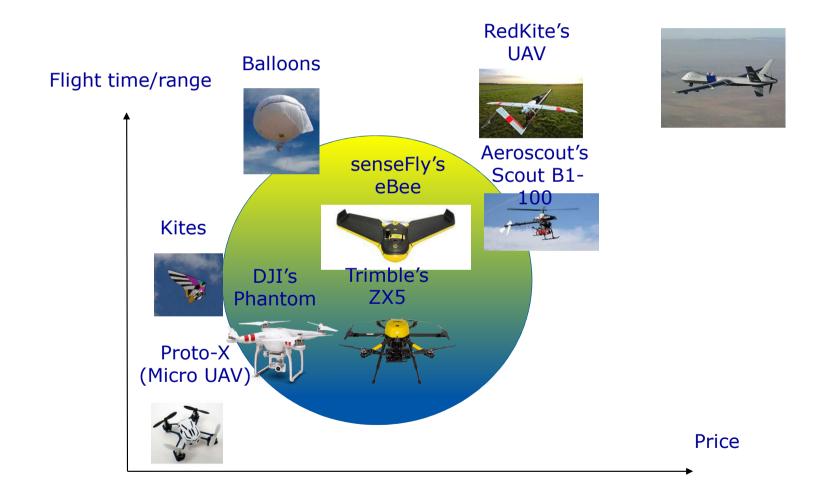


Navigating without a Navigator


A Review of Positioning and Navigation Technologies for UAVs

Professor Terry Moore

Professor of Satellite Navigation Nottingham Geospatial Institute University of Nottingham

UAV Platforms

Comparison of UAV Platforms

Three types: Fixed-Wing, Rotary-Wing, Multi-Rotor and also Transformational Hybrids

Positioning and Navigation for UAVs

Positioning

Navigation = positioning + guidance

Positioning of other payloads and sensors

Geo-referencing

Real-time or post-processed

Navigation

En-route to / from 'survey' location

Guidance, autopilot, control

Geo-fencing, controlled airspace, etc.

Emergency recovery

Real-time

Requirements

Remotely piloted (RPAS), autonomous, BVLOS Operations Different levels of accuracy and integrity are required (RNP) But, often combined into a single integrated payload

UAV Positioning Sensors

Absolute Positioning

Low or modest temporal resolution

Single-frequency, code-based GNSS (common), DGPS

Multi-Constellation, Multi-Frequency GNSS RTK & PPP

Pressure sensor (height, airspeed)

Visual-based, cameras, video

Radar, Altimeter, Lidar

Feature Matching, Terrain Referenced Navigation, SLAM

Cooperative positioning, Swarming

Relative Positioning

Altitude Heading Reference System (AHRS): accelerometer, gyro, magnetometer

Roll, pitch, yaw angles, and velocities/positions estimated

Vehicle Dynamics Modelling

High temporal resolution

Partial credit

UAV GNSS Receivers

Single-frequency GPS (autopilot systems)	u-blox LEA-6H	
No raw data		
No timing		
Horizontal position accuracy (without aiding)	2.5 m	
Time pulse accuracy	30 ns	
Power requirements	121 mW	
Weight without / with equipment	2 gram 17 gram	

Dual-frequency GPS	NovAtel OEM615	
Event input in	Yes	
PPS out	Yes	
Single Point L1 RMS	1.5 m	
Single Point L1/L2 RMS	1.2 m	
Time accuracy	20 ns	
Power requirements	1 W	
Weight without / with equipment	24 gram 300 gram	

Courtesy of

GNSS Limitations and Trade-offs

RTK

Requires base station and radio-link setup

Network RTK requires access to mobile signal (GSM, 3G,4G).

This may be difficult in remote or offshore area

PPP

No base station required

Requires an initialisation time of about 20 minutes to provide dm to cm accuracy. In addition link to external data source required

GBAS

Availability localised to areas in the vicinity of airports

GBAS can be set up and installed around assets of interest, but at significant cost

SBAS

Requires line of site to SBAS (e.g. EGNOS) satellite Low elevation at high latitudes - signal disruptions Internet-based access, EDAS

Inertial Navigation Systems

3 gyros and 3 accelerometers

Orientation from integrating gyro output

Displacement from:

Rotate measurements (using gyros)

Removing gravity and ...

