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Abstract. We consider a semi-supervised learning scenario for regression, where
only few labelled examples, many unlabelled instances and different data rep-
resentations (multiple views) are available. For this setting, we extend support
vector regression with a co-regularisation term and obtain co-regularised sup-
port vector regression (CoSVR). In addition to labelled data, co-regularisation
includes information from unlabelled examples by ensuring that models trained
on different views make similar predictions. Ligand affinity prediction is an im-
portant real-world problem that fits into this scenario. The characterisation of the
strength of protein-ligand bonds is a crucial step in the process of drug discovery
and design. We introduce variants of the base CoSVR algorithm and discuss their
theoretical and computational properties. For the CoSVR function class we pro-
vide a theoretical bound on the Rademacher complexity. Finally, we demonstrate
the usefulness of CoSVR for the affinity prediction task and evaluate its per-
formance empirically on different protein-ligand datasets. We show that CoOSVR
outperforms co-regularised least squares regression as well as existing state-of-
the-art approaches for affinity prediction.

Keywords: regression, kernel methods, semi-supervised learning, multiple views,
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1 Introduction

We investigate an algorithm from the intersection field of semi-supervised and multi-
view learning. In semi-supervised learning the lack of a satisfactory number of labelled
examples is compensated by the usage of many unlabelled instances from the respec-
tive feature space. Multi-view regression algorithms utilise different data representa-
tions to train models for a real-valued quantity. Ligand affinity prediction is an im-
portant learning task from chemoinformatics since many drugs act as protein ligands.
It can be assigned to this learning scenario in a very natural way. The aim of affinity
prediction is the determination of binding affinities for small molecular compounds—
the ligands—with respect to a bigger protein using computational methods. Besides a



few labelled protein-ligand pairs, millions of small compounds are gathered in molec-
ular databases as ligand candidates. Many different data representations—the so-called
molecular fingerprints or views—exist that can be used for learning. Affinity predic-
tion and other applications suffer from little label information and the need to choose
the most appropriate view for learning. To overcome these difficulties, we propose to
apply an approach called co-regularised support vector regression. We are the first to
investigate support vector regression with co-regularisation, i.e., a term penalising the
deviation of predictions on unlabelled instances. We investigate two loss functions for
the co-regularisation. In addition to variants of our multi-view algorithm with a reduced
number of optimisation variables, we also derive a transformation into a single-view
method. Furthermore, we prove upper bounds for the Rademacher complexity, which
is important to restrict the capacity of the considered function class to fit random data.
We will show that our proposed algorithm outperforms affinity prediction baselines.

The strength of a protein-compound binding interaction is characterised by the real-
valued binding affinity. If it exceeds a certain limit, the small compound is called a
ligand of the protein. Ligand-based classification models can be trained to distinguish
between ligands and non-ligands of the considered protein (e.g., with support vector
machines [6]). Since framing the biological reality in a classification setting represents
a severe simplification of the biological reality, we want to predict the strength of bind-
ing using regression techniques from machine learning. Both classification and regres-
sion methods are also known under the name of ligand-based virtual screening. (In
the context of regression, we will use the name ligands for all considered compounds.)
Various approaches like neural networks [7] have been applied. However, support vec-
tor regression (SVR) is the state-of-the-art method for affinity prediction studies (e.g.,
[12]).

As mentioned above, in the context of affinity prediction one is typically faced with
the following practical scenario: for a given protein, only few ligands with experimen-
tally identified affinity values are available. In contrast, the number of synthesizable
compounds gathered in molecular databases (such as ZINC, BindingDB, ChEMBL’) is
huge which can be used as unlabelled instances for learning. Furthermore, different free
or commercial vectorial representations or molecular fingerprints for compounds exist.
Originally, each fingerprint was designed towards a certain learning purpose and, there-
fore, comprises a characteristic collection of physico-chemical or structural molecular
features [1], for example, predefined key properties (Maccs fingerprint) or listed sub-
graph patterns (ECFP fingerprints).

The canonical way to deal with multiple fingerprints for virtual screening would be
to extensively test and compare different fingerprints [6] or perform time-consuming
preprocessing feature selection and recombination steps [8]. Other attempts to utilise
multiple views for one prediction task can be found in the literature. For example,
Ullrich et al. [13] apply multiple kernel learning. However, none of these approaches
include unlabelled compounds in the affinity prediction task. The semi-supervised co-
regularised least squares regression (CoORLSR) algorithm of Brefeld et al. [4] has been
shown to outperform single-view regularised least squares regression (RLSR) for UCI
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datasets®. Usually, SVR shows very good predictive results having a lower general-
isation error compared to RLSR. Aside from that, SVR represents the state-of-the-
art in affinity prediction (see above). For this reason, we define co-regularised sup-
port vector regression (CoSVR) as an e-insensitive version of co-regularisation. In
general, CoSVR—just like CoORLSR—can be applied on every regression task with
multiple views on data as well as labelled and unlabelled examples. However, learn-
ing scenarios with high-dimensional sparse data representations and very few labelled
examples—Ilike the one for affinity prediction—could benefit from approaches using
co-regularisation. In this case, unlabelled examples can contain information that could
not be extracted from a few labelled examples because of the high dimension and spar-
sity of the data representation.

