
Quantum Chemical Study of the Structure,

Spectroscopy and Reactivity of NO+.(H2O)n=1−5

Clusters

Kirsty A. Linton, Timothy G. Wright and Nicholas A. Besley∗

School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

E-mail: nick.besley@nottingham.ac.uk

∗To whom correspondence should be addressed

1



Abstract

Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and den-

sity functional theory (DFT) have been used to study the structure, spectroscopy and reactiv-

ity of NO+.(H2O)n=1−5 clusters. MP2/6-311++G** calculations are shown to describe the

structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation

functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO+.(H2O)

that is too high and incorrectly predict the lowest energy structure of NO+.(H2O)2, and this

error may be associated with a delocalisation of charge onto the water molecule directly bind-

ing to NO+. Ab initio molecular dynamics (AIMD) simulations were performed to study the

NO+.(H2O)5 → H+.(H2O)4 + HONO reaction to investigate the formation of HONO from

NO+.(H2O)5. Whether an intracluster reaction to form HONO is observed depends on the

level of electronic structure theory used. Of note is that methods that accurately describe the

relative energies of the product and reactant clusters did not show reactions on the time-scales

studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy

present in the NO+.(H2O)5 complex following its formation.

Introduction

The reactivity of the nitrosonium ion (NO+) and water clusters plays an important role in the chem-

istry of the ionosphere. The photoionisation of nitric oxide is an essential process in the D layer of

the ionosphere and it has been predicted that the major positive ions in the ionosphere are NO+, O+
2

and N+
2 , in order of decreasing abundance.1 Rocket-borne mass spectroscopic experiments have

confirmed that NO+ is present in high abundance in the upper layers of the ionosphere, namely the

E layer (90 - 140 km) and F layer (>140 km).2 However, these measurements unexpectedly found

protonated water clusters (H+(H2O)n) to be the major positively charged ion present in the lower

D layer. Subsequent research has focused on developing an understanding of the high abundance

of H+(H2O)n clusters and their formation in the D layer.3–5 It has been proposed that NO+ is in-

volved in an associative/dissociative equilibrium with abundant neutral molecules such as X=CO2,
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O2, N2 or H2O3

NO++X +Y ⇀↽ NO+.X +Y (1)

where Y is third body. NO+.X complexes have been detected for all of these species4 and these

complexes can then be involved in a further ligand exchange reaction where X is replaced by a

second neutral molecule, such as H2O.

NO+.X +H2O ⇀↽ NO+.H2O+X (2)

This two-step hydration process of NO+ is more efficient than a direct one-step process because

of the high concentration of molecules such as N2 compared with H2O. Through these reactions,

NO+.H2O is formed which can then undergo further stepwise solvation to form larger clusters

NO+.(H2O)n +H2O ⇀↽ NO+.(H2O)n+1 (3)

Finally, it was proposed that these clusters could undergo an intracluster rearrangement resulting

in the formation of protonated water clusters and nitrous acid.

NO+.(H2O)n+1→ H+.(H2O)n +HONO (4)

This reaction has been verified experimentally,6–9 and the detection of small NO+.(H2O)n clusters

in the D layer of the ionosphere provides evidence to support this mechanism.10 In the case of O+
2 ,

similar intracluster reactions have been proposed that occur at lower values of n11

O+
2 .(H2O)n +H2O ⇀↽ H+.(H2O)n +OH +O2 (5)

The structure and reactivity of NO+.(H2O)n clusters has been investigated in both experimen-
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tal and computational studies. It has been shown that the rate of production of HONO depends on

the size and the structure of the water cluster12 and temperature can also be an important factor

since at higher temperatures isomers of higher energy can be present.13,14 Based on experimental

studies, it is believed that nitrous acid, i.e. HONO, formation can occur for n = 4 and becomes

dominant for n = 5.15,16 DePetris et al. studied the minimum energy structures of H2NO+
2 and

identified six stable minimum energy conformations with Møller-Plesset perturbation theory cal-

culations and concluded that the lowest energy NO+.(H2O) structure17 would be dominant. A full

nine-dimensional potential energy surface computed at the coupled cluster theory (CCSD(T)) level

has been reported.18 The surface shows two distinct minima corresponding to the hydrogens of the

water molecule being perpendicular to and in the plane of NO+ with the non-planar structure lower

in energy. The structure and vibrational frequencies of NO+.(H2O)n clusters for n in the range 2-5

have been studied by several groups at the MP2, MP4 or coupled cluster levels of theory.19–22