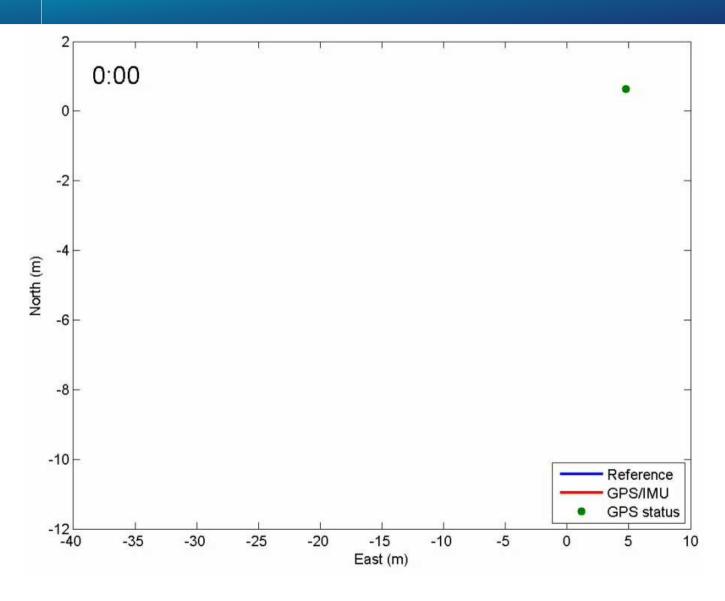
Double integrating accelerations

MEMS-based are getting better

Cheaper (higher volumes - Wii, smartphones)

Better manufacturing

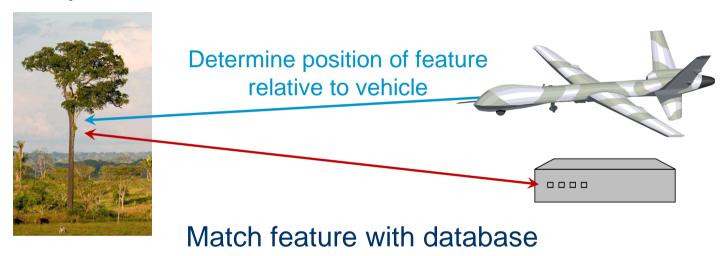
Better calibration



GNSS / IMU Integration

Typical UAV IMU Sensors

Honeywell H-764G	IMU	Epson M-G362PDC1	MicroStrain 3DM-GX3-35	Autopilot sensors	Analog Devices ADIS16364
0.0035°/h	Gyro bias	3 °/ h	18 °/ h	> 15 °/ h	25 °/ h
0.0035°/h ^{1/2}	Gyro random walk	N/A	0.1 °/ h ^{1/2}	N/A	2 °/ h ^{1/2}
25 μg	Accelerometer bias	40 mg	< 100 mg	> 60 mg	8 mg
8.3 µg (100Hz bw)	Accelerometer noise	40 mg / Hz ^{1/2}	100 mg / Hz ^{1/2}	$> 250 \text{ mg} / \text{Hz}^{1/2}$	270 mg / Hz ^{1/2}
40 W	Power requirements	30 mA via USB	200 mA via USB	> 4 mA (IMU only)	49 mA
8.4 kg >10 kg	Weight without / with equipment	7 gram 30 gram	23 gram 200 gram	> 50 gram	16 gram


Courtesy of

Feature Matching – Absolute Positioning

Identify feature

Obtain feature position from database

UAV Position = Feature Position - Relative Position

Feature Matching – Relative Positioning

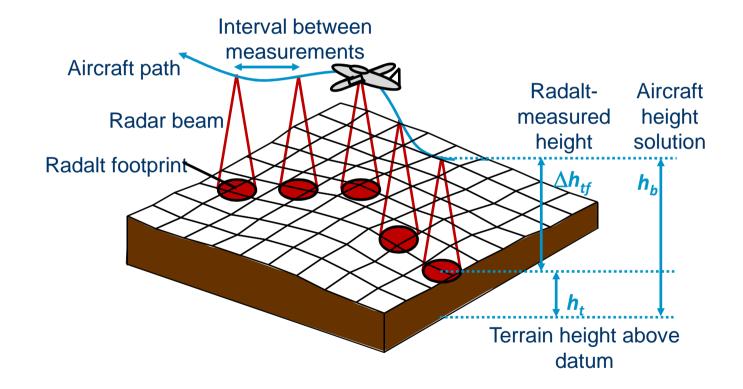
Determine position of feature relative to vehicle

