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Modern fabrication techniques offer the freedom to design and manufacture structures with
complex geometry on many length-scales, offering many potential advantages. For example, frac-
tal/hierarchical struts have been shown to be exceptionally strong and yet light, Phys. Rev. Lett.,
109, 204301 (2012). In this letter, we propose a new class of meta-material, constructed from fractal
or hierarchical struts linking a specific set of lattice points. We present a mechanical analysis of this
meta-material resulting from a body-centred cubic (BCC) lattice. We show that, through the use
of hierarchy, the material usage follows an enhanced scaling relation, and both material property
and overall efficiency can be optimised for a specific applied stress. Such a design has the potential
of providing the next generation of lightweight, buckling-resistant meta-materials.

PACS numbers:

The design of strong, light structures is an enduring
challenge in human history, driven by economic demands
as much as technological possibilities. A dramatic in-
crease in the interest of mechanical meta-materials and
“designer matter” has been witnessed in recent years
[1–5]. This growth has been stimulated by new fab-
rication techniques, which have relaxed the constraints
on length-scale and geometric complexity to which a
designer must adhere. For example, designs with fea-
tures on the nanometer scale can now be fabricated us-
ing techniques such as two-photon lithography [6] and
electroless plating [7]. New methods are also being intro-
duced including controlled self assembly of complex thin
walled micro-structures [8], these novel techniques may
offer even greater freedom in design. This new found
freedom has allowed the creation of meta-materials with
non-trivial structural elements on multiple lengthscales
[6, 7, 9–12], resulting in architectures with close resem-
blance to some remarkable geometries found in nature
[13].

Many natural structures owe their remarkable mechan-
ical properties as much to their geometry as their con-
stituent material. The presence of non-trivial structural
order on many length-scales is a unifying concept in many
such architectures. For example, through hierarchy [13],
biological structures offer exceptional performance in ad-
hesion [14], fracture toughness [15], elasticity [16], and
strength to weight ratios [17]. Although both theoreti-
cal [18–22] and experimental [6, 9–12, 23, 24] work has
been undertaken, the role of hierarchy in such structures
has not yet been fully elucidated: Such understanding
will pave the way for new structures and materials that
match and exceed the performance of those found in na-
ture.

In this article, we propose a novel hierarchical meta-
material constructed from fractal/hierarchical [25] struts
linking a specific set of lattice points. We present a me-
chanical analysis of the resulting infinite, periodic 3-d,
pin jointed lattices under arbitrary uniform stress. For

this article, we adopt a body-centred cubic lattice, with
struts linking nearest and next-nearest lattice sites. In
this lattice, all nodes are equivalent, however, our anal-
ysis can be generalised to lattices with more than one
lattice site in the unit cell. We find that, through pru-
dent choice of the relative spring constant of the linkages
within the structure, one can create an isotropic meta-
material. The degree of hierarchy within the linkages
may be varied, thus endowing the overall meta-material
with a high degree of tailorability in its elastic response.
A load can be applied to the meta-material with an ar-
bitrary macroscopic stress tensor, σij , which defines the
stress vector σM ≡ (σ11, σ22, σ33, σ23, σ13, σ12)T [26]. For
some magnitude of this loading, the linkages will fail ei-
ther elastically or through yielding of the material. For
a given stress direction σ̂M , we aim, through hierarchi-
cal design, to create meta-materials maintaining elastic
stability under a given relative stress σ/σY , while min-
imising the relative density of material, ρ/ρm, where ρ
is the density of the meta-material, σ = |σM |, and σY
and ρm are the yield stress and density of the construc-
tion material respectively. While it is noted that other
modes of failure could occur, our interest here is in meta-
materials of low relative density, thus linkages with high
aspect ratios are assumed throught, consequently elas-
tic failure is the limiting factor. In order to maximise
the robustness of our results, that is, broaden the spec-
trum of stress directions over which the hierarchical de-
sign shows beneficial results, we use a space frame design
considered sub-optimal under simple compressive loading
as our linkage element; the structure considered here is
a modified version of that presented in Ref. [27], where
a fractal beam structure was optimised for gentle com-
pressive axial loading. This paper is divided into three
sections: In the first section we present the key properties
of the hierarchical linkage element used here. In section
II, using a novel methodology, we derive the mechanical
properties of our chosen pin jointed lattice, establishing
the necessary properties of our linkages to give isotropic
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FIG. 1: The hierarchical frame: Left shows generation-1 frame, with n1,1 = 6; The right image shows a generation-3 structure
with insets showing details at an increasingly small scale. The particular frame shown is with parameters n3,i = 6 for i = 1, 2, 3.
In contrast to [27], in this work, at each iterative step, all beams within the structure are replaced by generation-1 frames.

material properties, and the consequent effective Young’s
modulus and Poisson’s ratio of our meta-material.