A view on data is a representation of its objects, e.g., with a particular choice of
features in IRY. We will see that feature mappings are closely related to the concept
of kernel functions, for which reason we introduce CoSVR theoretically in the gen-
eral framework of kernel methods. Within the research field of multi-view learning,
CoSVR and CoRLSR can be assigned to the group of co-training style [16] approaches
that simultaneously learn multiple predictors, each related to a view. Co-training style
approaches enforce similar outcomes of multiple predictor functions for unlabelled ex-
amples, measured with respect to some loss function. In the case of co-regularisation
for regression the empirical risks of multiple predictors (labelled error) plus an error
term for unlabelled examples (unlabelled error, co-regularisation) are minimised.

The idea for mutual influence of multiple predictors appeared in the paper of Blum
and Mitchell [2] on classification with co-training. Wang et al. [14] combined the tech-
nique of co-training with SVR with a technique different from co-regularisation. Anal-
ogous to CoSVR, CoRLSR is a semi-supervised and multi-view version of RLSR that
requires the solution of a large system of equations [4]. A co-regularised version for sup-
port vector machine classification SVM-2K already appeared in the paper of Farquhar
et al. [5], where the authors define a co-regularisation term via the e-insensitive loss on
labelled examples. It was shown by Sindhwani and Rosenberg [11] that co-regularised
approaches applying the squared loss function for the unlabelled error can be trans-
formed into a standard SVR optimisation with a particular fusion kernel. A bound on
the empirical Rademacher complexity for co-regularised algorithms with Lipschitz con-
tinuous loss function for the labelled error and squared loss function for the unlabelled
error was proven by Rosenberg and Bartlett [9].

A preliminary version of this paper was published at the Data Mining in Biomedical
Informatics and Healthcare workshop held at ICDM 2016. There, we considered only
the CoSVR special case e-CoSVR and its variants with reduced numbers of variables
(for the definitions consult Defs. 1 - 3 below) focusing the application of ligand affinity
prediction. The ¢5-CoSVR case (see below) with its theoretical properties (Lemmas
1(i7) - 3(i7), 6(47)) and practical evaluation, as well as the faster X-CoSVR (Sect. 3.3)
variant are novel contributions in the present paper.

In the following section, we will present a short summary of kernels and multiple
views, as well as important notation. We define CoSVR and variants of the base al-
gorithm in Sect. 3. In particular, a Rademacher bound for CoSVR will be proven in
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Sect. 3.5. Subsequently, we provide a practical evaluation of CoSVR for ligand affinity
prediction in Sect. 4 and conclude with a brief discussion in Sect. 5.

2 Kernels and Multiple Views

We consider an arbitrary instance space X and the real numbers as label space ). We
want to learn a function f that predicts a real-valued characteristic of the elements of
X. Suppose for training purposes we have sets X = {x1,...,2,} C X of labelled and
Z ={z1,...,2m} C X of unlabelled instances at our disposal, where typically m > n
holds true. With {y1,...,y,} C Y we denote the respective labels of X. Furthermore,
assume the data instances can be represented in M different ways. More formally, for
v € {1,..., M} there are functions ¢, : X — H,, where H, is an appropriate inner
product space. Given an instance z € X, we say that @, (x) is the v-th view of x. If
‘H, equals IR? for some finite dimension d, the intuitive names (v-th) [feature mapping
and feature space are used for ¢, and H,, respectively. If in the more general case
‘H, is a Hilbert space, d can even be infinite (see below). For view v the predictor
function f, : X — IR is denoted with (single) view predictor. View predictors can
be learned independently for each view utilising an appropriate regression algorithm
like SVR or RLSR. As a special case we consider concatenated predictors f, in Sect.
4 where the corresponding view v results from a concatenation of finite dimensional
feature representations 91, . .., Py,. Having different views on the data, an alternative
is to learn M predictors f, : & — IR simultaneously that depend on each other,
satisfying an optimisation criterion involving all views at once. Such a criterion could
be the minimisation of the labelled error in line with co-regularisation which will be
specified in the following subsection. The final predictor f will then be the average of
the predictors f,.

Afunction k : X x X — IR is said to be a kernel if it is symmetric and positive semi-
definite. Indeed, for every kernel & there is a feature mapping ¢ : X — H such that
H is a reproducing kernel Hilbert space (RKHS) and k(x1,x2) = (®(x1), P(22))n
holds true for all x1,zo € X (Mercer’s theorem). Thus, the function k is the corre-
sponding reproducing kernel of #, and for z € X" the mappings (P(x), D(-)) = k(=z,-)
are functions defined on &X'. Choosing RKHSs H,, of multiple kernels k, as candidate
spaces for the predictors f,,, the representer theorem of Scholkopf et al. [10] allows for
a parameterisation of the optimisation problems for co-regularisation presented below.
A straightforward modification of the representer theorem’s proof leads to a represen-
tation of the predictors f,, as finite kernel expansion

Fol) =D muiku(@iy) + > To(mko(z5, ) (1)
=1

j=1

with linear coefficients 7, € IR"*™, centered at labelled and unlabelled instances z; €
X and z; € Z, respectively.

