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A Main results and proofs
Proof of Proposition 1. The starting point is that ¢,(p) is a solution of the equation

(1 =7E((q = X)"  ix<q) = TE(X — )" I{x=q)), (A1)

which is equivalent to:

Ligp) = (1=7)h(gp) (A-2)

x P x P
E([q—l] I{X>q}) and Ig(q;p)=E<‘q—1 )

We now claim that 7 +— ¢,(p) is an increasing function on (0, 1), tending to +o0 as 7 1 1. If indeed 7 — ¢, (p)

with I (q; p)

were not an increasing function, one could find 0 < 71 < 75 < 1 with ¢, (p) = ¢, (p). But then, since the maps
q— E((¢g — X)pflI{X<q}) and ¢ — E((X — q)p*II{X>q}) are respectively nondecreasing and nonincreasing, one

would get thanks to (A.1) that:

(1= 72)E((¢r, (p) = X)P Mix<q,my) < (1=7)E((gr,(p) = X)P " Mx<q., (n)})
= TE(X = ¢, (D))" Mixsq,, p3) < 2E((X = ¢, (0))P " Iix5g,, (0))-
This is certainly a contradiction because of (A.1) again. Now, if ¢.(p) did not tend to 400 as 7 1 1, then it would

converge to some finite ¢* due to the function 7 +— ¢, (p) being increasing. The functions q — E((q — X)P~! Irx.qy)

and ¢ — E((X —q)P~! I;x-4y) being continuous on R by the dominated convergence theorem, this entails by letting



71 1in (A.1) with ¢ = ¢,(p) that E((X — ¢*)? ' I;x~4%}) = 0. Consequently X < ¢* with probability 1, which is

a contradiction since X has a heavy right-tail and thus an infinite right endpoint.

The idea is then to compute asymptotic equivalents of both the expectations I1(q;p) and Iz(q;p) as ¢ — +00 and
then solve equation (A.2) by replacing these terms by the aforementioned equivalents with ¢,(p) substituted in

place of q.

We start by computing an asymptotic equivalent of I1(g; p). Write

Li(¢g;p) = E ([H (f) = H(l)] 1{X>q})

with H(z) = (x — 1)P" ' I{,>1y, and apply Lemma 1(i) with b =1 to get
. +o
e =F@) [ =D~ 072 da(1 4 o(1)
1

An integration by parts and the change of variables y = 1/x entail

Li(g;p) = FL(YQ)LJFI(I—l)Plxl/vld:c(l—f-o(l))
= T -y o)
= 0t - pr )1+ o) (A.3)

as ¢ — +o0.

We now examine I(q; p). Write

X
Ir(q;p) = Ii(g;p) +E (‘q -1

p—1
X
I{X<_q}> + ]E (‘q - ].

By (A.3), the first term on the right-hand side above converges to 0 as ¢ — +00. The second one is controlled by

X
E ‘—1
q

as ¢ — o0, while the asymptotic behavior of the third term is obtained by noting that the integrand converges

p—1
I{|X|<q}> : (A.4)

writing

p—1 2 p—1 L
foen ) < (2) B (X ) =ola ) = o) (A5)

almost surely to 1 and is bounded by 2P~! which, by the dominated convergence theorem, entails:

B (5 -1
q

Combining (A.3), (A.4), (A.5) and (A.6), we arrive at

p—1
I{leéq}) — 1 as ¢ — +oo. (A.6)

Ir(g;p) > 1 as g — +oo. (A7)

Using (A.3) and (A.7), equation (A.2) thus yields

= ))B(pﬁ*1 —p+1)(

L—7=F(g(p 5 L+o(1))

as 7 1 1, which is the desired result. [ |



Proof of Proposition 2. As in the proof of Proposition 1, the starting point is the fact that g,(p) is the unique

solution of equation (A.2). Let us provide an asymptotic expansion of both sides of this equation as 7 1 1.