In the section III, we combine the results of the first
two sections to establish the elastic limit of our lattice
based meta-material with hierarchical linkages for vari-
ous directions of applied stress, showing significant gains
through hierarchical design. We show that for low rel-
ative density of material, the use of hierarchy becomes
increasingly beneficial, and that these gains occur over a
wide range of stress orientations. Furthermore, we show
that for a given stress direction, a series of scaling rela-
tionships exist relating the minimum volume fraction of
material, ρ/ρm and the magnitude of the relative stress
that results in elastic failure, σ/σY , which depend on the
degree of hierarchy of the linkages. For a wide variety of
stress directions, these scaling relations can be manipu-
lated in a systematic and beneficial manner.

I. LINKAGE ELEMENTS

Simple hollow beams: To serve as a reference for the
hierarchical structures, we will consider the lattice struc-
ture fabricated from thin walled cylinders. Euler buck-
ling [28] provides a first limit for the loading capacity
of such a structure under compression. Assuming freely
hinged end points, a slender beam of length L buckles
under a force F

F =
π2Y I

L2
, (1)

where I is the second moment of area which, for a thin
walled cylinder, is approximated by I ≈ πr3t, where r
is the radius of the beam and t is the wall thickness.
In a thin walled structure, a short wavelength buckling
can also occur [29, 30], providing a second limit to the
compressive loading:

F <
2πY t2√
3 (1− ν2)

, (2)

where ν is the Poisson’s ratio of the construction mate-
rial. Utilising these constraints, it is possible to deter-
mine the material required for stability of a simple beam
for a given value of compressive loading. When the beam
is put under tension, the elastic limit of the material re-
quires that the stress does not exceed the yield stress of
the material, σY . The thin walled cylinder will be re-
ferred to as the generation-1 structure.
Hierarchical elements: The first space frame design

(generation-2) that we consider is shown in figure 1 (left),
constructed from thin walled beams forming n1,1 octahe-
dra linking two end tetrahedra. The higher order struc-
tures considered here follow a simple iterative procedure,
the generation-G frame is constructed through the re-
placement of all beams in the generation-(G − 1) struc-
ture with scaled space frames, the number of octahedra
at each iteration is allowed to vary. We follow the no-
tation introduced first in [18] that allows us to refer to
characteristics of a structure at a given length scale: XG,i

refers to the parameter X at length scale i of G (i = 1
being the smallest, i = G, the longest). Simple geometry
gives

LG,i =
√

2/3 (nG,i + 2)LG,i−1. (3)

Elastic stability of a generation-G frame can be lost at
one of G+1 length-scales: on the smallest scale, the thin
walled structure can fail due to Koiter buckling (wave-
length of order r), or Euler buckling (of order LG,1). Al-
ternatively, the whole frame or any subframe can fail due
to an Euler buckling, with wavelength of order LG,i, for
2 ≤ i ≤ G.

When a compressive (tensile) axial force FG,G is ap-
plied to the generation-G structure, a the maximum load
experienced by any substructure at level i in the struc-
ture will be [27]

FG,i = − F

2i6i/2
(4)

FG,i =
FG,G
6i/2

, (5)
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for tension (compression) and compression (tension)
bearing beams in the structure respectively. The me-
chanical properties of the generation-G will be dependent
on its geometry and topology. The spring constant, KG,i

and bending stiffness, Y IG,i of a frame and its subframes
can be calculated as

KG,i =
36KG,i−1

11nG,i + 43
, (6)

Y IG,i = BL3
G,i−1KG,i−1, (7)

where B is a constant [27]. At all hierarchical levels,
there is an Euler buckling mode that must be avoided.
The constraint in Eq. (1) must be satisfied for all pairs
(Y I = Y IG,i, L = LG,i), i ≤ G. Furthermore, FG,1 must
not exceed the value given in Eq. (2). Given these expres-
sions, and a fixed length of structure we can perform a
naive optimisation on the spaceframe for a given applied
load [27]: The parameters r and t are set such that the
smallest beams in the structure have a coincident bifur-
cation point due to Koiter and Euler buckling. Utilising
these values, we set nG,i from i = 1 to i = G for minimal
material cost retaining elastic stability beyond the point
of failure on length scales below.

While other modes of failure are possible, in the limit
of interest here (that is lightweight meta-materials), high
aspect ratio structures of beneficial, in this limit elastic
stability is likely to be the failure mode of interest. Fur-
thermore, it is noted that for the geometry considered
here, when tension is applied to the frame of any gener-
ation, each hierarchical level will have a sub-frame that
withstands a compressive load, the elastic stability of this
element thus introduces the active limit on loading.

