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Abstract. In this article we consider the application of high-order/hp-version adaptive dis-
continuous Galerkin finite element methods (DGFEMs) for the discretization of the keff-eigenvalue
problem associated with the neutron transport equation. To this end, we exploit the dual weighted
residual approach to derive a reliable and efficient a posteriori error estimate for the computed crit-
ical value of keff. Moreover, by exploiting the underlying block structure of the hp-version DGFEM,
we propose and implement an efficient numerical solver based on exploiting Tarjan’s strongly con-
nected components algorithm to compute the inverse of the underlying transport operator; this is
then utilized as an efficient preconditioner for the keff-eigenvalue problem. Finally, on the basis
of the derived a posteriori error estimator we propose an hp-adaptive refinement algorithm which
automatically refines both the angular and spatial domains. The performance of this adaptive strat-
egy is demonstrated on a series of multienergetic industrial benchmark problems. In particular, we
highlight the computational advantages of employing hp-refinement for neutron transport criticality
problems in comparison with standard low-order h-refinement techniques.
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1. Introduction. The theory of neutron transport is an active area of research
that has continued to be developed over the last seventy years. This growth has
been stimulated by not only the vast increase in computer power, but also the ever-
expanding range of applications. Indeed, nowadays, neutron transport theory is ex-
ploited in applications ranging from the production of radioisotopes for medical use
to neutron well-logging in the oil industry to power generation in nuclear reactors.
It is this latter application that is the key focus of this article. A modern nuclear
reactor is an extremely advanced piece of engineering that must operate both reliably
and safely for a long time (a typical operating life is several decades). One of the key
mathematical models is represented by the neutron transport equation (also referred
to as the Boltzmann equation or Boltzmann transport equation), which models the
distribution and energy of neutrons inside a nuclear reactor. The angular neutron
flux, can be thought of as the randomly driven “dance” of neutrons in a system that
is undergoing fission. The basic process is as follows: neutrons move through a region
at a variety of different trajectories and energies/speeds. Within the region there are
a variety of different nuclides (in a nuclear reactor, one can expect to find various
isotopes of uranium, boron, gadolinium, and a variety of other materials). Collisions
between neutrons and atomic nuclei result in either scattering of the neutron, capture
of the neutron, or fission of the nucleus (a process which releases more neutrons and
creates different nuclides). Each of these events take place with varying probabilities
depending on the energy of the incident neutron and the type of nucleus. Additionally,

∗Submitted to the journal’s Computational Methods in Science and Engineering section June 14,
2016; accepted for publication (in revised form) June 21, 2017; published electronically September
28, 2017.

http://www.siam.org/journals/sisc/39-5/M107994.html
†Department of Engineering, University of Leicester, LE1 7RH, UK (eh171@le.ac.uk).
‡School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7

2RD, UK (Paul.Houston@nottingham.ac.uk, pmxsm2@nottingham.ac.uk).
B916

D
ow

nl
oa

de
d 

10
/1

3/
17

 to
 1

28
.2

43
.3

8.
22

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/39-5/M107994.html
mailto:eh171@le.ac.uk
mailto:Paul.Houston@nottingham.ac.uk
mailto:pmxsm2@nottingham.ac.uk


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

hp-ADAPTIVE DGFEMs FOR NEUTRON TRANSPORT PROBLEMS B917

neutrons may be lost from the system when they exit the given domain; alternatively,
they may be reflected back upon reaching the boundary.

The full neutron transport equation is an integro-differential equation posed in
seven-dimensional phase space: three dimensions in space, two in angle, and one each
in energy and time. Clearly this represents a challenging computational problem,
which may not be tractable in realistic geometries. However, typically the number of
dimensions may be reduced, for example, by assuming the angular neutron flux is time
independent and/or constant in a given spatial direction, as well as only considering
discrete energy groups; see section 2 for details. For the purposes of the current article,
we consider a (discrete) multienergetic four-dimensional (two space and two angular
dimensions) approximation of the underlying neutron transport equation. One key
property of interest for engineers when considering a system of fissile nuclides is the
criticality, that is whether the system is subcritical, critical, or supercritical. In-
tuitively this property corresponds to the behavior of the system as t → ∞ with
the neutron population going to zero if the system is subcritical, remaining constant
if it is critical, and increasing if the system is supercritical. In particular, the key
quantity of interest, keff, is the solution to a related keff-eigenvalue problem. If keff
is greater than one then fewer neutrons per fission need to be released to create a
critical system, and the system is supercritical; if keff is less than one then more
neutrons need to be released per fission, meaning that the system is subcritical; fi-
nally, if keff = 1 the system is critical. Computing accurate and reliable estimates
of keff in a computationally efficient manner is of fundamental importance for nu-
clear reactor design. With this in mind, in this article we consider the application of
goal-oriented dual-weighted-residual (DWR) a posteriori error estimation (cf. [5], for
example), to the hp-version discontinuous Galerkin finite element method (DGFEM)
applied to the neutron transport keff-eigenvalue problem. The hp-version DGFEM
is highly advantageous both from the point of view of ease of hp-adaptivity, as well
as providing a unified variational discretization of the underlying integro-differential
equation with respect to both the spatial and angular dimensions. Moreover, the
structure of the DGFEM discretization naturally lends itself to employing efficient
block elimination solution strategies. With this in mind, in this article we exploit
Tarjan’s strongly connected components algorithm (cf. [40]), in order to compute the
inverse of the underlying discretized transport operator: this is then exploited as an
efficient preconditioner for the numerical evaluation of the keff-eigenvalue problem.
On the basis of the derived a posteriori error estimator, we propose an hp-adaptive
refinement strategy which automatically refines both the angular and spatial domains
in order to reliably and efficiently control the error in the computed value of keff.
For related work on the application of goal-oriented a posteriori error estimation in
the context of both neutron transport and radiative transfer problems, we refer to
[26, 30, 31, 34], for example. To the best of our knowledge, this article represents the
first attempt to apply a unified hp-adaptive DGFEM to study keff-criticality prob-
lems arising in neutron transport applications. The reliability and efficiency of the
proposed hp-version computational framework is demonstrated for a series of indus-
trial benchmark problems; indeed, here we observe exponential rates of convergence
of the error in keff as the underlying finite element space is enriched. Moroever,
comparisons between the hp-adaptive scheme and an h-adaptive low-order DGFEM
employing piecewise linear polynomials in space and piecewise constant polynomi-
als in angle will be undertaken. We note that this latter discretization of the an-
gular domain represents a variant of the very popular discrete ordinates method;
cf. [8, 9, 25].
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B918 E. HALL, P. HOUSTON, AND S. MURPHY

The outline of this article is as follows. In section 2 we first introduce the neutron
transport equation, together with the corresponding keff-eigenvalue problem. The hp-
version DGFEM discretization is then introduced in section 3. Section 4 is devoted
to the construction of an efficient solver based on exploiting the block structure of the
underlying DGFEM. In section 5 we derive a goal-oriented a posteriori error estimator
for the reliable computation of keff. Moreover, we consider the design of a suitable hp-
refinement algorithm which automatically refines the computational meshes defined
over both the angular and spatial domains. A series of multienergetic industrial
benchmark problems are considered in section 6. Here, the quality of the computed a
posteriori error estimate is studied; moreover, comparisons between the exploitation
of h- and hp-refinement strategies are reported. Finally, in section 7 we summarize
the work presented in this article and draw some conclusions.

2. Neutron transport problem. Given that Ω is a bounded, connected Lip-
schitz domain in Rd, d ≥ 1, with boundary ∂Ω, the neutron transport equation is
given by: find ψ = ψ(x,µ, E, t) such that

1
v

∂ψ

∂t
+ µ · ∇ψ + Σtψ =

1
4π

∫
R+

∫
S2

Σs(x,µ′,µ, E′, E, t)ψ(x,µ′, E′, t)dµ′dE′

+
χ

4π

∫
R+

∫
S2

ν(E′)Σf (x, E′, t)ψ(x,µ′, E′, t)dµ′dE′(2.1)

for (x,µ, E, t) ∈ Ω× S2 × R+ × R+, subject to the initial/boundary conditions

ψ(x,µ, E, 0) = ψ0(x,µ, E) in Ω× S2 × R+,(2.2)
ψ = ψD on ∂µ

−Ω× S2 × R+ × R+,(2.3)

where the inflow and outflow portions of the spatial domain Ω are defined, respectively,
for each µ ∈ S2, by

∂µ
−Ω = {x ∈ ∂Ω | µ · n < 0} , ∂µ

+Ω = {x ∈ ∂Ω | µ · n ≥ 0} .
Here, n denotes the unit outward normal vector on the boundary ∂Ω, S2 is the surface
of the unit sphere in R3 centered at the origin, v is the speed of the neutrons, given
by v = v(E) =

√
2E/neutron mass, χ = χ(E) is the probability of a neutron being

generated from fission, ν = ν(E) is the average number of neutrons generated from
fission, and Σt = Σt(x, E, t), Σs = Σs(x,µ′,µ, E′, E, t), and Σf = Σf (x, E′, t) denote
the total, scattered, and fission cross sections, respectively.