Differencing successive relative positions gives the vehicle motion

Time: 1

Time: 2

Identify feature and match to previous time


No database

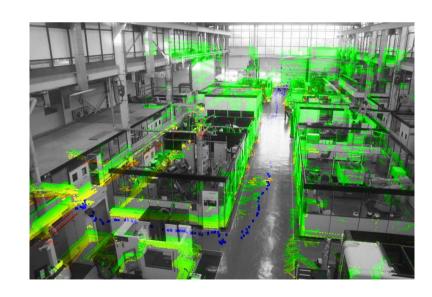
Dead-reckoning technique

Terrain Referenced Navigation

Simultaneous Localisation and Mapping - SLAM

Mapping can be described by the first question, "what does the world look like?"

Localization is to answer the second question, "where am I?"


SLAM is defined as the process of building a model leading to a new map, or repetitively improving an existing map, whilst at the same time localising the

moving platform within that map

Lidar and /or visual sensing

Autonomous UAV operation

Outdoor and indoor applications

Typical Operational Conditions

Light UAV (<20kg)

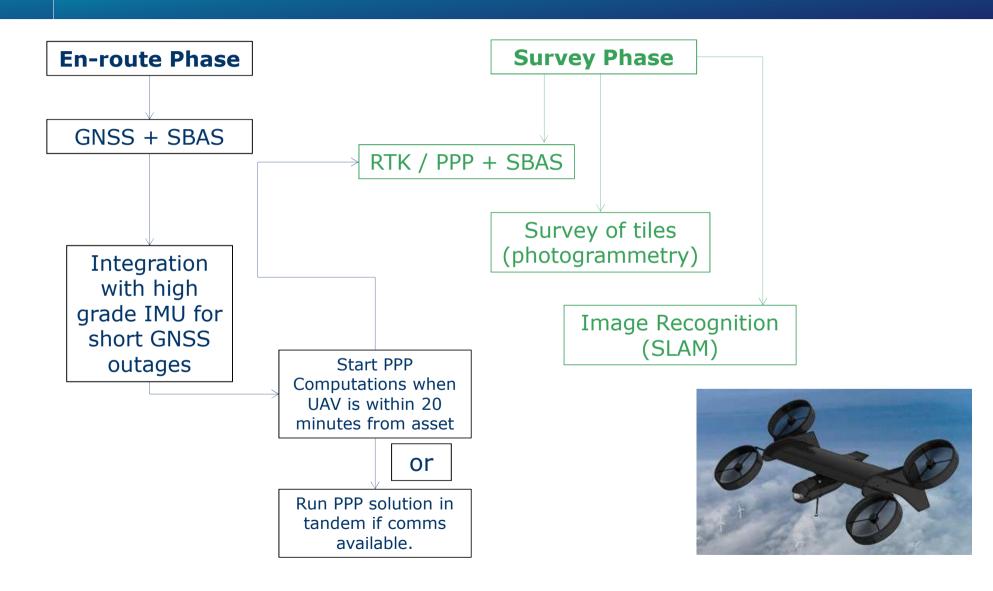
Operating below 450 ft.

Survey or inspection of assets

Repeatable flight path.

Safe envelope for navigation should be defined by:

Proximity to known hazards, plus uncertainty in the location Ability to stay on trajectory Positioning accuracy and integrity c.f. 'RNP' (Required Navigation Performance) in aviation



Multi-Phase Operational Approach

Contact Details

Professor Terry Moore
Director of the NGI
Nottingham Geospatial Building
The University of Nottingham
Triumph Road
Nottingham
NG7 2TU

Telephone: +44 (0) 115 951 3886

Fax: +44 (0) 115 951 3881

Email: terry.moore@nottingham.ac.uk

WWW: www.nottingham.ac.uk/ngi