The kernel matrices K, = {k,(z;, a:j)}f;r:ml are the Gram matrices of the v-th
view kernel k, over labelled and unlabelled examples and have decompositions into
an upper and a lower part L, € IR"™*™*™ and U, € R™ "™ respectively. We



will consider the submatrices k(Z,z) := (k(z1,%),...,k(zm,2))T and k(Z, Z) :=
{k (25, 2)}7j1=1 of a Gram matrix with kernel k. If #; and H5 are RKHSs then their
sum space Hy isdefinedas Hy :={f : f = f1+ fa, /1 € H1, f2 € Ha}. WithY =
(y1,---,yn)T € IR™ we denote the vector of labels. We will abbreviate v € {1,..., M}
with v € [M]. And finally, we will utilise the squared loss ¢2(y, ') = ||y — ¥||*> and
the e-insensitive loss 4. (y,y") = max{0,|y —v'| — e}, y,y € V.

3 The CoSVR Algorithm: Variants and Properties

3.1 Base CoSVR

In order to solve a regression task in the presence of multiple views v = 1,..., M,
the approach of co-regularisation is to jointly minimise two error terms involving M
predictor functions f, ..., far. Firstly, every view predictor f, is intended to have a
small training error with respect to labelled examples. Secondly, the difference between
pairwise view predictions over unlabelled examples should preferably be small. We
introduce co-regularised support vector regression (CoSVR) as an e-insensitive loss
realisation of the co-regularisation principle.

Definition 1. Forv € {1,..., M} let H,, be RKHSs. The co-regularised empirical risk
minimisation

M n
Il’él%[l Z (I;vaﬂ2 + ZEL(%, fv(ﬂfz))) @
v v ou=1 i=1

M m
+ A\ Z ZéU(fu(Zj%fv(zj)L

u,v=1 j=1

where v,, X > 0 is called co-regularised support vector regression (CoSVR) if {* =
l.n, ¥ > 0, and Y is an arbitrary loss function for regression. Furthermore, we
define e-CoSVR to be the special case where UV = £_u, €V > 0, as well as £5-CoSVR
to satisfy £V = (5.

The minimum in (2) is taken over all f,,, v = 1,..., M. For reasons of simplification
we will abbreviate miny, e, ... fa, ey, With ming 3, . Note that the loss function
parameters £* and €V can have different values. The parameters v, and ) are trade-off
parameters between empirical risk and co-regularisation term. The added norm terms
|| || prevent overfitting. We will also refer to the empirical risk term with loss function
0L as labelled error and to the co-regularisation term with £V as unlabelled error. In the
case of /' = (U = (,, the optimisation in (2) is known as co-regularised least squares
regression (CoRLSR). Brefeld et al. [4] found a closed form solution for CoORLSR as
linear system of equations in M (n + m) variables. In the following, we present a solu-
tion for e-CoSVR and ¢5-CoSVR.

Lemma 1. Let v, \,e”, eV > 0. We use the notation introduced above. In particular,
7, € R™™ denote the kernel expansion coefficients of the single view predictors f,



from (1), whereas av,, &, € R"™ and vy, € R"™ are dual variables.
(1) The dual optimisation problem of e-CoSVR equals

M 1 (a\7" «a
max § ( ( > K’U( > + (a'u - dv)TY
Qy, Gy EIR™ 7y ER™ QVU Y Y
v=1 v v
—(ay + Gy)Tek1, — E vE eV )

St {On <oy, by, <1,

)

Om < Yuw < Al }venM]], (uw)elM]?

~ M
where T} = %(a | )y and (o | %)y = (ay = G | 22y (Yuw = Vo))"

(%) The dual optimisation problem of {2-CoSVR is

i 1 (a TK « +( o )TY
max - Qy —
oy, Gy ER™ vy ER™ 2V’U ’y ! ’y b h
v=1 v v
EL(O% + av Tl VRN Z ’Yuv’yuv>

t OTL S a’U7d’U S 1TL
g Yuv = %Uu(z)u - %Uv(a

)

Yy ’Y)v }ve[[lw]], (u,v)e[M]?

where w1

N M

= o (| 7)y and (a ]| 7)5 = (o — 6o | 3y (Yuw = wu)) ™

Remark 1. The proofs of Lemma 1 as well as Lemmas 2 and 3 below use standard
techniques from Lagrangian dualisation (e.g., [3]). They can be found in our CoSVR
repository (see footnote 7).

We choose the concatenated vector representation (a | v)7 € IR"*™ in order to show
the correspondence between the two problems e-CoSVR and ¢2-CoSVR and further
CoSVR variants below. Additionally, the similarities with and differences to the original
SVR dual problem are obvious. We will refer to the optimisation in Lemma 1 as the base
CoSVR algorithms.

3.2 Reduction of Variable Numbers

The dual problems in Lemma 1 are quadratic programs. Both depend on 2Mn 4+ M?m
variables, where m > n. If the number of views M and the number of unlabelled
examples m are large, the base CoSVR algorithm might cause problems with respect
to runtime because of the large number of resulting variables. In order to reduce this
number, we define modified versions of base CoSVR. We denote the variant with a
modification in the labelled error with CoSVR™°? and in the unlabelled error with
COSVRmOd.



Modification of the Empirical Risk In base CoSVR the empirical risk is meant to be
small for each single view predictor individually using examples and their correspond-
ing labels. In the CoSVR™°¢ variant the average prediction, i.e., the final predictor, is
applied to define the labelled error term.