As noted above, we focus on the issue of determining the criticality of a given
system based on considering an associated eigenvalue problem. We point out that
there are two versions of the criticality problem which both take the form of an eigen-
value problem: these are the time decay or α-eigenvalue problem and the reactivity
or keff-eigenvalue problem. To obtain the α-eigenvalue problem we consider solutions
of (2.1) of the form ψ(x,µ, E, t) = ψα(x,µ, E)eαt. Substituting this into (2.1), as-
suming the material coefficients are independent of t, yields the following eigenvalue
problem: find (α,ψα) such that

αψα = −vµ · ∇ψα−vΣtψα+
v

4π

∫
R+

∫
S2

Σs(x,µ′,µ, E′, E)ψα(x,µ′, E′)dµ′dE′

+
χ v

4π

∫
R+

∫
S2

ν(E′)Σf (x, E′)ψα(x,µ′, E′)dµ′dE′

in Ω× S2 × R+,(2.4)
ψα = 0 on ∂µ

−Ω× S2 × R+,(2.5)
C(ψα) = 1,(2.6)
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where C(·) is a suitable normalization condition; for example, we may select C(·) =
‖ · ‖L2(Ω×S2×R+). Here, and throughout the rest of this article, we have assumed
vacuum boundary conditions, i.e., ψD ≡ 0. The leading eigenvalue with largest real
part, denoted by αc, determines the criticality of the system. Assuming αc is real, for
a subcritical problem we have αc < 0, αc > 0 for a supercritical problem, and αc = 0
for a critical problem.

Alternatively, criticality can be determined by evaluating the effective multipli-
cation factor, reactivity or keff-eigenvalue problem given by: find (keff, ψ

k) such that

µ · ∇ψk + Σtψk =
1

4π

∫
R+

∫
S2

Σs(x,µ′,µ, E′, E)ψk(x,µ′, E′)dµ′dE′

+
1
keff

χ

4π

∫
R+

∫
S2

ν(E′)Σf (x, E′)ψk(x,µ′, E′)dµ′dE′

in Ω× S2 × R+,(2.7)
ψk = 0 on ∂µ

−Ω× S2 × R+,(2.8)

C(ψk) = 1.(2.9)

The existence in general of the eigenvalue keff and its associated eigenfunction
ψk are assumed for physical reasons; indeed, it can be shown (cf. [35], for example),
that under certain conditions, this eigenvalue is real, positive, and simple. If there
are fissions taking place in the system then we assume that by varying the number
of neutrons released in each fission it is possible to force the system into a state of
balance between the number of neutrons gained and the number of neutrons lost. A
more detailed discussion of this eigenproblem is given in [7] including the existence of
a discrete dominant keff-eigenvalue under the multigroup discretization of the energy
variable (see section 2.1).

In this case criticality is inferred by the leading (smallest in magnitude) keff,
denoted by kceff. Given that kceff is real, if kceff > 1 then fewer neutrons per fission
need to be released to create a critical system, therefore the system is supercritical;
if keff < 1, then more neutrons need to be released per fission, and so the system is
subcritical; if keff = 1 then the system is critical.

2.1. Multigroup approximation for energy. In order to simplify the neutron
transport models presented above (cf. (2.1)–(2.3), (2.4)–(2.6), and (2.7)–(2.9)), it is
usual to approximate the energy variable by either assuming that all scattering is
elastic (cf. [18]), which leads to the so-called monoenergetic approximation, or to
consider a discrete number of specific energy groups of physical interest. This latter
approach, which leads to the multigroup approximation, will be considered for the
keff-eigenvalue problem stated in (2.7)–(2.9); of course, such an approximation may
naturally be defined for both (2.1)–(2.3) and (2.4)–(2.6) as well.

To this end, the full energy spectrum is first restricted to the range of interest
[E0, EG] ⊂ R+. We then partition [E0, EG] into G subintervals, [Eg−1, Eg], g =
1, . . . , G, each of which represents a given energy group; by convention g = 1 is the
highest energy group. The multigroup approximation assumes that for each energy
group, the angular neutron flux may be separated into the product of its energy
dependent and independent parts, i.e., for energy group g, g = 1, . . . , G, we write

ψk(x,µ, ·)|[Eg−1,Eg] = f(E)ψg(x,µ),(2.10)

where f = f(E) is a piecewise smooth function on each interval [Eg−1, Eg], g =
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B920 E. HALL, P. HOUSTON, AND S. MURPHY

1, . . . , G, which is normalized so that

(2.11)
∫ Eg

Eg−1

f(E)dE = 1.

The multigroup approximation is then determined by replacing the integrals with
respect to E′ with the sum of the integrals over each energy subinterval [Eg−1, Eg],
g = 1, . . . , G, and integrating the resulting integro-differential equation with respect
to E over the interval [Eg−1, Eg]. Thereby, by employing the normalization of f(E),
together with the group parameters

Σt,g(x) =
∫ Eg

Eg−1

Σt(x, E)f(E) dE,

Σs,g′→g(x,µ′,µ) =
∫ Eg

Eg−1

∫ E′g

Eg′−1

Σs(x,µ′,µ, E′, E)f(E′) dE′ dE,

χg =
∫ Eg

Eg−1

χ(E) dE,

νgΣf,g(x) =
∫ Eg

Eg−1

ν(E)Σf (x, E)f(E) dE,

the multigroup approximation to (2.7)–(2.9) is given by: find (keff, ψg), 1 ≤ g ≤ G,
such that

µ · ∇ψg + Σt,gψg =
G∑

g′=1

1
4π

∫
S2

Σs,g′→g(x,µ′,µ)ψg′(x,µ′) dµ′

+
1
keff

G∑
g′=1

χg
4π

∫
S2

νg′Σf,g′(x)ψg′(x,µ′) dµ′ in Ω× S2,(2.12)

ψg = 0 on ∂µ
−Ω× S2,(2.13)

CM(ψ) = 1,(2.14)

where ψ = (ψ1, . . . , ψg) and CM(·) is (again) a suitable normalization condition; for
example, we may select

CM(ψ) =

(
G∑
g=1

‖ψg‖2L2(Ω×S2)

)1/2

.

Here, for simplicity of notation, we again use keff to denote the effective multiplication
factor defined in (2.12)–(2.14) though we stress that in general this will be different
than keff satisfying (2.7)–(2.9). In the case when G = 1, so that the interval [E0, E1]
contains all values of interest in the energy spectrum, we deduce the monoenergetic
approximation of the neutron transport equation.

Remark 2.1. For the purposes of this article, we assume that the scattering cross
section is isotropic; thereby, Σs,g′→g(x,µ′,µ) ≡ Σs,g′→g(x). We note that this ap-
proximation is valid for scattering off nuclei with large atomic mass.

3. DGFEM discretization. In this section we consider the DGFEM discretiza-
tion of the keff-eigenvalue problem (2.12)–(2.14); in particular, we employ a discon-
tinuous piecewise polynomial approximation in both the spatial and angular domains
Ω and S2, respectively. To this end, we write TS = {κS} to denote a shape reg-
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ular subdivision of the spatial domain Ω into disjoint open elements κS such that
Ω =

⋃
κS∈TS κS , where each κS ∈ TS is a smooth bijective image of a fixed reference

element κ̂, i.e., κS = FκS (κ̂), and κ̂ is either the open unit d-simplex or the open unit
hypercube in Rd, d ≥ 1. We allow the mesh TS to be 1-irregular, i.e., each edge of an
element κS ∈ TS may contain (at most) one hanging node. To each element κS ∈ TS
we associate a polynomial degree pκS , pκS ≥ 0, and collect the pκS in the polynomial
degree vector p = (pκS : κS ∈ TS). With this notation we define the spatial hp-finite
element space by

Vp(TS) = {v ∈ L2(Ω) : v ◦ FκS ∈MpκS (κ̂) ∀κS ∈ TS},

where Mp(κ̂), p ≥ 0, is either the space Pp(κ̂) of polynomials of total degree at
most p on κ̂, if κ̂ is the reference d-simplex, or the space Qp(κ̂) of all tensor-product
polynomials on κ̂ of degree at most p in each coordinate direction, if κ̂ is the unit
reference hypercube in Rd.

Next, we define a finite element space over the angular domain S2. First, however,
we note that the angular domain may be parameterized by spherical polar coordinates,
i.e., given µ ∈ S2, we have that

µ =
(

cos(θ) sin(ϕ)
sin(θ) sin(ϕ)

cos(ϕ)

)
∈ R3,

where (ϕ, θ) ∈ (0, π) × [0, 2π). Here, the polar coordinate ϕ is measured from the
north pole, and the azimuthal coordinate is θ. Thereby, we write TA = {κA} to
denote a shape regular subdivision of the parameterized domain (0, π) × [0, 2π) into
disjoint open quadrilateral elements κA such that [0, π] × [0, 2π] =

⋃
κA∈TA κA. As

above, we define the polynomial degree vector q = (qκA : κA ∈ TA), qκA ≥ 0, and
the corresponding hp-finite element space by

Vq(TA) = {v ∈ L2(S2) : v ◦ FκA ∈ QqκA (κ̂) ∀κA ∈ TA}.