For the n = 2 cluster, MP2 calculations predict that the lowest energy structure has both water

molecules bonding to NO+. A further structure with the second water molecule bonded to the first

in the second solvation shell is higher in energy. NO+.(H2O)n clusters have also been studied using

density functional theory (DFT). The structure and vibrational spectroscopy of clusters with n=1-

3 were studied using molecular dynamics simulations with a generalised gradient approximation

(GGA) functional.23 DFT based Born-Oppenheimer ab initio molecular dynamics (AIMD) have

been used to study intracluster reactions leading to the formation of HONO. Most recently, the n=3,

4 and 5 clusters were studied using AIMD simulations with the BLYP+D exchange-correlation

functional.24 No reactions to form HONO were observed for the simulations of the n=3 clusters,

while for n=4 clusters reactions were observed and a chain-like isomer was identified as an im-

portant intermediate. The larger n=5 clusters were also observed to react with the exception of

the most stable isomer. However, some notable differences are observed between the predictions

of DFT and correlated wavefunction based methods. This is illustrated by the n=2 cluster where

DFT predicts a structure with the second water molecule not directly bonded to NO+ as the lowest

energy structure in contrast to correlated wavefunction methods that predict both water molecules
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bound to NO+. Qualitative differences between DFT and wavefunction based methods are also

observed for related systems including ionised water clusters.25,26 In this paper we investigate the

difference between predictions from DFT and MP2 and explore the structure and reactivity of the

clusters.

Computational Details

In order to determine the low energy isomers of the NO+.(H2O)n=2−5 clusters a random search

procedure in conjunction with a hierarchical approach was adopted. In the random search proce-

dure, before each structural optimisation cycle the cluster is subjected to twenty random moves

in which a molecule in the cluster is chosen at random and rotated by a random angle and trans-

lated.27 For the clusters studied here, up to 150 optimisation cycles were performed. This initial

optimisation process was performed at the Hartree-Fock (HF) theory level with the 6-31+G* basis

set and generated a large number of structures. The structurally distinct low energy isomers were

then re-optimised at the MP2/6-311++G** level of theory and harmonic frequency calculations

performed to ascertain if the final structures correspond to minima on the potential energy sur-

face. Finally, the energies of the clusters were determined through single point MP2/aug-cc-pVTZ

calculations at the optimised MP2/6-311++G** geometries. Computational infra-red (IR) spectra

were generated by convoluting the computed frequencies and intensities with Lorentzian functions.

The computed frequencies were scaled by a 0.95 to account for the effects of anharmonicity and

other deficiencies in the calculations. Born-Oppenheimer AIMD simulations were performed at a

temperature of 220 K with the initial velocities sampled from a Maxwell-Boltzmann distribution

and a time step of 0.48 fs. AIMD simulations have been performed at the MP2 level and using

DFT with the BLYP-D28–30 and M06-HF31 exchange-correlation functionals and a range of basis

sets.
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Table 1: Computed binding energies with the 6-311++G** basis set and error with respect to
CCSD(T) for NO+.H2O in kJ mol−1

Method/Functional Binding Energy Error
CCSD(T) 83.98 0.00
HF 83.85 -0.93
MP2 82.67 -1.31
M06-HF 95.25 11.27
PBE50 100.33 16.35
M06-2X 101.86 17.88
ωB97X-D3 105.11 21.13
ωB97X-D 106.65 22.67
PBE0 114.84 30.86
M06 114.97 30.99
B3LYP 115.67 31.69
B3LYP-D 119.36 35.38
M06-L 131.51 47.53
BLYP 134.26 50.28
BLYP+D 138.81 54.83
PBE 140.33 56.35

DFT and MP2 Studies of NO+.H2O and NO+.(H2O)2

Two distinct minima can be identified for the NO+.H2O complex corresponding to planar and

non-planar orientations of the water molecule. The energy difference between these two minima

is small (<0.25 kJ mol−1), but high level calculations confirm that the non-planar structure has

the lowest energy.18 Table 1 shows computed NO+.H2O binding energies for a wide range of

exchange-correlation functionals, MP2 and CCSD(T) with the 6-311++G** basis set. The bind-

ing energies have been computed with the counterpoise correction, and the error with respect to