The left-hand side of (A.2) is the easiest part: we use Lemma 1(ii) with H(z) = (x — 1)P" ' I(,>1y and b = 1 to get,

as ¢ — +00,
Li(g; Bp,yyt—p+1 1 oo Pl — 1
Waip)  Blpo —p+l _ ( ) f (p— 1)z — 1P 2T "2 gp(1 4 0(1).  (A8)
F(q) Vr Flq)) = TP
When p < 0, an integration by parts and the change of variables y = 1/x entail
Ligp) _Bpyr'—p+1)
F(q) Tr
1\ 1 [1-p ~ 1 ~
= A() [ Bp,l—p'yrl—p+1—Bp,’yrl—p-i-l]l#-ol A9
7)) o L (p,(1—p) ) %( )| (L +0(1)) (A.9)
as ¢ — +00.
Let us now turn to the right-hand side of (A.2), which we break down as:
x P! X
E(‘q—l ) =Il(q;p)+]E([1—q] I{ng} . (AIO)

An equivalent of I1(g; p) is already known by (A.3):

B(p,v,' —p+1)
Vr

Li(g;p) = F(q)(1+0(1))

as ¢ — +o0. The second term in (A.10) can be decomposed itself as follows:

X p—1 r X‘Pfl
E <[1 - q] I{qu}> = E ({ ) - 1} I{qu}> +F(q)
= Jilg;p) + Ja(g;p) +1 = F(q) (A.11)
- X-p_l
with Ji(g;p) = E[{|1- r =1 To<x<q)
- X-p,1
and Jo(q;p) = E 1- o =1} Iix<oy |-

We start by examining the asymptotic behavior of Ji(g;p). Let H(z) = —(p —1)7}(1 — x)p_ll{ogzgl} and apply

Lemma 1(iii), (iv) and (v) to obtain:

nan) = ~w-ve([#(2) - 10| foen)

q
or v.=1and E(X,) < o0,
= —(-11{ Ex1 (A12)
Mu +o(1)) if 4. =1and E(X,) = o0,
q

{ F(@Bp-11-7"1+o0(1) if ~>1,

as ¢ — +00. To control Ja(g;p), notice first that

sl (14T ) (5T o



and apply Lemma 1(iii), (iv) and (v) with H(x) = (p — 1)~ }(1 + 2)?~! to get

ntan) = w-ve([# (7)) - 10| focn)

q
if Yo < 1
E(X 1
—(:k”%1+ou» or 7 =1and E(X_) < o0
or F_ is light-tailed,
= (p— 1A (A.13)
E(X 1;_
—4L—Lﬁiﬂﬁu+qn) if 4 =1and E(X_) = o0,
q
[ F(=q)B(y; ' —p+1,1—9;H(1+0(1)) if ~>1.

This is obtained by noticing that, in the case 7, = 1, we have E(X_1Tjox_<q) = —E(X I{_4-x<0}), and in the
case y¢ > 1, the change of variables u = z/(1 4+ x), or equivalently x = u/(1 — ), yields
+o 1
f (1+ z)p72:1771/wd:c = j (1- u)l/wfpufl/w’du = B('y[1 -p+1,1— ’7[1).
0 0

Finally, notice that the regular variation property of A (see Theorem 2.3.3 in de Haan and Ferreira, 2006) and

4 (F@i@))) - B Dr A(127) o (419

Combining (A.2), (A.9)—(A.14) and replacing ¢ by ¢,(p) shows that

Pl ) (2222 =220 4 (L) Ko 14010

Yr
= (1=7)(1=F(g-(p)) — (p = D[R+ (g-(p), 0, ) — Re(gr(p), p,70)]) - (A.15)

Proposition 1 entail

Using Corollary 1 and the regular variation of the functions F and F'_ (when it is heavy-tailed), we get

q-(p) or v=1and E(X;) < o0,

R (q-(p),p,vr) = 3 ]E(XI{O<X<qT(p)})

(1+0(1)) if ,=1and E(X;) = o0,
¢+ (p)