Definition 2. The co-regularised support vector regression problem with modified con-
straints for the labelled examples (CoSVR™?) is defined as

M n

. V’U WV,
= Z?|\fv||2+ > Len(yir f75 (1))
v Y =1 i=1

M m
A S (fule) fulz).

u,v=1j5=1

where f&V& = ﬁ 2311 fu is the average of all single view predictors. We denote the
case Y =l v, ¥ >0, with £-CoSVR™°% and the case 0V = 0y with l5-CoSVR™°%,

In the following lemma we present solutions for -CoSVR™°¢ and ¢5-CoSVR™°¢,

Lemma 2. Let v, \,e”, eV > 0. We utilise dual variables o, & € R™ and v, € R™.
(1) The e-CoSVR™? dual optimisation problem can be written as

M 1 fa\" «
max Z( () K() +(a—&)TY
a,G€EIR™, vyuy ER™ 2v, 7y v/,
v=1 v v
Sebaei, - Yt )
st{onéaaagln }
o Om § Yuv S >\1m v€|IM]] ’

. M
= (| 7)y and (o] 7)§ = (370 = &) [ 2u2; (uw — o))"
(i1) The {2-CoSVR™°? dual optimisation problem equals

M 1 [a\" «
- K — )Y
a,ézEIngl,a'y}iueIR’” Z ( 21/11 (’Y) v <7> + (av Oév)
v=1 v v
(av + av T L]- RN E ’yuv’%tv)

P {On S O[,d S 1774 }
s @ o ’
Yuv = %UU (’y)u o %UU (’Y)v ve[M]

1 T T 1 A M T

= oo (a]y)y and (| 7), = (37(@ = &) | 2oyt (Yuw = You))”

We can also reduce the number of variables more effectively using modified constraints
for the co-regularisation term. Whereas the CoSVR™°¢ algorithm is rather important
from a theoretical perspective (see Sect. 3.3), the variant presented in the next section
is very beneficial from a practical perspective if the number of views M is large.

where w1

where w1



Modification of the Co-Regularisation The unlabelled error term of base CoSVR
bounds the pairwise distances of view predictions, whereas now in CoSVR,,,,4 only
the disagreement between predictions of each view and the average prediction of the
residual views will be taken into account.

Definition 3. We consider RKHSs H1, . .., Has as well as constants e¥, €Y v, A > 0.
The co-regularised support vector regression problem with modified constraints for the
unlabelled examples (CoSVR ,04) is defined as

M n
. Vy 2
-5 v ler (Yis fo(wi 3
fuin 2 < 5 17l +; e (yis folx ))) 3)
M m
FAD D V(=) folz)s
v=1j=1
where now f3Vé 1= 37— ZM uF fu is the average of view predictors besides view v.

We denote the case E = (v, eV > 0, with e-CoSVR,,,0q and the case (U = {5 with
£2-C0SVRmOd.

Again we present solutions for e-CoSVR,,,4 and ¢3-CoSVR ;4.

Lemma 3. Let v, \, e ,EU > 0. We utilise dual variables av, &, € R" and ~,,%, €
R™, as well as 43" := 17—~ ZM UE o and A9 = — ZM UV 5 analogous
to the residual view predictor average.

(1) The e-CoSVR 04 dual optimisation problem can be written as

T
«
§ K, -ty
au,ozuemrfr},aim R™ ( 2v, (’y)v (’y)er(a a)

_(av + av)T‘ELln - (’7’0 + ’?v)gUlm)
5.t {On Savadv <1, }
O <70 %0 < Alm [ e

where i = J-(a [ )y and (a [ 7)) = (aw — o | (0 = 75"9) — (o = 5579)"
(i) The 62 COSVRmOd dual optimisation problem equals

M T
max Z L (e K, @ + (ay — 4,)TY
v, Gy €R™, 7 ER™ £— 2v, \Y v/

v

M
. 1
—(ay + av)Tngn I Z %T%)
u=1

T _

0, < av,au <1,
s.1. M, ;é 2)\ 2) )
Yo = 1 Z i (:)u N ZUU (:)v ve[M]

where Ty = J-(a | 7)7 and (o | )y = (0 — Gy [ 30 — 75°9)".



Remark 2. If we combine the modifications in the labelled and unlabelled error term

we canonically obtain the variants E-COSVRZZg and ¢ -COSVR%gg.

In the base CoSVR versions the semi-supervision is realised with proximity constraints
on pairs of view predictions. We show in the following lemma that the constraints of
the closeness of one view prediction to the average of the residual predictions implies a
closeness of every pair of predictions.

Lemma 4. Up to constants, the unlabelled error bound of CoSVR .04 is also an upper
bound of the unlabelled error of base CoSVR.