With this notation, over the full space-angle mesh

T = TS × TA = {κS × κA |κS ∈ TS , κA ∈ TA} ,

we define the hp-finite element space

Vp,q(T ) = {v ∈ L2(Ω× S2) : v ≡ v(x,µ) ∈ Vp(TS)⊗ Vq(TA)}.

Given κS ∈ TS , the trace of a smooth function v on ∂κS (the boundary of κS),
relative to κS , is denoted by v+. Then for almost every x ∈ ∂κS\∂Ω, there exists
a unique κS

′ ∈ TS such that x ∈ ∂κS
′; thereby, the outer/exterior trace v− of v

on ∂κS\∂Ω, relative to κ, is defined as the inner trace v+ relative to the element(s)
κS
′ such that the intersection of ∂κS ′ with ∂κS\∂Ω has positive (d− 1)-dimensional

measure. With this notation, the DGFEM approximation for the neutron transport
keff-eigenvalue problem is given by: find keff,h ∈ R and ψh,g ∈ Vp,q(T ), g = 1, . . . , G,
such that

T (ψh,g, vh)− S(ψh, vh) =
1

keff,h
F (ψh, vh),(3.1)

CM(ψh) = 1(3.2)

for all vh ∈ Vp,q(T ), g = 1, . . . , G, where ψh = (ψh,1, . . . , ψh,G). Here, T (·, ·),
S(·, ·), and F (·, ·) represent the DGFEM discretization of the transport, scattering,
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and fission terms, respectively. Indeed, here we have that

T (w, v)

=
∑

κA∈TA

∑
κS∈TS

∫
κA

{∫
κS

(−wµ · ∇v + Σt,gwv)dx +
∫
∂κS

Hµ(w+, w−,nκS )v+ ds

}
dµ,

S(w, v)

=
1

4π

G∑
g′=1

∑
κA∈TA

∑
κS∈TS

∑
κA′∈TA

∫
κA

∫
κS

(∫
κA′

Σs,g′→g(x)wg′(x,µ′) dµ′
)
v dx dµ,

F (w, v)

=
χg
4π

G∑
g′=1

∑
κA∈TA

∑
κS∈TS

∑
κA′∈TA

∫
κS

∫
κA

(∫
κA′

νg′Σf,g′(x)wg′(x,µ′) dµ′
)
v dx dµ,

where w = (w1, . . . , wG). Here, Hµ(w+, w−,nκS )|∂κS×κA , which depends on both
the inner and outer trace of w on ∂κS × κA, κ = κS × κA ∈ T , and the unit outward
normal vector nκS to ∂κS , is a numerical flux function. This may be chosen to be any
two-point monotone Lipschitz function which is both consistent and conservative; see
[28, 41], for example. In the current setting, the most natural choice of numerical flux
is the standard upwind flux given by

Hµ(w+, w−,nκS )|∂κS×κA =
1
2

(µ · nκS + |µ · nκS |)w+ +
1
2

(µ · nκS − |µ · nκS |)w−;

here, in accordance with the boundary condition (2.13), we set w− = 0 when ∂κS ∩
∂Ω 6= ∅.

Remark 3.1. In the case when piecewise constant polynomials are employed over
the angular mesh TA, i.e., when q ≡ 0, then the above DGFEM approximation of
the neutron transport keff-eigenvalue problem is essentially equivalent to employing
a discrete ordinates approximation over the angular domain S2; cf. [17], for example.
Indeed, let us, for simplicity of presentation, consider the monoenergetic case corre-
sponding to G = 1, then writing ψh ≡ ψh,1, we wish to determine keff,h ∈ R and
ψh ∈ Vp,q(T ), such that

T (ψh, vh)− S(ψh, vh) =
1

keff,h
F (ψh, vh) ∀vh ∈ Vp,q(T ),(3.3)

CM(ψh) = 1.(3.4)

Writing µi, i = 1, . . . , NO, to denote the centroids of the elements in the angular
mesh TA, where NO is the number of elements in TA, then writing ψ

[i]
h = ψh(·,µi),

i = 1, . . . , NO, the DGFEM (3.3) may be written in the following form: find keff,h ∈ R
and ψ

[i]
h ∈ Vp(TS), i = 1, . . . , NO, such that∑

κS∈TS

{∫
κS

(
−ψ[i]

h µi · ∇vh + Σtψ
[i]
h vh −

Σs
4π
φhvh

)
dx

+
∫
∂κS

Hµi(ψ
[i],+
h , ψ

[i],−
h ,nκS )v+

h ds

}
=

1
keff,h

χ

4π

∑
κS∈TS

∫
κS

νΣfφhvh dx(3.5)
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for all vh ∈ Vp(TS), where φh =
∑NO
i=1 wiψ

[i]
h , and wi denotes the measure of the

ith angular element. For simplicity of notation, in this monoenergetic setting, we
have written Σt, Σs, χ, and ν instead of Σt,1, Σs,1→1, χ1, and ν1, respectively. The
equivalence of the numerical flux in (3.1), and the variant in (3.5), which is sampled
at the centroids of the angular elements, requires the sign of µ · nκS to be consistent
between two neighboring spatial elements; otherwise, in general these terms will not
be identical. In practice, however, we observe that the DGFEM (3.3) and its discrete
ordinates variant (3.5) yield almost identical results; cf. [37].

4. Ordered–based iterative solver. In this section we develop an efficient
solver for the computation of the DGFEM approximation of the neutron transport
keff-eigenvalue problem given in (3.1), (3.2). To this end, for simplicity, we consider
the monoenergetic case corresponding to G = 1; cf. (3.3), (3.4) in Remark 3.1; the
extension of the proposed solver to the multigroup approximation, i.e., when G > 1,
follows in an analogous manner.

Given Vp,q(T ) = span{ϕi}Ni=1, where N = dim(Vp,q(T )), we have that ψh =∑N
i=1 Ψ[i]ϕi, where Ψ[i], 1 ≤ i ≤ N , denotes the ith entry of the N -vector Ψ.

Thereby, we may rewrite (3.3) in the following matrix form: find keff,h ∈ R and
Ψ ∈ RN such that

(4.1) (T− S)Ψ =
1

keff,h
FΨ,

where

T[i, j] = T (ϕj , ϕi), S[i, j] = S(ϕj , ϕi), F[i, j] = F (ϕj , ϕi), i, j = 1, . . . , N.

A common approach exploited within the literature is based on employing a simple
power iteration; cf. [1, 4, 43], for example. Here, the essential idea is to rewrite (4.1)
in the following manner: find keff,h ∈ R and Ψ ∈ RN such that

keff,hΨ = (I−T−1S)−1T−1FΨ.

Then, expanding (I−T−1S)−1 in terms of the Neumann series

(4.2)
(
I−T−1S

)−1
=
∞∑
k=0

(
T−1S

)k
,

we get: find keff,h ∈ R and Ψ ∈ RN such that

(4.3) keff,hΨ = MΨ,

where

(4.4) M =
∞∑
k=0

(
T−1S

)k
T−1F.

Thereby, the power method may be directly applied to (4.3) based on truncating the
Neumann expansion in (4.4), say, with only K > 1 terms. However, if the dominance
ratio, i.e., the ratio of the two successive largest eigenvalues, is close to one, then
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B924 E. HALL, P. HOUSTON, AND S. MURPHY

convergence of the power method applied to (4.3) may be extremely slow; cf. [43]. For
a review of the application of this technique applied to neutron transport applications,
we refer to [1], and the references cited therein; cf., also, [2, 33].

As an alternative approach, we exploit the implicitly restarted Arnoldi method to
the keff-eigenvalue problem, written in the following form: find keff,h ∈ R and Ψ ∈ RN
such that

keff,hΨ = (T− S)−1FΨ;

this corresponds to (4.3) with M = (T−S)−1F. In this setting, instead of employing
a Neumann series approximation, the action of (T − S)−1 is computed using the
GMRES method, based on employing T−1 as the preconditioner.

We point out that both of the above proposed solvers require the action of the
inverse of the transport matrix T; indeed, this represents one of the most computa-
tionally intensive parts of both algorithms. With this in mind, we now develop an
efficient approach for the application of T−1. One of the major advantages of em-
ploying DGFEMs for the numerical approximation of first–order hyperbolic partial
differential equations is that, if the underlying characteristics are straight, for exam-
ple, in the case of a constant advection field, then the elements may be reordered using
a topological sorting algorithm in such a fashion that the underlying transport matrix
T is block lower diagonal, in which case the numerical solution can be determined us-
ing a block forward substitution algorithm. Indeed, in the case of employing a discrete
ordinates DGFEM corresponding to q ≡ 0 (cf. Remark 3.1), then this approach may
be directly employed to compute the resulting approximation to the keff-eigenvalue
problem. In general, however, when higher–order finite elements are employed in the
angular domain, then groups of spatial elements become coupled, in which case a
more sophisticated algorithm is needed to identify groups of elements that must then
be solved together. With this in mind below we outline Tarjan’s strongly connected
components algorithm for identifying the required irreducible ordering for the matrix.