[ Flg-(p)Bp—1,1 =71 +0(1)) if 5 >1

T RB(X if r <1
[ 7’1)/7" ] ( {X>O}) (1 n 0(1)) Y
B(p,vr —p+1) q-(1) or v.=1and E(X,) < o0,
= " R(X T
[ . ] Mooxcae)) (1 4 1)) it 7, =1 and B(X,) = o,
B(p,v —p+1) q-(1)
I Flg:(1))B(p—1,1 -7 (1 +0(1) if 7 >1

{ B(p,v'—p+1)

Tr

[B(p,%«‘l —p+1) Rr(g7(1),p.9)

~

] min(vy,,1)



and

if <l

or F_ is light-tailed,
Re(g-(p),p,ve) = 5
_E(Xj{qqf((;;d@}) (1+0(1)) if 7, =1and E(X_) = oo,

F(=¢:(0)B(y; ' =p+ 1,1 =7, H(1+0(1)) if v >1

r ~ ( ) if Fe <1
Tr "E X Iix <o
— — (1+o0(1)) or y=1land E(X_)<
|:B(p,f)/r1—p+1):| q-(1) Zp ( )
or F'_ is light-tailed,
= T R(X I _
) —[ T ] (X1, q*(”<x<°})(1 +o(l) if 4 =1and E(X_)= oo,
B(p,v —p+1) q-(1)
vy Yrlve
[B(pmr‘l —p+1)]
| XF(=¢-()B(y, ' —=p+1,1—7,1)(1+0(1)) i oy >1

|: ,71
B(p7 '77“ p 1)
COI]SBquSIltb, b.} I]:OI:)OSIEICH ]‘)

~

'Yr/ max("/ifl)
] Ri(q-(1),p,7e)-

F(Q'r(p)) + (p - 1)[RT(QT(p)7pa ’Yr) - RZ(QT(p)apv 'VZ)]

= o -7 o)
= 5o D0 e)

~ min(vy,,1) 5 ~¥r/ max(vye,1)
o0 (5o | Rewan -5 Rear(1),p,70) )
B(p,v'—p+1) B(p,v ' —p+1)
Rearranging equation (A.15) yields
F(g:(p)) Yr ( ( 1 ) Yr )1
NP 1+ 4 K(p, s p)(1 + (1
l—7 B(p,v ' —p+1) 1-7) B(p,w'—p+1) ®2,)( 1)

[1_ Yr
Bp, vt —p+1)

min(v;,1)
_(p_]-) <|:B( T ] Rr(q‘r(l)apa'%“)

Py —p+1)

X

(I-=7)(1+0(1))

~ [ o ]’Yw/ max(vye,1)
Bp,yw ' —p+1)

Using a straightforward Taylor expansion of the function  +— (1+42)! in a neighborhood of 0 completes the proof.

RZ(QT(1)7P7 ’7@))] .

|
Proof of Proposition 3. By Proposition 2 and a Taylor expansion,
1-7 By '—-p+1
e Y1~ R )1+ (1)),
F(q-(p)) Vr
Because U(1/(1 — 7)) = ¢-(1), the assertion is then a straightforward consequence of Lemma 2. [ |



Proof of Theorem 1. Notice that y — 7, (y;p)/p is continuously differentiable with derivative

o (yip) = |7 — Ty<op|ly]P ™" sign(y).

Use Lemma 3 to write, for any u,

wn(u;p) = _UTI N + T2 n(u) + T3 n( )
ith Ty, = o (Xi — qr D),
W 1, \/Tfn; an p 1%0 n( q 'n,(p) p)
" rugr, (p)/\/n(1—"n)
Do) = ZJ [E(pr, (X: — g, (6) — £:1)) — E(pr, (X -

. = Juqm P)//n(i—70)
[an (p)]p i=1
where Sy, (v) := ¢, (X; —v;p) — E(¢r, (X —v;p)).