Proof. We consider the settings of Lemma 1(4) and Lemma 3(4). For part (i) the proof
is equivalent with eV = 0. In the case of M = 2, modified and base algorithm fall
together which shows the claim. Now let M > 2. Because of the definition of the e-
insensitive loss we know that |f,(z;) — f2v8(z;)| < €Y + ¢,;, where ¢,; > 0 is the
actual loss value for fixed v and j. We denote ¢; := max,eq1,... ary{cij, - - -, } and,
hence, |f,(2;) — f2¥8(z)| < eV + ¢; forallv € {1,..., M}. Now we conclude for
je{l,...,m}and (u,v) € {1,...,M}?

| ful(25) = fu(2))]
< [fulzg) = F28(2) | + 11298 (25) — 25 (25)] + | F25(25) — ful2))]
<&V ¢+ siglfo(z) = fulzy) + €7 + ¢,

and therefore, | f,,(z;) — fv(2;)| < % (€Y +¢;). As a consequence we deduce from
M T Lo (f3V8(25), fulz)) < M YTTL, ¢ =: B that also the labelled error of

v=1
CoSVR can be bounded Z%}:l Z;":l Ce(fu(z)), folzj)) < Bforé = %5—:[] and
B= %B , which finishes the proof. a

3.3 X-CoSVR

Sindhwani and Rosenberg [11] showed that under certain conditions co-regularisation
approaches of two views exhibit a very useful property. If /Y = /5 and the labelled
loss is calculated utilising an arbitrary loss function for the average predictor f%9,
the resulting multi-view approach is equivalent with a single-view approach of a fused
kernel. We use the notion from Sect. 2.

Definition 4. Let \,v1,vo, " > 0 be parameters and the Gram submatrices k(Z, x)
and k(Z,Z) be defined as in Sect. 2. We consider a merged kernel kx, from two view
kernels k1 and ko

ks(z,2)) = k®(2,2)) — k2 (Z,2)" (L1, +%%(2,2)) " k2 (Z,2'), 4

forx,x' € X, where k¥ = V%kl + ikg and k° = V%kzl — ikz. We denote the SVR
optimisation

i 2+ éEL ’ial i))s 5
argmin| f | > len(yi 3 f (@) )

i=1

X-co-regularised support vector regression (X-CoSVR), where H x; is the RKHS of k.



Please notice that for each pair (x, z’) the value of kx(x,2’) is calculated in (4) with
k1 and ko including not only x and z’ but also unlabelled examples z1, . . . , z,,. Hence,
the optimisation problem in (5) is a standard SVR with additional information about
unlabelled examples incorporated in the RKHS H 5.

Lemma 5. The algorithms l5-CoSVR™% and X-CoSVR are equivalent and H 5. is the
sumspace Hy = {f : X >R | f = f1 + fo, f1 € H1, f2 € Ha}.

Proof. The proof is an application of Theorem 2.2. of Sindhwani and Rosenberg [11]
for the loss function V' being equal to the e-insensitive loss with ¢ = ¢, the parameter
of the labelled error of ¢5-CoSVR™°¢, O

As 3Y-CoSVR can be solved as a standard SVR algorithm we obtained a much faster co-
regularisation approach. The information of the two views and the unlabelled examples
are included in the candidate space H x> and associated kernel k.

3.4 Complexity

The CoSVR variants and CoRLSR mainly differ in the number of applied loss func-
tions and the strictness of constraints. This results in different numbers of variables and
constraints in total, as well as potentially non-zero variables (referred to as sparsity,
compare Table 1). All presented problems are convex QPs with positive semi-definite

Table 1: Number of variables, constraints, and potential non-zero variables for differ-
ent CoSVR versions and CoRLSR. The respective CoSVR™°? variant is included by
cancelling the {M }-factor.

algorithm variables constraints sparsity

e-CoSVR 2{MIn+ M°m 4{M}n+2M>m {Min+ 3(M>—M)m
£5-CoSVR 2{M¥n + M?*m 4{M¥n+M>m {M}n+ M>m
€-CoSVRoa  2{M}n+2Mm 4{M}n+4Mm {M}n+ Mm
£3-CoSVRoa 2{M}n+ Mm 4{M}n+ Mm {M}n+ Mm
X-CoSVR 2n an n

CoRLSR Mn+ Mm 0 Mn + Mm

matrices in the quadratic terms. As the number m of unlabelled instances in real-world
problems is much greater than n, the runtime of a QP-solver is dominated by the respec-
tive second summand in the constraints column of Table 1. Because of the -insensitive
loss the number of actual non-zero variables in the learned model will be even smaller
for the CoSVR variants than the numbers reported in the sparsity column of Table 1. In
particular, for the modified variants this will allow for a more efficient model storage
compared to CoRLSR. Indeed, according to the Karush-Kuhn-Tucker conditions (e.g.,
[3]), only for active inequality constraints the corresponding dual ~y-variables can be
non-zero. In this sense the respective unlabelled z; € Z are unlabelled support vectors.
This consideration is also valid for the a-variables and support vectors x; € X as we



use the e-insensitive loss for the labelled error in all CoSVR versions. And finally, in
the two-view case with M = 2 the modified version with respect to the unlabelled error
term and the base version coincide.

3.5 A Rademacher Bound for CoSVR

Similarly to the result of Rosenberg and Bartlett [9] we want to prove a bound on the
empirical Rademacher complexity R, of CoSVR in the case of M = 2. Note that,
despite the proof holding for the special case of M = 2, the CoSVR method in general
is applicable to arbitrary numbers of views. The empirical Rademacher complexity is a
data-dependent measure for the capacity of a function class H to fit random data and is
defined as

Rn(H) =E° [sup
feEH

iiaif(xi)

1=

:{xl,...,xn}:X].

The random data are represented via Rademacher random variables o = (o1, . .., 0,)7.

