set of (indivisible)
objects must be allocated to a set of agents. Each agent is assigned a subset of objects,
and is assumed to have a preference ordering over sets of objects (bundles). Our notion
of an individual contribution scheme has some similarities to logic-based representa-
tion languages for preferences over bundles [26]. However in our setting an offer is
maximal—an agent is satisfied if the set of actions it is assigned is a subset of one of
its offers. In fair allocation, the converse holds: agents are satisfied if their goal is a
subset of the bundle they are allocated. Moreover, in resource allocation, an allocation
which assigns an agent a bundle containing none of its preferred objects may still be
complete, in the sense of allocating each object to some agent. However, in our setting,
we assume agents will simply refuse to perform any action (or combination of actions)
not included in one of its offers. Any allocation that assigns a ‘refused’ action to an
agent is thus incomplete in an important sense (i.e., the action will not be performed).
Finally, the notion of fairness we consider (essentially any LTL formula) is much more
general than the notion of envy-freeness found in ordinary resource allocation.

As noted in Section 3.2, our work differs from the notion of fairness used in re-
source allocation problems in computing. In such settings, a resource allocation policy
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or protocol is assumed, and the aim is to verify that the policy satisfies some LTL
property (e.g., that a request for a resource is eventually granted) under some fairness
assumption, such as strong or weak fairness. In our work, the allocation of agents to
actions is computed rather than assumed, and LTL is used to express arbitrary fairness
constraints on the allocation, rather than to specify that, e.g., an action will eventually
be performed.

The problem of allocating a sequence of parallel tasks to a set of resources has some
similarities to production (job shop) scheduling [22]. However there are important
differences. In general production scheduling each job consists of a set of operations,
where each operation must be performed by a single machine. Each job may have a
release, a due date, and jobs may be partially ordered. In contrast our language of
norms specifies not just which actions (operations) should be performed, but when
they should be performed (the release and due dates are the same), and at each point in
time, a set of actions must be performed in parallel. Moreover, we consider repeating
patterns of actions. This has no counterpart in production scheduling, where the aim is
simply to process a set of jobs once (the jobs do not repeat). Lastly, we consider fair
allocations of tasks to agents, where fairness is defined as any pattern LTL-expressible
on a fixed length interval. In scheduling the aim is to find a (near) optimal schedule,
where the optimality criterion is specified in terms of makespan, tardiness or some
other cost function.

Our work is also related to the problem of personnel scheduling or rostering [19].
In personnel scheduling, the aim is to find a (near) optimal allocation staff to ‘shifts’,
while taking into account staff availability, preferences etc. Shifts (and their associated
constraints, e.g., tasks that must be performed, levels of seniority of staff that must be
present etc.) correspond to the parallel execution of a set of actions in our setting, and
staff availability has some similarities to our notion of individual contribution schemes.
Similarly to our work, rosters are often repeating (the same shift pattern may be used for
several weeks or months), and schedules may be subject to ‘fairness’ constraints, e.g.,
legal regulations, organisation personnel policies, etc. However our notion of fairness
is more general than the constraints normally considered in personnel scheduling.

There is also work on allocating resources to tasks in a workflow, e.g., [31]. This
work considers parallel execution of tasks, and constraints on allocation of the re-
sources to tasks (e.g., if task1 is executed by agent1, then task2 must also be executed
by agent 1). However this work does not consider cyclic or repeating workflows, and
constraints on resource allocation are restricted to cost constraints and control con-
straints, rather than any pattern expressible in LTL over a fixed length interval of time
as in our approach.

6 Conclusions and Future Work
We describe an approach to expressing and reasoning about implementations of group
obligations taking into account fairness constraints. The notion of fairness constraints
was introduced in [4]. In this paper, we extend fairness constraints to group norms in
which the order in which actions are performed is not fixed. We formalise our approach
in Linear Time Temporal Logic, and give some preliminary results. Our approach has
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a number of limitations. We model only obligations and do not consider prohibitions.
Our notion of group obligation does not allow arbitrary disjunctions of tasks, but only
disjunctions over some permutations of the same set of tasks. We also consider only a
restricted class of fairness constraints. Moreover, neither the norms nor the offers are
state-based, in the sense that one can refer to the state of the environment to say whether
some action should be executed, or whether one is able to perform it. Relaxing these
limitations, and a more compact syntax for representing, for example, individual offers,
are the subject of future work. For example, it would be interesting to explore using
automata for the formulation of the problem and transfer of results from the field of
behaviour composition. It would also be interesting to investigate relaxation of norms
and fairness constraints when a fair implementation does not exist.
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