II. ELASTIC PROPERTIES OF
META-MATERIAL

Here we present the analysis of the mechanical prop-
erties of a particular 3-dimensional lattice. This anal-
ysis allows, given a macroscopic stress applied to the
meta-material, the computation of the loading on the
constituent hierarchical linkage elements. The analysis
presented here is readily generalisable to other lattice
geometries. Here, we consider an infinite body-centred
cubic lattice and place struts with spring constant k1
between nearest neighbours and spring constants of k2
between next nearest neighbours, see figure 2. In doing
so we create a lattice where all points on the lattice are
equivalent. We take L to be the distance between nearest
neighbours. If we take one lattice point to be at the origin
of Cartesian coordinates we find that nearest neighbours
are at points,

x1,...,8 = L (±1,±1,±1) /
√

3 (8)

FIG. 2: Showing the body-centred cubic lattice with nearest
and next nearest neighbours joined by springs of different stiff-
ness (distinguishable by shade). Also showing a single lattice
point with all the attached generation-2 frames considered in
the derivation of Eq. (13).

Then, next nearest neighbours are found at:

x9,10 = 2L (±1, 0, 0) /
√

3, (9)

x11,12 = 2L (0,±1, 0) /
√

3, (10)

x13,14 = 2L (0, 0,±1) /
√

3. (11)

We follow the Cauchy-Born hypothesis, and consider
affine deformations to the lattice structure represented
by a symmetric matrix e, we see that under this defor-
mation, a point originally at xi is translated to point x′i
given by,

x′i = (I3 + e) · xi. (12)

where I3 is the identity matrix. The energy per unit
volume can be expressed as a sum over the contributions
from each linkage in the unit cell:

U =
1

2Vuc

14∑
i=1

1

2
ki [|(I3 + e) · xi| − Li]2 (13)

where Li is the initial distance between the nodes con-
sidered, Vuc is the volume of the unit cell, and the factor
of half arises to avoid double counting. Through prudent
choice of spring constant k1 and k2 we aim to create an
elastically isotropic material. Through equating the Tay-
lor series of Eq. (13), truncated at terms quadratic in e,
with the equivalent expression for an isotropic material
[31], we find that the relationship

k2 =
2k1
3

(14)

ensures that the resulting meta-material will be isotropic.
Such a meta-material will have Poisson’s ratio and
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Young’s modulus given by

ν̃ =
1

4
, Ỹ =

5k1

2
√

3
. (15)

Given a macroscopic stress applied to our isotropic ma-
terial, through the expressions in Eq. (15), we are able to
obtain the macroscopic material strain. We now define
three vectors that describe the periodicity of the lattice:

a1 = L(1, 1, 1)T /
√

3, (16)

a2 = L(−1, 1, 1)T /
√

3, (17)

a3 = L(1, 1,−1)T /
√

3. (18)

Using these vectors, starting at any point on the lattice a
transformation can be found involving integer multiples
of these vectors taking us to any equivalent point on the
lattice. The strain on the material can then be related to
the change in the periodic lattice vectors through [26]:

∆ai = A [ε11, ε22, ε33, γ23, γ13, γ12]
T

(19)

where A is a matrix whose values depend on the vector
ai [26]. Thus, for a given stress we can obtain the de-
formation in each of the space frames that make up our
material and consequently the macroscopic failure stress
of our meta-material can be found through consideration
of the elastic failure loadings of the constituent space
frames.

III. ELASTIC INSTABILITY

Having derived the material properties of our meta-
material, it is possible to relate macroscopic stress with
macroscopic strain. Then, through Eq. (19) we can relate
macroscopic strain with the strain (and therefore force,
through Eq. (6)) experienced by the member frames. For
a given relative density of material, we can then find the
failure stress of the meta-material for different degrees of
hierarchy. The increase in load bearing capacity of hier-
archical structures relative to the generation-1 design are
shown in figure 3 for various stress directions and rela-
tive densities. It is observed that hierarchy is increasingly
beneficial for structures of lower relative density.

Scaling Laws: We further compare the efficiency of
meta-materials of various degrees of hierarchy, by estab-
lishing the scaling relationship between the minimal value
of relative density of material required for stability, and
relative stregth of meta-material, the magnitude of stress.
For a given generation and loading direction σ̂M , one can
numerically obtain the magnitude of the stress that will
result in loss of elastic stability. Scaling laws can then be
obtained from these results with a high degree of accu-
racy.