We consider -CoSVR and ¢2-CoSVR and define bounded versions 5, and H3. of
the sum space Hy from Sect. 2 for the corresponding versions. Obviously, a pair
(my,ma) € R ™)X (+m) of kernel expansion coefficients (see (1)) represents an
element of H 5. For e-CoSVR and ¢5-CoSVR we set

Si={(m,m) e Hy : —pulpym < 71,72 < plptm}, and (6)
H2 = (7’(’1,7’(2) S HZ‘ . I/17T¥1K17T1 +V2W§K2’/T2
+/\(U17T1 — U27T2)T(U17T1 — Ugﬂ'g) S 1} 5 (7)

respectively. In (6) p is an appropriate constant according to Lemma 1 and 2. The def-
inition in (7) follows the reasoning of Rosenberg and Bartlett [9]. Now we derive a
bound on the empirical Rademacher complexity of H5, and H%, respectively. We point
out that the subsequent proof is also valid for the modified versions with respect to the
empirical risk. For two views the base and modified versions with respect to the co-
regularisation fall together anyway. For reasons of simplicity, in the following lemma
and proof we omit ™°? and ,,,q for the CoSVR variants. Furthermore, we will apply
the infinity vector norm ||v||~ and row sum matrix norm || L||o (consult, e.g., Werner

[15]).

Lemma 6. Let HS, and ’HQE be the function spaces in (6) and (7) and, without loss of
generality, let Y = [—1,1].
(1) The empirical Rademacher complexity of e-CoSVR can be bounded via

A c 2s
Rn(Ms) < —plllLilloo + [l L2]l0),

where L is a constant dependent on the regularisation parameters and s is the number
of potentially non-zero variables in the kernel expansion vector m € HS5..
(ii) The empirical Rademacher complexity of £2-CoSVR has a bound

Ro(H3) < 2/t (Kz),



where tr,,(Kx) := Y ks (z;, ;) with the sum kernel ks, from (4).
Our proof applies Theorem 2 and 3 of Rosenberg and Bartlett [9].

Proof. At first, using Theorem 2 of Rosenberg and Bartlett [9], we investigate the gen-
eral usefulness of the empirical Rademacher complexity R, of H'2%% in the CoOSVR
scenario. The function space 12 can be either H5, or H%. Theorem 2 requires two
preconditions. First, we notice that the e-insensitive loss function utilising the average
predictor (X (y, f(z)) = max{0, |y — (f1(z)+ f2(z))/2| —e¥} maps into [0, 1] because
of the boundedness of ). Second, it is easy to show that L s Lipschitz continuous, i.e.
|65 (y, o' ) =5 (y, ") /1y —y"| < C, for some constant C' > 0. With similar arguments
one can show that the e-insensitive loss function of base CoSVR is Lipschitz continu-
ous as well. According to Theorem 2 of Rosenberg and Bartlett [9], the expected loss
Ex,v)~p ¢*(f(X),Y) can then be bounded by means of the empirical risk and the
empirical Rademacher complexity

2+ 3,/In(2/0)/2
L loss
Ep - (f( E I ),ys) + 20R (H2®®) + NG
for every f € H2%¢ with probability at least 1 — 6. Now we continue with the cases (7)

and (ii) separately.
(1) We can reformulate the empirical Rademacher complexity

2
Rn(HS) = —E° sup |0T(L17r1 + Lgﬂg)} ,
n (71'1 ‘ ﬂz)TEIC

where K := {(m, | m)T € R M) —plyym < m1,me < plpim}. The kernel
expansion 7 of e-CoSVR optimisation is bounded because of the box constraints in the
respective dual problems. Therefore, 7 lies in the ¢;-ball of dimension s scaled with
S, i.e., m € su - Bi. The dimension s is the sparsity of m, and thus, the number of
expansion variables ,; different from zero. From the dual optimisation problem we
know that s < 2(n+m). Itis a fact that sup,. .. g, | (v, )| = sp[|v]| o (see Theorems

I1.2.3 and I1.2.4 in Werner [15]). Let L € R™*2("*™) pe the concatenated matrix
L = (L | L), where Ly and Lo are the upper parts of the Gram matrices K and K>
according to Sect. 2. From the definition we see that v = oT L and, hence,

stillvlloe = spllo” Lllso < sullolloo| Lllse < spllLlo

n+m
= s max g E |ky (24, 25)]
j=1 v=1,2

Finally, we obtain the desired upper bound for the empirical Rademacher complexity
of e-CoSVR
R 2 _, 2s
Ra(H5) < ~E7sulLlloe < = (I illoc + | Lalle).
(ii) Having the Lipschitz continuity of the e-insensitive loss ¢, the claim is a direct

consequence of Theorem 3 in the work of Rosenberg and Bartlett [9], which finishes
the proof. a
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Fig.1: Comparison of £-CoSVR, /3-CoSVR, and X-CoSVR with the baselines
CoRLSR, SVR(concat), and SVR(best) on 24 datasets using the fingerprints Gpi-
DAPH3 and ECFP4 in terms of RMSEs. Each point represents the RMSEs of the two
methods compared on one dataset.

4 Empirical Evaluation

In this section we evaluate the performance of the CoSVR variants for predicting the
affinity values of small compounds against target proteins.