CCSD(T) is given. The binding energy of 83.98 kJ mol−1 for CCSD(T) is consistent with the

value of non-counterpoise corrected value of 87.34 kJ mol−1 at the CCSD(T)/aug-cc-pV5Z level

reported in the literature.18 The binding energies from DFT vary between 95 and 140 kJ mol−1,

all of which are greater than the CCSD(T) value. In contrast, the values from HF and MP2 are

in close agreement with CCSD(T). Closer inspection of the DFT binding energies shows a strong

correlation between the size of the error and the percentage of HF exchange in the functional. The

closest agreement with CCSD(T) is found for the M06-HF, which is a global hybrid functional with

6



100% HF exchange. Figure 1 shows the lowest energy conformation with the water closest to the

nitrogen atom and a non-planar orientation. The figure also shows the net (Mulliken) charge on the

two fragments. For the methods with 100% HF exchange, the positive charge is almost entirely lo-

calised on NO+. However, as the fraction of HF exchange is reduced there is an increasing amount

of delocalisation of the charge onto the water molecule, with about 30% of the charge on the water

molecule for the BLYP functional with or without the dispersion correction. This charge delocali-

sation is an artefact of the self-interaction error associated with approximate exchange-correlation

functionals, and is consistent with these functionals over-estimating the binding energy.

a+#

b+#

# # ## ###a+# ## ###b+#
MP2(HF) # #0.95 # #0.05#
M061HF # #0.94 # #0.06#
B3LYP# # #0.78 # #0.22#
BLYP # # #0.71 # #0.29#
BLYP1D # #0.70 # #0.30#

# # ##

Figure 1: Net charge on NO+ and H2O in the NO+.H2O complex with different levels of theory
with the 6-311++G** basis set.

Figure 2 shows the relative energies of the two dominant low energy structures of NO+.(H2O)2

as predicted by MP2, M06-HF and B3LYP with the 6-311++G** basis set. In the first structure

(structure 2a) both water molecules are bonded to NO+, while in the second structure (structure

2b) the second water molecule is bonded to the first and lies in the second solvation shell. For each

of these structures there are several structures very close in energy with different orientations of the

hydrogen atoms of the water molecules. The MP2 calculations are consistent with previous work20

where structure 2a has the lowest energy. When zero-point energy (ZPE) is taken into account, the

energy difference is about 10 kJ mol−1. The results for the M06-HF are mixed, if ZPE is neglected

structure 2a has the lower energy while if ZPE is included structure 2b is favoured. With the

B3LYP functional the discrepancy with MP2 is more pronounced and structure 2b is consistently

found to be lower in energy by about 7 kJ mol−1. This is initially quite surprising since B3LYP

predicts a larger NO+.H2O binding energy which would favour binding of both water molecules

to NO+. However, this factor is out-weighed by the the charge delocalisation onto the adjacent
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water molecule which leads to an artificially high strength of interaction between the two water

molecules. This is also evident in the structure 2a′ where there is a clear interaction between the

two water molecules that is not observed in the corresponding MP2 structure. In related open-shell

species, such as ionised water clusters, the self-interaction error leads to incorrect structures and

energetics, and for these clusters the structures are more reliably computed using MP2.25,26,32 It is

interesting to note that similar problems are observed for the closed-shell clusters studied here, and

the failure of DFT for the NO+.Ar complex has been noted previously.33 Even though the energy

difference between the isomers is small, the charge distribution is predicted incorrectly by DFT

functionals without a very high fraction of HF exchange, making DFT potentially unreliable for

the study of the structures and reactivity of these clusters.

MP2$2a:' '0.00'
''''''''''''''''

MP2$2b:''+5.75'
'''''''''''''''''

M06$HF$2a:'0.00'
' ''

B3LYP$2a’:'0.00'
' ''

M06$HF$2b:'+2.87'
' ''

B3LYP$2b:'$6.92'
''

Figure 2: Relative energies (in kJ mol−1) of the two distinct low energy isomers of NO+.(H2O)2
including zero point energy, for MP2, M06-HF and B3LYP with the 6-311++G** basis set.

Structure and IR Spectroscopy of NO+.(H2O)n=2−5

Figure 3 shows the MP2/6-311++G** low energy isomers and associated IR spectra for NO+.(H2O)2.

Also shown is the lowest energy isomer that contains HONO and H3O+. The lowest three energy

isomers, 2A, 2B and 2C, are similar with both water molecules bonded to NO+ but with small

differences in the position and orientation of the water molecules. The predicted IR spectra for
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these isomers for the O-H stretching region agree well with the experimental spectra. We note that

the computed spectra have been normalised so that the most intense bands have the same intensity.