The scaling relationships observed are dependent on
the nature of the stress considered. When compressive
load on the linkages causes the dominant mode of fail-
ure, for example, the structure is placed under isotropic
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FIG. 3: The increase in maximum stress bearing capacity for
different generation of structure, G. Here, σ(G) is the maxi-
mum value of |σ| for which a generation-G structure retains
elastic stability. Figure shows gains for various relative den-
sities (indicated by color) and loading conditions (indicated
by line syle). In all loading conditions shown, the benefits of
hierarchical design increase with decreasing relative density
of meta-material.
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FIG. 4: The relationship between relative density and rel-
ative strength under uniaxial compressive loading, material
properties are taken to be close to those of Al2O3 reported
in [12]. The red and blue regions show approximate values
from experimentally realised octet truss lattice materials of
generation-1 design made from Al2O3 and Ni-P respectively
[12] while the grey dashed line indicates the approximate rela-
tive density of an experimentally realised carbon aerogel [32].
The points show the direct results of optimisation (with noise
due to the integer nature of nG,i), while the lines in red show
fitted curves, from which the scaling laws (Eq. (20)) are taken
with a high degree of accuracy.
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FIG. 5: Above: The optimal generation for ap-
plied stress σM = σ/

√
3 sin(θ)[0,−1,−1,−1, 0, 0]T +

σ/
√

2 cos(θ)[−1, 0, 0, 1, 0, 0]T . The construction material
properties are assumed to be close to that of Al2O3, as given
in [12]. The stress direction is varied with θ whose value is
constant for a given radial line (indicated in degrees). The
distance from the center of the colour map indicates the mag-
nitude of loading, as shown by the scale on the left, while the
colour indicates the magnitude of the material saving rela-
tive to the generation-1 design. The regions are labeled with
the optimal generation number for that direction and magni-
tude of loading. Below: The scaling relationships for isotropic
compression (main figure) and tension (inset), using the same
material properties. The only scaling change is observed for
generation-1, as described in Eqs. (20 - 21).

crush pressure or uniaxial compressive load, the scaling
of relative strength with relative density will follow,

σ

σY
∼
(
ρ

ρm

)G+2
G+1

, (20)

for all values of G. These scalings are shown in figure 4,
where the efficiency of the structures presented here are
compared with existing meta-materials.

If, however, the component frames that make up the
material fail under tension (for example isotropic ten-
sion), the structure constructed from solid/hollow beams

will follow the scaling

σ

σY
∼


ρ
ρm

if G = 0,(
ρ
ρm

)G+2
G+1

if G ≥ 1,
(21)

this is shown in the inset of figure 5. It is noted, that
in the limit of gentle loading, under compression, higher
generation frames will be increasingly efficient, while un-
der tension, simple beams will be optimal.

We can also determine the optimal generation of hi-
erarchical beam for all applied macroscopic stresses. In
figure 5, we show the minimum volume fraction required
for stability against a variety of stress directions and mag-
nitudes, alongside the optimal generation number.

IV. DISCUSSION

We have proposed a novel hierarchical meta-material
constructed from fractal/hierarchical struts linking a spe-
cific set of lattice points, and we have presented a me-
chanical analysis of this structure. Using our methodol-
ogy, we have designed an isotropic meta-material from a
body centred cubic lattice with nearest and next near-
est neighbours linked with hierarchical beams. Given a
component beam of a particular degree of hierarchy, and
a general loading stress on the material, we establish the
magnitude of loading that will cause elastic instability
in the lattice. Through manipulation of hierarchy, we
have shown that, for a wide range of loading directions
on the material, the fundamental scaling laws defining
the efficiency of the meta-material can be manipulated
in a beneficial manner. This work illustrates a route to
materials with exceptionally high strength to weight ra-
tio.

Harnessing the potential of hierarchical design could
provide the next generation of lightweight, functional
materials. The increased resolution of modern fabrica-
tion techniques have made the use of hierarchical struc-
tures such as the one presented here a realistic possibility
[6, 11, 12], and as such the designs presented here are of
great economic and technological potential. While the
analysis presented here is restricted to beams/frames of
uniform construction down their long axis, the analysis
can be generalised to more general linkage elements of-
fering further potential for optimisation. It is also noted
that the postbuckling behaviour of the meta-material has
not yet been elucidated: Understand of this behavour
may lead to as yet unanticipated technological applica-
tions.

In the future, it may be possible that single and multi-
walled carbon nanotubes [33] or DNA helices [35] could
act as the component beams on the smallest structural
scale, allowing a huge degree of tailorability of the macro-
scopic material properties. It has been shown that the
instability of both carbon nanotubes [33, 34] and DNA
helices [35–37] structures is broadly similar to those con-
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sidered here, and as such, the analysis presented here would be expected to hold.
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