Before we proceed, let us first revisit some graph theory. A directed graph G =
(V, E), is composed of a set of vertices V , and a set of ordered pairs of vertices called
edges, (m,n) = e ∈ E , where m,n ∈ V . A (directed) path is a sequence of edges
which connect a sequence of vertices, such that the edges are all directed in the same
direction. A cycle is a set C,

C = {(n1, n2), (n2, n3), . . . , (nN , n1)} ⊂ E .

A graph is said to be acyclic if such a subset does not exist. A connected component
SG is a subset of V for which there is a path between any two nodes in SG . SG is
said to be a strongly connected component if there does not exist another connected
component S′G 6= SG such that SG ⊂ S′G . It is clear that any cycle is also a connected
component, though not necessarily a strongly connected component, and that any
directed graph may be uniquely partitioned into strongly connected components.

With reference to the discrete ordinates DGFEM (3.5), given a characteristic di-
rection µi, the topological properties of the underlying spatial finite element mesh
TS may be illustrated by representing it as a directed graph G. Each element in TS
corresponds to a vertex in V and each element boundary which is not parallel to µi
corresponds to an edge in E , with that edge directed in the direction of the charac-
teristic flow across that boundary. Figure 1 illustrates how a given spatial mesh may
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Fig. 1. (a) A spatial mesh over some spatial domain with an ordinate direction µi. (b)
Associated acyclic directed graph.

be represented as a graph in this manner. On the basis of the graph ordering, the
structure of the resulting transport matrix T, given the single characteristic direc-
tion µi, now becomes clear. Indeed, T will be block lower diagonal if the elements
are reordered so that the outflow element comes before the inflow element; on the
other hand, if the ordering sets the inflow element before the corresponding outflow
element, then the associated matrix will be block upper diagonal. With this in mind,
we assert that an edge (m,n) on the graph corresponds to a lower triangular block
in the transport matrix if m comes before n in the current ordering and an upper
triangular block if n comes before m. Note that in the unlikely event that an element
boundary is parallel to the characteristic direction, the aforementioned term will be
zero and thus there will be no corresponding edge on the graph; in Figure 1 this
occurs between elements 5 and 6. This also highlights that the ordering is sensitive
to small perturbations; indeed, if the interior node connecting elements 5 and 6 is
moved slightly to the left or right, then the associated graph will change accordingly.
However, we stress that this sensitivity is not detrimental to the overall performance
of the proposed ordered solver. Finally, we remark that such an ordering may be
efficiently computed by Tarjan’s algorithm (see [15]); writing |V | and |E| to denote
the number of vertices and edges in the underlying directed graph G, respectively, the
number of operations required is O(|V |+ |E|).

As noted above, in general, cycles are present in the directed graph G associated
with a given spatial mesh and angular element. Thereby, in this setting, we exploit
Tarjan’s strongly connected components algorithm, which both partitions the graph
into strongly connected components and outputs these strongly connected compo-
nents in reverse topological order. With the output from Tarjan’s strongly connected
components algorithm it is then possible to implement a version of the above sweep-
ing procedure to efficiently apply the inverse of T by performing linear solves on each
strongly connected component in the reverse order that they are returned from the
algorithm. The basic idea of Tarjan’s strongly connected components algorithm is to
use a recursively implemented depth first search to visit every vertex in the graph,
putting each onto a stack data structure. The stack contains all vertices that have
already been visited but have not yet been assigned to a strongly connected com-
ponent. The algorithm also requires an array of length |V | which contains indices
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B926 E. HALL, P. HOUSTON, AND S. MURPHY

indicating the order in which each vertex is visited by the depth first search and an
array of length |V | which contains a pointer to the vertex with the lowest index that
can be reached from each vertex on the stack. Any time a new vertex is visited it
receives an index and a pointer and is pushed onto the stack. When the depth first
search has finished iterating on a vertex, if its pointer points to itself then it is the
root of a strongly connected component and the stack is popped down to it. As the
algorithm progresses through the graph, no strongly connected component is output
before its successors, and therefore a topological ordering of the strongly connected
components is obtained. As before, the number of operations required is O(|V |+ |E|).
For the purposes of this article, we employ the version from the HSL Mathematical
Software Library; see [24]. Now that we have the tools to write the matrix T in
block triangular form, we can describe the sweeping procedure for applying T−1 to
a vector without assembling the underlying matrix system. Algorithm 4.1 describes
the procedure, which is equivalent to a block forward substitution algorithm for a
block triangular matrix, in terms of our spatial finite element mesh and angular ele-
ment. To compute the solution of the strongly connected component matrix equation
Tlocx = b we employ the MA41 linear solver from the HSL library, together with the
block preprocessor developed in [37].

Algorithm 4.1 (Sweeping Algorithm). This algorithm takes a spatial finite
element mesh TS, its directed graph G = (V, E) associated with an angular element
κA, and a topologically ordered list of its strongly connected components Si ⊂ V ,
i = 1, . . . , NS , where

⋃
i Si = V and sweeps through the spatial domain applying

T−1|κA to a vector v. The algorithm proceeds as follows:
1: Allocate local matrix Tloc, solution x, and right-hand side b.
2: Label all κS ∈ TS UNSOLVED.
3: for i = 1, . . . , NS do
4: Include values from v in b.
5: for κS ∈ Si do
6: Compute volume integrals for κS and include in Tloc.
7: if ∂κS ∩ ∂µ

+Ω 6= ∅ then
8: Compute face integrals for ∂κS and include in Tloc.
9: end if

10: end for
11: for κS ∩ κS ′ ∈ E do
12: if {κS , κS ′} ⊂ Si then
13: Compute face integrals for κS ∩ κS ′ and include in Tloc.
14: end if
15: if κS ∈ Si & κS

′ 6∈ Si then
16: Compute face integrals for κS ∩ κS ′
17: if κS ′ is marked SOLVED then
18: Get solution values from κS

′, xκS ′ .
19: Build a block BκS∩κS ′ comprising the face terms involving elements

κS and κS ′.
20: Subtract BκS∩κS ′xκS ′ from the κS values in b.
21: else
22: Include ∂κS \ ∂Ω face integrals in Tloc.
23: end if
24: end if
25: if κS ′ ∈ Si & κS 6∈ Si then
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26: Repeat Steps 16–23 with κS and κS ′ interchanged.
27: end if
28: end for
29: Solve Tlocx = b and store solution values.
30: for κS ∈ Si do
31: Label κS SOLVED
32: end for
33: end for

5. Error estimation and adaptivity. In this section we consider the deriva-
tion of an a posteriori error estimate for the accurate computation of the critical value
of keff (cf. (2.12)–(2.14)), together with the design of the corresponding hp-adaptive
refinement strategy. To this end, we exploit the DWR technique (cf. [5, 6]); in par-
ticular, we refer to [11, 20, 21] for the application of this technique to eigenvalue
problems. Extension of this work to bifurcation problems has been considered in the
series of articles [12, 13, 14]; see [10] for the generalization to hp-adaptivity.

5.1. A posteriori error estimation. Introducing the notationψ
h

= (keff,h,ψh)
and vh = (kveff,h,vh), vh = (vh,1, . . . , vh,G), the DGFEM approximation of the neu-
tron transport keff-eigenvalue problem may be written in the following compact form:
find ψ

h
∈ R× Vp,q(T ) such that

(5.1) N (ψ
h
,vh) = 0

for all vh ∈ R× Vp,q(T ), where Vp,q(T ) = [Vp,q(T )]G and

N (ψ
h
,vh) =

G∑
g=1

(keff,h (T (ψh,g, vh,g)− S(ψh, vh,g))− F (ψh, vh,g))

+ kveff,h(CM(ψh)− 1).

Assuming that the eigenfunction ψ is sufficiently smooth (cf. [36, 38]), then the
consistency property of the numerical flux implies that N (ψ,vh) = 0 for all vh ∈
R × Vp,q(T ), where ψ = (keff,ψ). Thereby, the following Galerkin orthogonality
property holds:

(5.2) N (ψ,vh)−N
(
ψ
h
,vh

)
= 0

for all vh ∈ R× Vp,q(T ).
In order to derive a computable a posteriori bound for the critical value of keff,

we proceed as in [11, 20, 21] by defining the (nonlinear) functional

J(ψ) = keffCM (ψ) ≡ keff.