and T37n(u) [Sn,i (QTn (p) + t) - Sn,i(Q‘rn (p))]dt

0

By Lemmas 8, 9 and 10, we get

2

Ui (up)—> —uZ V(’y;p)—i-;L as n — oo
g

(A.16)

r, (p);p))]dt

(with Z being standard Gaussian) in the sense of finite-dimensional convergence. As a function of u, this limit is

almost surely finite and defines a convex function which has a unique minimum at

* = /V(3p)Z LN (0,4°V(7:p)) .-

Applying the convexity lemma of Geyer (1996) completes the proof. n
Proof of Theorem 2. Write
(i) = O (15 oo () e (5] 55
The convergence log[(1 — 7)/(1 — 7.)] — o0 yields
oo tog (2 — 0 (1100101 = /(1= 7)) = o (1), (A7)
T ey Ll (b )
= e roriy (o () e () +1oe (22 20))
=OQ%mjﬁigimMMmmH¢ﬂﬂ—%rw+RWm%HMO—%YWO
=0Q%mffigﬂmmmmww+uu—mrmo
—o(1) (A.18)

Convergence (A.17) is a consequence of our Theorem 1. Convergence (A.18) follows from a combination of

Proposition 3 and of Theorem 2.3.9 in de Haan and Ferreira (2006) and, in what concerns the relationship

R(7},p) = O(R(7n,p)), from the regular variation of F, F_, s — U(s) = q;_,1(1) and |A].

elements and using the Delta-method leads to the desired conclusion.

Combining these



Proof of Theorem 3. We start by writing

wmm\ | (a) C(nip)\ _ 47, (p)
o8 (qf,g <p>> e <q7,¢<1>> +1oe ()~ 1ot (ormnen ) (A19)

To work on the first term on the right-hand side, note that

/\W ~
1 (1) 1—1, g, (1) 11— 1" gm (1)
log 2 = (4, — ) log ( ) + log ( z ) — log ([ "] 2 ) .
<q¢<1>> R 0. (1) =l 4
Since ¢, (1) = Xp_|n(1-7,)),n> the convergence log[(1 — 7,,)/(1 — 7,,)] — o and a use of Theorem 2.3.9 of de Haan
and Ferreira (2006) yield:

n(l _Tn) a‘rn(l)
Tog[(1 — r)/(1— )] % <qm<1>

n(l —1,) 1—7 1" qr,’z,(l) . n(l —7y) _ )l -0
o s (] ) <o (1og[<1 —rofa— A ”) W

As a consequence:

) — Op (1/10g[(1 — 7)/(1 - 71)]) = 0p(1),

n(l-r) a7 (1)
log[(1 — )/ —7)] o\ 4rs (1)

To conclude the proof, it is then enough to examine the behavior of the second and third term on the right-hand

side of Equation (A.19). First,

TL(].—Tn) o C(:}\'7L§p) _ o . _ —Y
logl(1 —7)/(1—7)] (C(%;p)> = O (1/log[(1 = 7)/(1 = 7,)]) = op(1), (A.21)

because of the /n(1l — 7,,)—convergence of 4, and of the differentiability of the mapping = — log C(z;p) at ..

) 4. (A.20)

Second,
n(l—y) o qﬂ’li@ _ n(l—) o AT
log[(1 = )/ — 7] (cw,.;p)q%u)) Oz <1og[(1 )@=y T ) A =) Nl)
— n(l—y) . oyl
- <1og[<1 N TLCE=EY) R )”)
= op(l), (A.22)

which follows from a combination of Proposition 3 and of Theorem 2.3.9 in de Haan and Ferreira (2006) and, in
what concerns the relationship R(7/,,p) = O(R(7,,p)), from the regular variation of F, F_, s+ U(s) = q;_,-1(1)

and |A|. Combining these elements and using the Delta-method leads to the desired conclusion. ]

Proof of Theorem 4. We write

1 1 1
~ B(p,A—p+1> (1—an)B<p,—p+1)
1 —7,(p,an; 1) 1o A Yr Yr 1 A93
1—7"(pa'1)_ _7X 1 % 1—72(p,ap; 1) o (A.23)
n\W &n, n B<p7_p+1> n '\t Uny
Yr
Now
r 1 ~ d
e (%—1) — o VA=) =3 - (A.24)



by Slutsky’s lemma. Moreover, using the relationship

2B o (I‘(:ﬂ)F(y))

where U(z) = I'(z)/T'(x) is the digamma function, we obtain

et o] o)) o)