The computed spectra show two bands, the band at higher frequency corresponds to the asym-

metric O-H stretching modes, while the lower frequency band corresponds to the symmetric O-H

stretching modes. The spectrum for the cluster with the second water molecule bonded to the first,

cluster 2D, has an intense band at 3221 cm−1 arising from the O-H bond involved in the hydrogen

bond between the two water molecules. There is no evidence of this band in the experimental

spectrum indicating that this cluster is not present, and hence that the MP2 calculations correctly

predict the lowest energy isomer. The lowest energy isomer with HONO and H3O+ has HONO in

the trans configuration and lies over 100 kJ mol−1 higher in energy when ZPE is included.

2000 2400 2800 3200 3600 4000
wavenumber / cm-1

2E

2B

2D

2C

Exp.

2A

0.00#(0.00)#

+1.53#(+1.32)#

+0.34#(+4.08)#

+90.87#(+101.31)#

+0.41#(+0.36)#

Figure 3: Computed structures and IR spectra for NO+.(H2O)2. Experimental IR spectrum adapted
from reference,15 relative energies are given in kJ mol−1 with values including zero point energy
in parentheses.

The low energy isomers and IR spectra for the NO+.(H2O)3 clusters are shown in Figure 4.

The lowest energy structure 3A is found to have two water molecules directly bonded to NO+ with

the third water molecule hydrogen bonded between these two water molecules. This structure is
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consistent with the lowest energy structure found in previous work.20 The complex with all three

water molecules directly bonded to NO+ is 15.5 kJ mol−1 higher in energy, which is reduced to 6.6

kJ mol−1 if ZPE is included. Both of these clusters have IR spectra that are similar to the spectrum

measured in experiment, and based upon the available IR spectrum it is difficult to distinguish

between them. The band at higher frequency has a lower intensity for cluster 3A compared with

the spectrum for 3B which is closer to experiment, although the difference in frequency between

the two bands is closer to experiment for 3B. At higher energies are clusters where the third water

molecule is hydrogen bonded to just one of the water molecules bonded to NO+. For the higher

energy isomers 3C and 3D the distinct bands present in the computed spectra are not observed in

experiment suggesting that these clusters are not present. The lowest energy isomer identified that

contains HONO, although in this case it is more accurately described as a protonated molecule,

HONOH+, lies about 60 kJ mol−1 higher in energy than the lowest energy structure. This energy

difference is reduced compared with the >90 kJ mol−1 for the n = 2 clusters and is consistent with

the observation that the formation of HONO will become more favourable as n increases.

The NO+.(H2O)4 clusters are the smallest cluster where HONO is thought to form. For n=4

there are many isomers that lie reasonably close in energy to the lowest energy structure. A large

number of these isomers are illustrated in the Supporting Information and here we focus on five

distinct structural types. The structures 4A and 4C have very similar energies and the lowest en-

ergy structure changes if ZPE is included. Isomer 4A is similar to 3A with the additional water

molecule bonding to NO+, while in 4C all of the water molecules are on the same side of NO+.

The isomer 4A was also identified as the lowest energy isomer in the work of Asada et al.22 A

significant change for n = 4 is that the lowest energy isomer with HONO is only 5-8 kJ mol−1

higher in energy. In this cluster H3O+ is hydrogen bonded to two water molecules and the OH of

HONO. At higher energy, cluster 4F has all for water molecules bonded to NO+. The IR spectra

of 4A has a higher frequency band arising from the asymmetric OH stretching modes and a lower

frequency band from the symmetric modes. For these large clusters the IR bands have a discernible
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0.00#(0.00)#

+14.90#(+10.42)#

+18.20#(+13.23)#

+60.34#(+63.15)#

+15.47#(+6.58)#

2000 2400 2800 3200 3600 4000
wavenumber / cm-1

3E

3B

3D

3C

Exp.

3A

Figure 4: Computed MP2/6-311++G** structures and IR spectra for NO+.(H2O)3. Experimental
IR spectrum adapted from reference,15 relative energies are given in kJ mol−1 with values includ-
ing zero point energy in parentheses.

structure arising from water molecules being present in different bonding environments.