Assuming J(·) is differentiable we define the mean value linearization of J(·) between
ψ and ψ

h
by

(5.3) J(ψ,ψ
h
;ψ −ψ

h
) = J(ψ)− J(ψ

h
) =

∫ 1

0
J ′[θψ + (1− θ)ψ

h
](ψ −ψ

h
) dθ,

where J ′[w](·) denotes the Frèchet derivative evaluated at some w ∈ R×V, where V
is a suitably chosen space such that Vp,q(T ) ⊂ V. Similarly, we write the mean value
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linearization of the semilinear functional N (·, ·) as

M(ψ,ψ
h
;ψ −ψ

h
,v) = N (ψ,v)−N (ψ

h
,v)

=
∫ 1

0
N ′[θψ + (1− θ)ψ

h
](ψ −ψ

h
,v) dθ

(5.4)

for some v ∈ R×V, where N ′[w](·,v) denotes the Frèchet derivative of ψ → N (ψ,v)
for v fixed, at some w.

With this notation, we deduce the following proposition.

Proposition 5.1. Let ψ and ψ
h

denote the solutions of (2.12)–(2.14) and (5.1),
respectively, then the following error representation formula holds:

keff − keff,h = −N (ψ
h
, z − zh)

for all zh ∈ R×Vp,q(T ). Here, z denotes the solution of the corresponding dual/adjoint
problem: find z = (kzeff, z) ∈ R× V such that

(5.5) M(ψ,ψ
h
;v, z) = J(ψ,ψ

h
;v)

for all v = (kveff,v) ∈ R× V.

Proof. Selecting v = ψ − ψ
h

in (5.5), recalling the linearization undertaken in
(5.3) and (5.4), and exploiting the Galerkin orthogonality property (5.2), we deduce
that

keff − keff,h = J(ψ)− J(ψ
h
) = J(ψ,ψ

h
;ψ −ψ

h
)(5.6)

=M(ψ,ψ
h
;ψ −ψ

h
, z) = −N (ψ

h
, z − zh)(5.7)

for all zh ∈ R× Vp,q(T ), as required.

Rather than linearizing about a convex combination of ψ and ψ
h
, we simply

consider the linearization about just ψ; in practice, this linearization will be performed
on the basis of the current numerical solution. Thereby, by differentiating J(·) and
N (·), we deduce the following approximate dual/adjoint problem: find z ∈ R × V
such that

(5.8)
G∑
g=1

(kveff (T (ψg, zg)− S(ψ, zg)) + keff (T (vg, zg)− S(v, zg))− F (v, zg)) + kzeffC
′
M[ψ](v)

= kveffCM(ψ) + keffC
′[ψ](v)

for all v ∈ R×V, where C ′[w](·) denotes the Frèchet derivative of ψ → C(ψ) at some
w. For simplicity of notation, we use z to denote the solution to both dual/adjoint
problems (5.5) and (5.8), though we stress that these are clearly not identical, in
general. We note that the approximate dual/adjoint (5.8) may be rewritten in the
following (equivalent) form: find z ∈ R× V such that

G∑
g=1

(keff (T (vg, zg)− S(v, zg))− F (v, zg)) + kzeffC
′
M[ψ](v) = keffC

′
M[ψ](v),(5.9)

G∑
g=1

(T (ψg, zg)− S(ψ, zg)) = 1(5.10)
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for all v ∈ R × V; here, we have exploited the normalization CM(ψ) = 1; cf. (2.14).
Following [11] it is more natural to consider the alternative dual/adjoint eigenvalue
problem: find k̃zeff and z̃g, g = 1, . . . , G, such that

T (vg, z̃g)− S(v, z̃g) =
1
k̃zeff

F (v, z̃g),(5.11)

G∑
g=1

(T (ψg, z̃g)− S(ψ, z̃g)) = 1(5.12)

for all v ∈ R×V. Thereby, it follows that k̃zeff = keff and hence (k̃zeff, z̃g), g = 1, . . . , G,
is also a solution of (5.9), (5.10).

In order to approximate (5.11), (5.12) numerically, we proceed by replacing ψ by
ψh and seeking a discrete alternative ẑ to z. Following [11] (cf. also [10, 12, 13, 14]),
we compute ẑ = (kẑeff, ẑ), ẑ = (ẑ1, . . . , ẑG), based on employing the same mesh T
used for ψ

h
, but with a higher–degree polynomial. Thus, our discrete dual/adjoint

eigenvalue problem becomes: find ẑ ∈ R× V p̂,q̂(T ) such that, for g = 1, . . . , G,

T (vg, ẑg)− S(v, ẑg) =
1
kẑeff

F (v, ẑg),(5.13)

G∑
g=1

(T (ψh,g, ẑg)− S(ψh, ẑg)) = 1(5.14)

for all v ∈ R × V p̂,q̂(T ), where p̂ > p and q̂ > q (understood elementwise). For
the purposes of the numerical experiments presented in section 6, we set p̂ = p + 1
and q̂ = q + 1. We remark that the solution to the discrete dual/adjoint eigenvalue
problem (5.13), (5.14) may be efficiently computed using the ordered solver developed
in section 4; for further details, we refer to [37].

Exploiting the discrete dual/adjoint problem (5.13), (5.14), we deduce the follow-
ing approximate error representation formula

(5.15) keff − keff,h ≈ −N (ψ
h
, ẑ − zh)

for all zh ∈ R× V p̂,q̂(T ).

Remark 5.2. We note that, when a higher–order scheme is employed for the nu-
merical approximation of the dual/adjoint problem, the right-hand side of the approx-
imate error representation formula (5.15) may be added to the computed value keff,h
to provide an improved estimate of keff (cf. [19, 22]); in this case reliable estimation
of the error in this improved value is no longer available.

5.2. hp-adaptivity. On the basis of the approximate error representation for-
mula (5.15), in this section we consider the design of an appropriate hp mesh refine-
ment algorithm for the efficient control of the discretization error in the computed
value of keff. To this end, given the tensor-product construction of the hp-finite ele-
ment space Vp,q(T ) = Vp(TS)⊗ Vq(TA) (employed for the numerical approximation
of the eigenvector associated with each energy group), we consider the following split-
ting:

keff − keff,h ≈ −N (ψ
h
, ẑ − zh) = −N (ψ

h
, ẑ −Πµẑ)−N (ψ

h
,Πµ(ẑ −Πxzh))

≡ Eµ + Ex(5.16)
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for all zh ∈ R×V p̂,q̂(T ). Under the foregoing notation, for a function v = (kveff,h,v),
we write, subject to a slight abuse of notation, Πµv ≡ (kveff,h,Πµv) and Πxv ≡
(kveff,h,Πxv), where Πµ and Πx denote the orthogonal L2-projection operators onto
the finite element spaces [Vq(TA)]G and [Vp(TS)]G, respectively.

Here, loosely speaking, we consider Eµ and Ex to be the error stemming from
the angular and spatial discretization, respectively. With this in mind, at each step
of the refinement algorithm, we refine either Vq(TA) or Vp(TS) depending on the
relative size of |Eµ| and |Ex|; for the assessment of alternative refinement strategies,
we refer to [37]. For the purposes of the current article, we have restricted ourselves
to problems consisting of isotropic scattering; cf. Remark 2.1. Indeed, in this setting,
the underlying eigenvectors for each energy group are extremely smooth with respect
to the angular variable µ; thereby, we only consider refinement of the polynomial
degrees q in the angular finite element space Vq(TA) when |Eµ| > |Ex|. Moreover,
a key aspect of attaining reliable error control in an efficient manner is to limit the
number of steps required by the underlying refinement algorithm; this is particularly
pertinent for the problem at hand, since the computation of numerical approximations
of the primal and dual keff-effective eigenvalue problems (3.1), (3.2) and (5.13), (5.14),
respectively, may be extremely expensive. With this in mind, and on the basis of the
work undertaken in [37], we only consider uniform polynomial enrichment of Vq(TA).

In the case when |Ex| > |Eµ|, then the (spatial) finite element space Vp(TS) is
adaptively refined. To this end, we first rewrite Ex in the following elementwise fashion

Ex ≡
∑
κS∈TS

ηκS ,

where ηκS , κS ∈ TS , denotes the elementwise contribution to Ex. On the basis of the
size of the elemental error indicators |ηκS |, elements are marked for refinement using
the fixed fraction refinement algorithm with refinement fraction set to 25%. Once an
element κS ∈ TS has been flagged for refinement, a decision must be made whether the
local mesh size or the local degree of the approximating polynomial should be adjusted
accordingly. The choice to perform either h- or p-refinement is based on estimating the
local smoothness of the (unknown) analytical primal and dual eigenvectors. To this
end, we employ the hp-adaptive strategy developed in [23] (cf. also [16]), where the
local regularity of the analytical solution is estimated from truncated local Legendre
expansions of the computed numerical solution.