The delta-method then yields

£ (o) o)

To complete the proof, we note that

1 1 1 1
l—a,)—B p,—p+1> 1—ay, B(p,—p+1> -
( " <% :( o I el X[
1—7/(p,an;1) X p-1 G, (1) '
Blawm 7Y Txe,an
Recall now (A.8) in the proof of Proposition 2 which here translates into
1 1 — 1 1
(=028 (n—p+1) Flan, ()28 (5.2 = p+1)
r 'yr _ 1 — ’Y’I“ 'Yr _ 1
X Pl X Pl
E||l———-1 T, E -1 1,
l o, (1) {X>qan(1)}] l o, (1) {X>qan(1)}]
= O[A(1/F(¢a,(1)]
= O[A((1 —an)™)]
Similarly, by (A.10)—(A.13) in the proof of Proposition 2, we get
X . -
E m -1 -1 = O[maX{F((Ian(l))aRr(‘]an(l),pv ’YT);RE(QQW,(]-)vpa 'Yé)}]

O[max{l — Qn, Rr(Qan (1)apa ’Yr)v RE(Qan (1),]?, 7@)}]'

Combine these two asymptotic bounds to obtain

1 1
(1—an)in <p,—p+1>
8% 7

T s

gy 1= Olmax{l — a, AL~ 00) ™), Rrlao, (1)2,30), Reld, (1,9, 3011 (A.26)

Combining (A.23), (A.24), (A.25) and (A.26) leads to

() <o o (ore) (G om-oo



proving the first statement. In the case when

\% n(l - Tn) max{l - Oz,mA((l - an)_l)aRr(Qan(l)vpa ’Yr)aRé(Qan(l)apa 7@)} -0

the above equality becomes

0 ()2 (2o o (2

which implies the second statement and concludes the proof. [ |
Proof of Theorem 5. The key point is to write

q L= Faman D 17 (pan; D\ " [ (1= (pan 1)\ "
qg";(p,an;l)(p) = (1 an(p) — (Z___n\H My ) % 1=—7 D, an; 1) an(p) ' (A.27)

— Tn 1- Trlz(pa Qln; 1) 1=
1—7/(p,an; 1) 1
#:1_{_0 -
1- T;L(pa Qp; 1) ¥ n(l — Tn)
ext (-5 log | L= Tn (P n3 1)
P8 T =7, ams 1)
1 1
exp | — +0p | —— x Op | —
p( [” ( n(l—m)] ( n<1—m>>)

by a Taylor expansion. Furthermore, we have

1- TT’l(p? Qp; 1)
1—m7,

Now, by Theorem 4,

and therefore

1—7(p,an; 1)\ "
1- TrIL(p» Qnp; 1)

—Fn
) (/]\Tn (p) = ‘?F;f(p,an;l)(p)

by definition of the extrapolated class of estimators gV (p). Using the asymptotic equivalent

1 1
1—7.(pan;l) ~(1—a,)—B <p, —p+1) (A.29)

Tr r
we conclude that the conditions of Theorem 2 are satisfied if the parameter 7/, there is set equal to 7}, (p, an;1). By
Theorem 2: o

n(l — ) qT;(p,an;l)(p) d
. : -1)—¢C.
IOg[(l - Tn)/(l - Tn(p7 Qnj 1))] QT,’L(p,ozn;l)(p)

Now

| [ 1—7, ] ) |:1—Tn:|+1 [ 1—ay, ]
og|l ———— | =log og|l————
1 _T’;L(p7a7l;1) l_an l_T’r/L(p7a'fL;1)
and in the right-hand side of this identity, the first term tends to infinity, while the second term converges to a

finite constant in view of (A.29). As a conclusion

1 1—m7, 1 1—m7,
T pan)| T BT |

Together with the equality ¢/ (.a,:1)(P) = ¢a,, (1) which is true by definition of 7;,(p, a,; 1), this entails

W
-, QW a0
n(l =) s () ¢ (A.30)
log[(1 —7.)/(1 = an)] Go, (1)
Combining (A.27), (A.28) and (A.30) completes the proof of the first convergence. [ |