Figure 6 shows selected low energy isomers of NO+.(H2O)5 with additional structures included

in the Supporting Information. The lowest energy structure has the water molecules on one side

of NO+ in agreement with previous work.22 The computed IR spectrum for this isomer is in good

agreement with experiment in the high frequency region. The experimental spectrum also shows

an additional intense band at about 2800 cm−1, which is interpreted as evidence for the formation

of HONO.15 The lowest energy isomer with HONO identified in the search has a relative energy

of +6.3 kJ mol−1 with ZPE included. The computed IR spectrum for this isomer has bands arising

from the OH stretching modes of H3O+ and is consistent with the interpretation of the experimental

spectrum that intracluster reactions have occurred to produce HONO.
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0.00#(0.00)#

&0.28#(+3.88)#

+5.57#(+7.47)#

+14.53#(+10.78)#

+14.76#(+14.19)#
2000 2400 2800 3200 3600 4000

wavenumber / cm-1

4G

4C

4F

4E

Exp.

4A

Figure 5: Computed MP2/6-311++G** structures and IR spectra for selected NO+.(H2O)4. Ex-
perimental IR spectrum adapted from reference,15 relative energies are given in kJ mol−1 with
values including zero point energy in parentheses.

0.00#(0.00)#

+8.18#(+0.54)#

+12.48#(+3.70)#

+12.08#(+4.65)#

+11.43#(+6.27)#
2000 2400 2800 3200 3600 4000

wavenumber / cm-1

5H

5B

5G

5D

Exp.

5A

Figure 6: Computed MP2/6-311++G** structures and IR spectra for selected NO+.(H2O)5. Ex-
perimental IR spectrum adapted from reference,15 relative energies are given in kJ mol−1 with
values including zero point energy in parentheses.
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Reactivity of NO+.(H2O)5

The results of the previous sections demonstrate that the MP2 with good quality basis sets seems to

provide an accurate description of the structure, energetics and IR spectroscopy of the low energy

isomers and that the nature of the exchange-correlation functional used in DFT calculations can

have a significant effect on the nature of the clusters. There is strong experimental evidence that for

clusters with n = 5 HONO can be formed, and we now explore the reactivity of the NO+.(H2O)5

with respect to the formation of HONO. AIMD simulations have been performed using structures

5A, 5B, 5D and 5G as initial starting structures at 220 K, which is a typical temperature for the

ionosphere, for a range of electronic structure methods. These methods include MP2 and DFT

with the M06-HF and BLYP-D exchange-correlation functionals, and these simulations were run

with moderately sized (6-31+G*) and small (6-31G) basis sets. Table 3 summarises in which sim-

ulations a reaction occurred within the first 2 ps of simulation time. The data show that reactions

were only observed for the simulations using DFT with the small basis set. Longer simulations of

4 ps have been performed using BLYP-D/6-31+G* and M06-HF/6-31+G* and still no reactivity

was observed. This behaviour can be rationalised by the relative energies of the lowest energy

NO+.(H2O)5 cluster and the energy of the cluster with HONO. At the MP2 level with a large basis

set, this formation of HONO is unfavourable with a relative energy of +5.8 kJ mol−1. A two point

basis set extrapolation of the MP2 aug-cc-pVTZ and aug-cc-pVQZ energies gives a value of +4.7

kJ mol−1. The M06-HF/6-31+G* calculation is consistent with this and predicts the relative energy

to be +7.2 kJ mol−1. The BLYP-D/6-31+G* calculations finds the HONO structure to be lower

in energy by about 30 kJ mol−1. With the small basis set all methods find the HONO containing

cluster to be lower in energy with the DFT calculations predicting a relative energy of about -100

kJ mol−1, and it is this inaccurate description of the energetics of the system that underlies the

observed reactivity in the corresponding AIMD simulations.

Notwithstanding the inaccurate relative energies of the small basis set simulations, it is infor-

mative to study the details of the reactions. Figures 7 and 8 show the computed energetics with
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Table 2: The occurrence of intracluster reactions to form HONO in AIMD simulations of
clusters 5A, 5B, 5D and 5G within 2ps at 200 K. R: all reacted, NR: no reactions.

Basis Set \ Method MP2 M06-HF BLYP-D
6-31+G* NR NR NR

6-31G NR R R

Table 3: The relative energies of clusters 5A and 5H at different levels of theory.