6. Numerical experiments. In this section we study the practical performance
of the proposed a posteriori error estimator developed in section 5 within an automatic
hp-adaptive refinement procedure for a series of industrial benchmark problems. For
purposes of comparison we also present numerical results employing h-refinement with
p = 1 and q = 0, i.e., for the (variant of the) discrete ordinates method (cf. Remark
3.1); in this case, when |Eµ| > |Ex|, we employ sequences of uniformly refined angular
meshes which are designed in such a manner as to ensure an equal weighted partition
of S2. Throughout this section, we restrict ourselves to the two–dimensional case,
i.e., d = 2; this is often referred to as pseudo-three-dimensional. This is obtained by
considering the spatial variable in Cartesian coordinates x = (x, y, z) and requiring
that the angular neutron flux has no dependence on the z variable, which extends
to infinity in either direction. As nuclear reactors are frequently designed with a
high degree of symmetry in the z-direction, with geometries comprising long, narrow
control rods and fuel rods, this geometry provides a good approximation for many
existing nuclear reactors. Finally, for computation of the primal and dual/adjoint
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Region 1

Region 2

Region 3

18.4
√

πcm 3.8
√

πcm 3.5
√

πcm 18.0
√

πcm

Figure 5.10: The domain for the Serco SILENE test problem. The region boundaries

are all squares, therefore the horizontal dimensions are the same as the vertical ones.

The material coefficients for the three regions are given in Table A.6.

Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

h-refinement, p = 1, q = 0

1 0.937954 0.941274 7 200 1.197436 64 800 1.133351

2 0.980208 0.980540 28 800 1.149016 259 200 1.129736

3 0.992292 0.992322 115 200 1.133840 1 036 800 1.129388

4 1.000000 1.000000 460 800 1.129241 4 147 200 1.129353

5 - - 804 864 1.130390 - -

hp-refinement

1 0.939338 0.942585 7 200 1.197436 64 800 1.133351

2 1.076398 1.076266 28 800 1.131261 145 800 1.129309

3 0.952771 0.952683 64 800 1.127252 259 200 1.129344

4 0.970853 0.970834 84 960 1.128662 309 376 1.129425

5 1.000000 1.000000 105 696 1.129176 360 576 1.129448

6 - - 128 160 1.129363 - -

Table 5.8: The eigenvalues and effectivities for the Serco SILENE benchmark.
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Fig. 2. Example 1. Computational domain for the SILENE benchmark problem. The material
coefficients for the three regions are given in Table 1.

Table 1
Example 1. The material coefficients for the three regions marked in Figure 2 for the SILENE

benchmark problem.

g Σt Σs,g→1 Σs,g→2 Σf ν χ

Region 1, uranyl nitrate

1 2.633073E-01 2.161793E-01 4.400309E-02 1.610373E-03 2.448503E+00 1.0
2 1.954845E+00 4.147318E-04 1.855253E+00 6.961299E-02 2.437871E+00 0.0

Region 2, air

1 1.306052E-04 1.251169E-04 2.182610E-06 - - -
2 4.765118E-04 3.166587E-07 4.236728E-04 - - -

Region 3, steel

1 3.354474E-01 3.287258E-01 1.357145E-03 - - -
2 1.045146E+00 8.654190E-04 8.624749E-01 - - -

keff-eigenvalue problems (cf. (3.1), (3.2) and (5.13), (5.14), respectively), we employ
the Arnoldi package (ARPACK) implementation of the implicitly restarted Arnoldi
method; cf. [32].

6.1. SILENE reactor. In this and the following section, we consider two bench-
mark problems from a set compiled by Albrecht Kyrieleis at Serco Assurance; cf. [29].
Here, we consider the model of an experimental reactor in France known as the SI-
LENE reactor. It comprises a steel tank filled with uranyl nitrate with a steel pipe
positioned vertically down the middle through which a control rod may be inserted;
we refer to Figure 2 for the precise dimensions. We model the unrodded case with
a G = 2 multigroup approximation for energy, the cross sections for which are given
in Table 1. For this problem, Serco’s MONK Monte Carlo code (cf. [3]), computed a
value of 1.1293 for the critical keff-eigenvalue. On the basis of employing a very fine
mesh, we computed an accurate value of keff ≈ 1.129459.

In Tables 2 and 3 we show the performance of the proposed h- and hp-refinement
adaptive strategies, respectively. In each case we show the mesh (iteration) number,
the spatial and angular error estimators Ex and Eµ, respectively (cf. (5.16)), the error
keff−keff,h in the computed critical keff-eigenvalue, the corresponding effectivity index
Ieff = (Ex + Eµ)/(keff − keff,h), the number of degrees of freedom (Dofs) present in
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Table 2
Example 1. Computed eigenvalues and effectivities for the Serco SILENE benchmark problem

employing h-refinement with p = 1 and q = 0.

Mesh Ex Eµ keff − keff,h Ieff Dofs keff,h kẑ
eff

1 2.228E-3 -6.631E-2 -6.798E-2 0.94 7 200 1.197436 1.133351
2 2.083E-3 -2.136E-2 -1.956E-2 0.98 28 800 1.149016 1.129736
3 2.056E-3 -6.509E-3 -4.382E-3 1.01 115 200 1.133840 1.129388
4 2.044E-3 -1.932E-3 2.179E-4 0.59 460 800 1.129241 1.129353
5 9.820E-4 -1.940E-3 -9.314E-4 1.00 804 864 1.130390 1.129432

Table 3
Example 1. Computed eigenvalues and effectivities for the Serco SILENE benchmark problem

employing hp-refinement.

Mesh Ex Eµ keff − keff,h Ieff Dofs keff,h kẑ
eff

1 2.228E-3 -6.631E-2 -6.798E-2 0.94 7 200 1.197436 1.133351
2 2.052E-3 -4.003E-3 -1.802E-3 1.08 28 800 1.131261 1.129309
3 2.040E-3 5.145E-5 2.207E-3 0.95 64 800 1.127252 1.129344
4 7.220E-04 4.041E-5 7.964E-4 0.96 84 960 1.128662 1.129425
5 2.314E-4 4.034E-5 2.828E-4 0.96 105 696 1.129176 1.129448
6 5.488E-5 3.582E-5 9.589E-5 0.95 128 160 1.129363 1.129454
7 1.238E-5 3.103E-5 4.338E-5 1.00 156 384 1.129415 1.129459

Fig. 3. Example 1. Initial mesh employed for the SILENE benchmark problem.

the primal finite element space Vp,q(T ), together with the computed keff-eigenvalue
for both the primal and dual/adjoint keff-eigenvalue problems. The initial spatial
mesh is depicted in Figure 3. From Tables 2 and 3, we observe that the proposed
(approximate) error representation formula (cf. (5.15)) provides an extremely accurate
estimate of the error in the underlying critical keff; indeed, on almost all of the meshes
designed by the h- and hp-adaptive algorithms the effectivity index Ieff is very close
to unity.

In Figure 4 we plot the results shown in Tables 2 and 3; in particular, we plot
the error |keff − keff,h| using both h- and hp-refinement against the fourth root of the
number of degrees of freedom employed in the (primal) finite element space Vp,q(T )
on a linear-log scale; these axes have been selected in order to indicate exponential
convergence of the hp-refinement strategy. Indeed, here we observe that (on aver-
age) the error in the computed keff using hp-refinement is roughly a straight line,
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-1

h-refinement
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Fig. 4. Example 1. Comparison between h- and hp-adaptive refinement for the SILENE bench-
mark problem.

(a) (b)

Fig. 5. Example 1. (a) Final spatial mesh employing h-refinement with p = 1, q = 0. (b)
Final hp-spatial mesh distribution.

thereby indicating exponential convergence. Moroever, from Figure 4 we clearly ob-
serve the superiority of employing adaptive hp-refinement in comparison to standard
h-refinement: indeed, on the final mesh, the true error in the computed keff using
hp-refinement is almost two orders of magnitude smaller than |keff − keff,h| when h-
refinement is employed alone.

Finally, in Figure 5 we show the final spatial meshes generated using both h- and
hp-refinement; in the latter case, we also show the final distribution of the polynomial
degree vector p. In the h-refinement case, we observe that the spatial mesh has
only been refined in the region containing uranyl nitrate; indeed, no refinement has
taken place in the region containing the inner pipe or steel shielding. On the other
hand, in the hp-setting, only p-refinement of the spatial domain has been undertaken;
indeed, the final spatial mesh corresponds to the initial one depicted in Figure 3. In
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(a) (b)

Fig. 6. Example 1. (a) and (b) Space averaged flux for the critical eigenfunction in the high
and low energy groups, respectively.

CHAPTER 5: APPLICATION TO INDUSTRIAL PROBLEMS

Fuel

Water

Steel

3.6cm

3cm

3cm

3cm

20.4cm

3cm

3cm

3cm

3.6cm

4.8cm

3cm

3cm

3cm

18cm

3cm

3cm

3cm

4.8cm

Figure 5.13: The domain for the water-cooled reactor test problem.

143

Fig. 7. Example 2. Computational domain for the water-cooled reactor benchmark problem.