Our experiments are performed on 24 datasets consisting of ligands and their affinity
to one particular human protein per dataset, gathered from BindingDB. Every ligand is
a single molecule in the sense of a connected graph and all ligands are available in
the standard molecular fingerprint formats ECFP4, GpiDAPH3, and Maccs. All three
formats are binary and high-dimensional. An implementation of the proposed methods
and baselines, together with the datasets and experiment descriptions are available as
open source’.

We compare the CoSVR variants e-CoSVR, ¢5-CoSVR, and >-CoSVR against
CoRLSR, as well as SVR with a single-view (SVR([fingerprint name])) in terms of
root mean squared error (RMSE) using the linear kernel. We take the two-view setting
in our experiments as we want to include 3'-CoSVR results in the evaluation. Another
natural baseline is to apply SVR to a new view that is created by concatenating the
features of all views (SVR(concat)). We also compare the CoSVR variants against an
oracle that chooses the best SVR for each view and each dataset (SVR(best)) by taking
the result with the best performance in hindsight.

We consider affinity prediction as semi-supervised learning with many unlabelled
data instances. Therefore, we split each labelled dataset into a labelled (30% of the ex-
amples) and an unlabelled part (the remaining 70%). For the co-regularised algorithms,
both the labelled and unlabelled part are employed for training, i.e., in addition to la-
belled examples they have access to the entire set of unlabelled instances without labels.
Of course, the SVR baselines only consider the labelled examples for training. For all
algorithms the unlabelled part is used for testing. The RMSE is measured using 5-fold

7 CoSVR open source repository, https: //bitbucket .org/Michael_Kamp/cosvr


https://bitbucket.org/Michael_Kamp/cosvr

Table 2: Comparing RMSEs using Wilcoxon signed-rank test (hypothesis test on
whether CoSVR has significantly smaller RMSEs than the baselines).

e-CoSVR £5-CoSVR 2’-CoSVR
baseline Z p-value Z p-value Z p-value
CoRLSR 8.0 < 0.00005 | 13.0 < 0.00009 | 70.0 < 0.02226

SVR(GpiDAPH3) 1.0 < 0.00002 | 1.0 < 0.00002 | 1.0 < 0.00002
SVR(ECFP4) 22.5 < 0.00027 | 44.0 < 0.00738 | 94.0 < 0.1096

SVR(concat) 3.0 < 0.00003 | 24.0 < 0.00032 | 79.5 < 0.04397
SVR(best) 27.0 < 0.00044 | 56.0 < 0.02208 | 88.0 < 0.07649

cross-validation. The parameters for each approach on each dataset are optimised using
grid search with 5-fold cross-validation on a sample of the training set.

In Fig. 1 we present the results of the CoSVR variants compared to CoRLSR (a),
SVR(concat) (b), and SVR(best) (c) for all datasets using the fingerprints GpiDAPH3
and ECFP4. Fig. 1 (a), (b) indicate that all CoSVR variants outperform CoRLSR and
SVR(concat) on the majority of datasets. Fig. 1 (c) indicates that SVR(best) performs
better than the other baselines but is still outperformed by e-CoSVR and /5-CoSVR.
Y-CoSVR performs similar to SVR(best).

The indications in Fig. 1 are substantiated by a Wilcoxon signed-rank test on the
results (presented in Table 2). In this table, we report the test statistics (£ and p-value).
Results in which a CoSVR variant statistically significantly outperforms the baselines
(for a significance level p < 0.05) are marked in bold. The test confirms that all CoSVR
variants perform statistically significantly better than CoRLSR and SVR(concat). More-
over, e-CoSVR and ¢5-CoSVR statistically significantly outperform an SVR trained on
each individual view as well as taking the best single-view SVR in hindsight. Although
2)-CoSVR performs slightly better than SVR(best), the advantage is not statistically
significant.

In Table 3 we report the average RMSEs of all CoSVR variants, CoRLSR and the
single-view baselines for all combinations of the fingerprints Maccs, GpiDAPH3, and
ECFP4. In terms of average RMSE, e-CoSVR and ¢2-CoSVR outperform the other ap-
proaches for the view combination Maccs and GpiDAPH3, as well as GpiDAPH3 and
ECFPA4. For the views Maccs and ECFP4, these CoSVR variants have lower average
RMSE than CoRLSR and the single-view SVRs. However, for this view combination,
the SVR(best) baseline outperforms CoSVR. Note that SVR(best) is only a hypothet-
ical baseline, since the best view varies between datasets and is thus unknown in ad-
vance. The X-CoSVR performs on average similar to CoRLSR and the SVR(concat)
baseline and slightly worse than SVR(best). To avoid confusion about the different per-
formances of X-CoSVR and ¢5-CoSVR, we want to point out that X-CoSVR equals
£5-CoSVR™°% (see Lemma 5) and not ¢5-CoSVR (equivalent with £5-CoSVR,,,,q for
M = 2) which we use for our experiments.

The advantage in learning performance of e-CoSVR and ¢2-CoSVR comes along
with the cost of a higher runtime as shown in Fig. 4. In concordance with the theory,
Y-CoSVR equalises the runtime disadvantage with a runtime similar to the single-view
methods.