Method ∆E / kJ mol−1

MP2/aug-cc-pVQZ +5.83
MP2/aug-cc-pVTZ +11.42
MP2/6-31+G* +22.97
MP2/6-31G -27.31
M06-HF/6-31+G* +7.19
M06-HF/6-31G -105.13
BLYP-D/6-31+G* -29.96
BLYP-D/6-31G -97.15

the MP2, M06-HF and BLYP-D methods and 6-311++G** basis set at 200 structures that span

the critical time period of the M06-HF/6-31G AIMD simulation in which HONO formations oc-

curs. Also shown is the net charge on the NO fragment evaluated from a natural bonding orbital

(NBO) analysis and key structures are highlighted. These are shown for the reactions from the

lowest energy n = 5 clusters (5A and 5B) with similar energetics for 5A and 5G included in the

Supporting Information. For all methods, the energy of the final structure with HONO is higher

than the starting structure. This energy change is predicted to be greatest by the MP2 calculations;

in addition, the energy barriers are also greater for MP2. Both of these factors suggest that a lower

level of predicted reactivity would be expected from MP2 calculations compared with DFT cal-

culations. The two simulations also illustrate different reaction pathways. In the reaction from

cluster 5A, there is charge transfer from NO+ to the water molecules with the formation of H3O+

(structures 2 and 3) before HONO is finally formed. While for 5B there is a more concerted charge

transfer from NO+ and formation of HONO (structure 2) followed by the making and breaking of

the N-O bond until HONO is permanently formed in 3 and 4. These structures show a chain-like

arrangement of the water molecules that was identified as important in earlier work,24 and these

structures are also similar to the stable structures of comparably sized ionised water clusters.25
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The calculations presented here suggests that no significant reactivity to form HONO from the low

energy isomers of NO+.(H2O)5 would occur at 220 K. In previous work studying the reactivity

of these clusters,24 reactivity was observed in AIMD with the BLYP-D functional simulations for

n= 4 clusters and some clusters with n= 5. From the simulations presented here, it is clear that the

quality of the basis set has a significant influence the occurrence of intracluster reactions to form

HONO within the AIMD simulations. Different basis sets were used in the two studies and this

is likely to contribute to the different results. One explanation for the observed reactivity to form

HONO in experiment may be that when NO+.(H2O)5 is formed by the association of an additional

water molecule to NO+.(H2O)4 the resulting cluster will be locally heated and highly vibrationally

excited which would promote reactivity. As shown earlier the binding energy of water to NO+ is

over 80 kJ mol−1 which represents a significant amount of energy for the cluster.
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Figure 7: Lower panel: Reaction energy profile for simulation starting at cluster 5A. Upper panel:
Net charge on NO. Black line: MP2/6-311++G**, dotted blue line: M06-HF/6-311++G** and
dashed red line: BLYP-D/6-311++G**.
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Figure 8: Lower panel: Reaction energy profile for simulation starting at cluster 5B. Upper panel:
Net charge on NO. Black line: MP2/6-311++G**, dotted blue line: M06-HF/6-311++G** and
dashed red line: BLYP-D/6-311++G**.

Conclusion

As the number of molecules in a molecular cluster increases it becomes challenging to identify

the low energy isomers. In this study a random search protocol combined with a hierarchical ap-

proach has been employed to determine the low energy structures of NO+.(H2O)n=2−5 clusters.

The structure, energetics and IR spectroscopy of these clusters is shown to be described reliably by

MP2 with good quality basis sets such as 6-311++G**. The results of DFT calculations vary sig-

nificantly with the nature of the exchange-correlation functional. Functionals with a low fraction

of HF exchange overestimate the NO+.(H2O) binding energy and incorrectly predict the structure

of NO+.(H2O)2. This can be associated with an artificial delocalisation of charge from NO+ to

water. M06-HF which contains 100% HF exchange provides a more accurate description of the

clusters.

Experimental evidence shows that clusters such as NO+.(H2O)5 undergo reactions which lead
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to the formation of HONO. Predictions of the reactivity of NO+.(H2O)5 to form HONO at 220

K based upon AIMD simulations are highly dependent on the electronic structure method used.

Long time scale AIMD simulations at the MP2 level are computationally challenging, however,

the evidence of this work suggests that reactions leading to the formation of HONO from equili-

brated low energy isomers of NO+.(H2O)5 are unlikely to occur. One possibility for the observed

reactivity in experiment and the ionosphere is that NO+.(H2O)5 clusters could be formed from the

association of a water molecule to NO+.(H2O)4 which would lead to a NO+.(H2O)5 cluster with

excess energy which would be more conducive to reactivity to form HONO. To explore this further

would require extensive AIMD simulations that sample the initial conditions of the cluster.
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