Figure 6 we plot the space averaged flux for the critical eigenfunction in the high
and low energy groups; here, we observe that the underlying solutions are extremely
smooth, even in the vicinity between the change of materials. Note also, that the
choice of refinement depends on the interplay between the smoothness of the primal
and adjoint/dual solutions.

6.2. Water-cooled reactor. The second problem we consider from [29] is a
model of a water-cooled reactor. Here, the spatial domain comprises a central region
containing the nuclear fuel, surrounded by a steel reflector, which is then surrounded
by water; see Figure 7 for the exact dimensions. The model incorporates a G = 2
multigroup approximation for energy; the nuclear cross sections are given in Table
4. When applied to this problem, the MONK Monte Carlo code computed a critical
keff-eigenvalue of 1.0118, while the short characteristics code of Baker [4] computed a
value of 1.0129. On the basis of a fine grid calculation, we computed keff ≈ 1.012132.
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Table 4
Example 2. Material coefficients for the three regions marked in Figure 7 for the water-cooled

reactor benchmark problem.

g Σt Σs,g→1 Σs,g→2 Σf ν χ

Region 1, fuel

1 2.905902E-01 2.563342E-01 2.354509E-02 3.108461E-03 2.551354E+00 1.0
2 1.309916E+00 7.488663E-04 1.193697E+00 7.984104E-02 2.438050E+00 0.0

Region 2, steel

1 3.355475E-01 3.293120E-01 1.186761E-03 - - -
2 1.017820E+00 1.190808E-03 8.452682E-01 - - -

Region 3, water

1 1.983542E-01 1.678229E-01 2.988528E-02 - - -
2 1.294089E+00 5.246971E-04 1.266390E+00 - - -

Table 5
Example 2. Computed eigenvalues and effectivities for the water-cooled reactor benchmark

problem employing h-refinement with p = 1 and q = 0.

Mesh Ex Eµ keff − keff,h Ieff Dofs keff,h kẑ
eff

1 8.542E-4 -5.828E-2 -6.024E-2 0.95 12 800 1.072370 1.014941
2 8.060E-4 -1.828E-2 -1.769E-2 0.99 51 200 1.029824 1.012351
3 7.949E-4 -5.439E-3 -4.658E-3 1.00 204 800 1.016790 1.012146
4 7.913E-4 -1.570E-3 -7.780E-4 1.00 819 200 1.012910 1.012132
5 7.903E-4 -4.442E-4 3.471E-4 1.00 3 276 800 1.011785 1.012131

Table 6
Example 2. Computed eigenvalues and effectivities for the water-cooled reactor benchmark

problem employing hp-refinement.

Mesh Ex Eµ keff − keff,h Ieff Dofs keff,h kẑ
eff

1 8.542E-4 -5.828E-2 -6.024E-2 0.95 12 800 1.072370 1.014941
2 7.906E-4 -2.808E-3 -1.987E-3 1.02 51 200 1.014119 1.012101
3 7.890E-4 2.071E-5 8.156E-4 0.99 115 200 1.011316 1.012126
4 2.120E-4 2.591E-5 2.384E-4 1.00 151 200 1.011894 1.012132
5 4.890E-6 2.785E-5 3.252E-5 1.00 187 200 1.012099 1.012132

In Tables 5 and 6 we show the performance of the our adaptive algorithm em-
ploying both h- and hp-refinement, respectively. Here, we again observe that the
effectivity indices are very close to unity on all of the adaptive meshes employed, in-
dicating that the computed error representation formula provides a reliable estimate
for the error in the computed critical keff. In addition, we see that the initial spatial
discretization provides a very accurate spatial approximation in the sense that |Ex|
is considerably smaller than |Eµ|. Consequently, the adaptive refinement algorithms
for both h- and hp-refinement initially target enrichment of the angular finite element
space Vq(TA). In fact, in the case of the h-refinement algorithm, spatial refinement is
never selected; on the other hand, for the hp-refinement algorithm, spatial refinement
is not selected until the third adaptive refinement step.

In Figure 8 we plot the error |keff−keff,h| using both h- and hp-refinement against
the fourth root of the number of Dofs employed in the (primal) finite element Vp,q(T )
on a linear-log scale. Here, we again observe that (on average) the error in the com-
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(Dof)
1/4

5 10 15 20 25 30 35 40 45

|k
e

ff
-k

e
ff

,h
|

10
-5

10
-4

10
-3

10
-2

10
-1

h-refinement
hp-refinement

Fig. 8. Example 2. Comparison between h- and hp-adaptive refinement for the Serco water-
cooled reactor benchmark problem.

puted keff using hp-refinement is roughly a straight line, thereby indicating exponential
convergence. For this example, on the final mesh, the true error in the computed keff
using hp-refinement is almost three orders of magnitude smaller than the correspond-
ing quantity when h-refinement is employed, for the same number of Dofs.

In Figures 9(a) and (b), we plot the scalar neutron flux (integral of the angular
neutron flux over S2) of the critical eigenfunction for energy groups 1 and 2, respec-
tively. Here, we observe that the scalar neutron flux is very smooth for the high
energy group corresponding to g = 1, whereas for the lower energy group (g = 2),
the corresponding quantity contains localized structures. Furthermore, we note that
the peak value of the scalar neutron flux in the high energy group is five times higher
than the peak value in the lower one. Figure 9(c) shows the mesh and polynomial dis-
tribution p after the final hp-refinement step. Here, we observe that the hp-adaptive
algorithm has chosen p-refinement for every element that was selected for refinement.
Moreover, we note that the refinement algorithm has identified the structures in the
solution of the low energy group, as well as the extrema present in the high energy
group.

6.3. KNK fast reactor benchmark. In this final example, we consider a
model of the Kompakte Natriumgekühlte Kernreaktoranlage (Compact Sodium Nu-
clear Reactor Plant) in Germany; we shall refer to it as the KNK fast reactor bench-
mark. This benchmark was originally published by Takeda and Ikeda in [39] and has
since been computed by several authors, including Kim and Cho [27], Wang [42], and
Baker [4]. The spatial domain is considerably more complicated than the previous
problems, comprising a tessellation of 169 regular hexagons split into 18 regions with
8 distinct materials; see Figure 10. The energy spectrum is discretized into G = 4
energy groups. Takeda and Ikeda published three sets of data for the KNK fast
reactor benchmark, modeling the case with control rods inserted, control rods half in-
serted, and the unrodded case, respectively. We compute the keff-eigenvalue problem
for the latter case; here, the material cross sections are given in Tables 7 and 8. In
[39], the authors computed several approximate values of the critical keff-eigenvalue
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(a) (b)

pκS = 1 pκS = 2
(c)

Fig. 9. Example 2. (a) and (b) Space averaged flux for the critical eigenfunction in the high
and low energy group, respectively. (c) Final hp-spatial mesh distribution.
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Figure 5.7: The domain for the KNK test problem. The domain is composed of a

tessellation of regular hexagons, each of which has sides of length 7.5cm. The numbers

mark the eight different regions, the nuclear cross sections for these are given in Tables

A.4 and A.5.

1.0951. More recently, Wang published a value of 1.01082, Baker computed a value

of 1.0105 and Kim and Cho published values ranging between 1.0094 and 1.01055. The

most accurate dual eigenvalues computed by our code are 1.01017 and 1.01027. For the

purposes of error quantification in the present code we take the true keff to be 1.01055.

The critical eigenvalue for the KNK fast reactor benchmark was computed by the h-

refinement algorithm with a p = 1, q = 0 finite element space, as well as by the hp-

refinement algorithm. The same initial spatial and angular meshes were chosen for

both runs. The initial spatial mesh is given in Figure 5.8a. The initial angular mesh

comprised 4 elements, with a single angular element in each principal triangle of the

hemisphere. The fixed fraction refine percentage in the spatial problem was chosen as

αFF = 25%.