In conclusion, co-regularised support vector regression techniques are able to ex-
ploit the information from unlabelled examples with multiple sparse views in the prac-
tical setting of ligand affinity prediction. They perform better than the state-of-the-
art single-view approaches [12], as well as a concatenation of features from multi-
ple views. In particular, e-CoSVR and £5-CoSVR outperform the multi-view approach
CoRLSR [4] and SVR on all view combinations. £3-CoSVR outperforms SVR(concat)
on all, e-CoSVR on 2 out of 3 view combinations. Moreover, both variants outperform
SVR(best) on 2 out of 3 view combinations.

Table 3: Average RMSEs for all combi- N Runtimes per Method
nations of the fingerprints Maccs, Gpi-
DAPH3, and ECFP4 ﬁ %
Method View Combinations 100 ﬁ ﬁ % ﬁ
Maccs, Maccs, GpiDAPH3,
ECFP4 GpiDAPH3 ECFP4 1071 4
e-CoSVR  1.035 1.016 1.049
,-CoSVR  1.007 1.019 1.062
$-CoSVR  1.116 1.114 1.151 & & 5 & = =
CoRLSR  1.06 1.073 1.199 JOAN

SVR(viewl) 1.04 1.041 1.355
SVR(view2) 1.094 1.37 1.106
SVR(concat) 1.011 1.12 1.194

SVR(best) 0.966 1.027 1.104 Fig.2: Runtimes of the CoSVR vari-

ants, CoRLSR, and single-view SVRs
on 24 ligand datasets and all view com-
binations (runtime in log-scale).

5 Conclusion

We proposed CoSVR as a semi-supervised multi-view regression method that copes
with the practical challenges of few labelled data instances and multiple adequate views
on data. Additionally, we presented CoSVR variants with considerably reduced num-
bers of variables and a version with substantially decreased runtime. Furthermore, we
proved upper bounds on the Rademacher complexity for CoSVR. In the experimen-
tal part, we applied CoSVR successfully to the problem of ligand affinity prediction.
The variants e-CoSVR and ¢>-CoSVR empirically outperformed the state-of-the-art
approaches in ligand-based virtual screening. However, this performance came at the
cost of solving a more complex optimisation problem resulting in a higher runtime than
single-view approaches. The variant >’~-CoSVR still outperformed most state-of-the-art
approaches with the runtime of a single-view approach.



Bibliography

[1] Bender, A., Jenkins, J.L., Scheiber, J., Sukuru, S.C.K., Glick, M., Davies, J.W.:
How Similar Are Similarity Searching Methods? A Principal Component Analysis
of Molecular Descriptor Space. J. Chem. Inf. Model. (2009)

[2] Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-Training.
In: Proceedings of the 11th Annual Conference on Learning Theory (1998)

[3] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

[4] Brefeld, U., Girtner, T., Scheffer, T., Wrobel, S.: Efficient Co-Regularised Least
Squares Regression. In: Proceedings of the 23rd International Conference on Ma-
chine Learning (2006)

[5] Farquhar, J.D.R., Meng, H., Szedmak, S., Hardoon, D., Shawe-Taylor, J.: Two
view learning: SVM-2K, Theory and Practice. In: Advances in Neural Information
Processing Systems 18 (2006)

[6] Geppert, H., Humrich, J., Stumpfe, D., Gartner, T., Bajorath, J.: Ligand Prediction
from Protein Sequence and Small Molecule Information Using Support Vector
Machines and Fingerprint Descriptors. J. Chem. Inf. Model. (2009)

[71 Myint, K.Z., Wang, L., Tong, Q., Xie, X.Q.: Molecular Fingerprint-Based Arti-
ficial Neural Networks QSAR for Ligand Biological Activity Predictions. Mol.
Pharmaceutics (2012)

[8] Nisius, B., Bajorath, J.: Reduction and Recombination of Fingerprints of Different
Design Increase Compound Recall and the Structural Diversity of Hits. Chem.
Biol. Drug Des. (2010)

[9] Rosenberg, D.S., Bartlett, P.L.: The Rademacher Complexity of Co-Regularized
Kernel Classes. In: Proceedings of the 11th International Conference on Artificial
Intelligence and Statistics (2007)

[10] Scholkopf, B., Herbrich, R., Smola, A.J., Williamson, R.: A Generalized Rep-
resenter Theorem. In: Proceedings of the Annual Conference on Computational
Learning Theory (2001)

[11] Sindhwani, V., Rosenberg, D.S.: An RKHS for Multi-View Learning and Mani-
fold Co-Regularization. In: Proceedings of the 25th International Conference on
Machine Learning (2008)

[12] Sugaya, N.: Ligand Efficiency-Based Support Vector Regression Models for Pre-
dicting Bioactivities of Ligands to Drug Target Proteins. J. Chem. Inf. Model.
(2014)

[13] Ullrich, K., Mack, J., Welke, P.: Ligand Affinity Prediction with Multi-Pattern
Kernels. In: Proceedings of Discovery Science (2016)

[14] Wang, X., Ma, L.and Wang, X.: Apply semi-supervised support vector regression
for remote sensing water quality retrieving. IEEE International Geoscience and
Remote Sensing Symposium (2010)

[15] Werner, D.: Funktionalanalysis. Springer (1995)

[16] Xu, C., Tao, D., Xu, C.: A Survey on Multi-view Learning. arXiv (2013)



	Co-Regularised Support Vector Regression