Table 5.6 gives the total problem sizes and computed eigenvalues from the primal and

dual solves at each iteration, together with the effectivities for both keff and its recip-

rocal. Table 5.7 gives the spatial and angular error indicators, ηS and ηA respectively,

together with the number of spatial and angular degrees of freedom in each energy

group, NS and NA respectively. We note that much more refinement was required in

134

Fig. 10. Example 3. Computational domain for the KNK fast reactor benchmark problem.
The domain is composed of a tessellation of regular hexagons, each of which has sides of length
7.5 cm. The numbers mark the eight different regions; the nuclear cross sections for these are given
in Tables 7 and 8.

based on employing a variety of numerical methods; typical values lie in the range
between 1.0887 and 1.0951. More recently, Wang [42] computed a value of 1.01082,
Baker [4] computed keff ≈ 1.0105, and Kim and Cho [27] published values ranging
between 1.0094 and 1.01055. On the basis of a fine grid computation we computed
keff ≈ 1.01055.
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Table 7
Example 3. Material coefficients for the first four regions marked in the diagram of the KNK

fast reactor benchmark problem from Figure 10.

g Σt Σs,g→1 Σs,g→2 Σs,g→3 Σs,g→4 νΣf χ

Region 1

1 1.24526E-01 1.05964E-01 1.12738E-02 1.46192E-04 9.62178E-07 1.79043E-02 0.908564
2 2.01025E-01 0.00000E-00 1.89370E-01 3.64847E-03 1.06888E-06 1.59961E-02 0.087307
3 2.86599E-01 0.00000E-00 0.00000E-00 2.70207E-01 1.80479E-03 2.40856E-02 0.004129
4 3.68772E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.18960E-01 7.33104E-02 0.000000

Region 2

1 1.40226E-01 1.19887E-01 1.30790E-02 1.59938E-04 1.07166E-06 1.59878E-02 0.908564
2 2.28245E-01 0.00000E-00 2.15213E-01 4.00117E-03 1.82716E-06 1.64446E-02 0.087307
3 3.25806E-01 0.00000E-00 0.00000E-00 3.06885E-01 1.67341E-03 2.71541E-02 0.004129
4 4.18327E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.60906E-01 8.45807E-02 0.000000

Region 3

1 1.41428E-01 1.14337E-01 2.09664E-02 1.39132E-03 6.10281E-05 1.01663E-02 0.908564
2 2.45394E-01 0.00000E-00 2.12006E-01 2.67269E-02 1.08186E-03 9.46359E-03 0.087307
3 3.98255E-01 0.00000E-00 0.00000E-00 3.52093E-01 3.29030E-02 1.87325E-02 0.004129
4 4.35990E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.70872E-01 8.25335E-02 0.000000

Region 4

1 1.59346E-01 1.47969E-01 1.06607E-02 2.49956E-04 1.82565E-06 - -
2 2.16355E-01 0.00000E-00 2.10410E-01 5.46711E-03 1.00157E-06 - -
3 3.48692E-01 0.00000E-00 0.00000E-00 3.42085E-01 5.36879E-03 - -
4 6.24249E-01 0.00000E-00 0.00000E-00 0.00000E-00 6.19306E-01 - -

Table 8
Example 3. Material coefficients for the final four regions marked in the diagram of the KNK

fast reactor benchmark problem from Figure 10.

g Σt Σs,g→1 Σs,g→2 Σs,g→3 Σs,g→4 νΣf χ

Region 5

1 1.39164E-01 1.05911E-01 2.96485E-02 3.06502E-03 1.41697E-04 - -
2 2.46993E-01 0.00000E-00 1.84820E-01 5.91780E-02 2.69229E-03 - -
3 4.52425E-01 0.00000E-00 0.00000E-00 3.73072E-01 7.81326E-02 - -
4 5.36256E-01 0.00000E-00 0.00000E-00 0.00000E-00 5.12103E-01 - -

Region 6

1 1.51644E-01 1.38427E-01 1.23901E-02 3.66930E-04 1.69036E-06 - -
2 1.42382E-01 0.00000E-00 1.37502E-01 4.41927E-03 1.63280E-06 - -
3 1.65132E-01 0.00000E-00 0.00000E-00 1.60722E-01 3.33075E-03 - -
4 8.04845E-01 0.00000E-00 0.00000E-00 0.00000E-00 7.98932E-01 - -

Region 7

1 9.65097E-02 8.83550E-02 7.73409E-03 1.94719E-04 8.89615E-07 - -
2 9.87095E-02 0.00000E-00 9.52493E-02 3.22568E-03 7.98494E-07 - -
3 1.34200E-01 0.00000E-00 0.00000E-00 1.30756E-01 2.90481E-03 - -
4 4.12670E-01 0.00000E-00 0.00000E-00 0.00000E-00 4.09632E-01 - -

Region 8

1 1.39085E-01 1.17722E-01 1.26066E-02 1.33314E-04 1.08839E-06 - -
2 2.28152E-01 0.00000E-00 1.94699E-01 4.32219E-03 1.85491E-07 - -
3 3.18806E-01 0.00000E-00 0.00000E-00 2.44352E-01 3.68781E-04 - -
4 6.27366E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.14816E-01 - -
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Table 9
Example 3. Computed eigenvalues and effectivities for the KNK fast reactor benchmark problem

employing h-refinement with p = 1 and q = 0.

Mesh Ex Eµ keff − keff,h Ieff Dofs keff,h kẑ
eff

1 1.222E-2 -5.519E-2 -4.486E-2 0.96 32 448 1.055231 1.012255
2 1.106E-2 -1.594E-2 -4.671E-3 1.03 129 792 1.015041 1.010162
3 1.061E-2 -4.688E-3 6.357E-3 0.94 519 168 1.004013 1.009933
4 2.454E-3 -4.862E-3 -2.310E-3 1.02 931 584 1.012680 1.010272
5 2.417E-3 -1.438E-3 1.109E-3 0.93 3 726 336 1.009261 1.010240
6 6.022E-4 -1.451E-3 -7.945E-4 1.00 7 412 736 1.011165 1.010316

Table 10
Example 3. Computed eigenvalues and effectivities for the KNK fast reactor benchmark problem

employing hp-refinement.

Mesh Ex Eµ keff − keff,h Ieff Dofs keff,h kẑ
eff

1 1.222E-2 -5.519E-2 -4.486E-2 0.96 32 448 1.055231 1.012255
2 1.065E-2 -2.139E-3 9.050E-3 0.94 129 792 1.001320 1.009834
3 4.978E-4 -2.441E-3 -1.629E-3 1.19 166 080 1.011999 1.010056
4 4.808E-4 1.046E-4 7.861E-4 0.74 373 680 1.009584 1.010169
5 2.562E-4 1.154E-4 3.714E-4 1.00 532 368 1.009999 1.010370

Fig. 11. Example 3. Initial mesh employed for the KNK fast reactor benchmark problem.

The performance of our adaptive algorithm employing both h- and hp-refinement
is presented in Tables 9 and 10, respectively, based on employing the initial spa-
tial mesh given in Figure 11. As in the previous examples, we again observe that
the approximate error representation formula (5.15) provides an accurate estimate of
the true error in the underlying critical keff-eigenvalue, even for this extremely chal-
lenging problem. Indeed, the effectivity indices are very close to one on all of the
adaptive meshes employed. Moreover, as in the previous example, initial refinement
is undertaken in the angular domain in both the h- and hp-setting; however, as soon
as |Eµ| < |Ex|, then refinement of the spatial domain is undertaken. The results
presented in Tables 9 and 10 are plotted in Figure 12. Once again, we observe expo-
nential convergence of the error in the computed value of keff when hp-refinement is
employed. Moreover, hp-refinement is again more efficient than h-refinement in the
sense that the computed error |keff − keff,h| on the final hp-mesh is over an order of
magnitude smaller than the corresponding quantity computed with h-refinement, for
a fixed number of degrees of freedom.
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Fig. 12. Example 3. Comparison between h- and hp-adaptive refinement for the KNK fast
reactor benchmark problem.

(a) (b)

Fig. 13. Example 3. (a) Final spatial mesh employing h-refinement with p = 1 and q = 0. (b)
Final hp-spatial mesh distribution.

Finally, in Figure 13 we show the final meshes generated by both the h- and hp-
adaptive refinement algorithms. Here, in both cases, the meshes have been refined
in the center of the KNK fast reactor geometry, where the test zone, control rods,
and driver are located. There is also a limited amount of refinement in region 5,
which contains reflecting material, with a moderator. We note, once again, that the
majority of refinement undertaken by the hp-refinement algorithm is p-refinement;
however, there is some h-refinement in the region with the moderator, signifying that
the solution is less smooth in this part of the domain.

7. Concluding remarks. In this article we have employed the hp-version of
the DGFEM for the numerical approximation of the keff-eigenvalue problem for neu-
tron transport criticality calculations. This scheme is highly advantageous both from
the point of view of ease of hp-adaptivity, as well as providing a unified variational
discretization of the underlying integro-differential equation with respect to both the
spatial and angular dimensions. Moreover, the underlying structure of the DGFEM
discretization naturally lends itself to efficient block elimination solution strategies;
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indeed, in this article we have exploited Tarjan’s strongly connected components algo-
rithm in order to compute the inverse of the underlying discretized transport operator.
This can be used as an efficient preconditioner for the numerical evaluation of the keff-
eigenvalue problem. Moreover, the variational framework naturally lends itself to a
posteriori error estimation. With this in mind, we have employed the DWR tech-
nique to estimate the error in the computed critical value of keff. On the basis of this
error estimator we have designed and implemented both h- and hp-refinement strate-
gies, which are capable of automatically refining the finite element spaces employed
within both the spatial and angular domains. This general strategy has been applied
to three multienergetic industrial benchmark problems. In each case, the proposed
estimator delivered reliable error estimation, in the sense that the computed effec-
tivity indices were extremely close to unity. Moreover, the efficiency of employing
hp-refinement in comparison with standard low-order h-refinement techniques was
clearly demonstrated for neutron transport criticality problems. Future work will
include the application to three-dimensional problems.
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