Proof of Theorem 6. The proof of this result is similar to that of Theorem 5: just apply Theorem 3 instead of

Theorem 2 in order to prove the required analogue of (A.30). u

Proof of Theorem 7. The proof of this result is the same as that of Theorem 3, with cﬂ",’ (1) being replaced by
g% (p) [thus applying Theorem 2 to obtain an analogue of (A.20)] and the mapping z +— log C(z;p) being replaced
by @ = log[C(z;2)C~1(z;p)]. The details of the proof are therefore omitted. |

Proof of Theorem 8. The proof of this result is entirely similar to that of Theorem 5 and is therefore omitted. B

Proof of Theorem 9. The proof of this result is entirely similar to that of Theorem 6 and is therefore omitted. ®

B Auxiliary results and proofs

Lemma 1. Let X be a random variable whose survival function F satisfies condition C1(v), and let H be an

absolutely continuous function whose derivative h is nonnegative and is such that
+90
Ja >0, 36 >0, Vb > a, J h(x)z~ 0 dx < 0.
b
(i) For any b > a, we have, as ¢ — +00:
X o +oc
B (|1 () = 1O tom) =F@) [ naa o1 +000).

b

(ii) If moreover F' satisfies condition Ca(vy, p, A), then for any b > a, we have, as ¢ — +o0:

(%) o)

= F(q) (Lﬂ h(x)z Y dx + A (&q)) LH h(x)xl/v“’”p/;p_ldx(l + 0(1))> .

Assume further that a = 0 and that h is right-continuous at 0 with h(0) = 1. Let X, = max(X,0) denote the

positive part of X.

(iii) If vy <1, or vy =1 and E(X}) < 00, then, as ¢ — +00:

E <[H <)q(> - H(O)] n{X>O}> = E(Z(*) (14 o(1)).

This result also holds true if the function F is actually light-tailed.

(iv) If y =1 and E(X ) = o, then the function q — E(Xjo-x~q) is slowly varying and, as ¢ — 400:

E ([H (X> - H(O)] ]1{X>0}> = M(l +o(1)).

q q

(v) If v > 1, then, as ¢ — +00:

E ([H <X> - H(O)] n{X>O}> _ Flg) f ) da(1 4 o(1).

0



Proof of Lemma 1. The basic idea of the proof is to note that an integration by parts entails, for b > a:

I(bq) :=E <[H (ij) - H(b)] n{X>bq}> - L - h(z)F(qz)dz.

To show (i), write

I(b:q) = Flq) < Jb Y @) + Lﬂ h(z) [1;(?;) - 33_1/"’] d:c) (B.1)

and use a uniform bound such as Theorem B.2.18 in de Haan and Ferreira (2006) to get
B +0
10:0) = F(@) [ ha)e™da(1+0(1)
b
as ¢ — +o0, which is (i).
Assertion (ii) is obtained in a similar way by using (B.1), the second-order condition Ca(v, p, A) and a uniform

inequality such as Theorem B.3.10 in de Haan and Ferreira (2006) applied to the function F.

The first step in order to show (iii), (iv) and (v) is to split I(0;q) as

S5 +
I(0;q) = Jo h(z)F(qx)dx +J h(z)F(qz)dx

1 J;qa h <x) F(z)dx + J-HC h(z)F(qz)dx (B.2)

q Jo q €
where ¢ is an arbitrary positive real number. To prove (iii), note that if X < 0 almost surely there is nothing to

prove; otherwise, because

q€
]E(X]I{O<X<q8}) = J F(.’E)dl’,
0

we obtain:

1(0:q) — ]E(X]l{oq““}) _ é L " [h (‘2) _ 1] F(w)de + f Y @) F (g,

Since E(X ) < oo the function F' is nonincreasing and integrable in a neighborhood of infinity. This entails
2F(z) < 2J F(t)dt -0 as o — +w

and therefore that F(q) = o(1/q) as ¢ — +00; this is of course also true if F' is light-tailed. We thus obtain, by part
(i) when F is regularly varying:
E(X1 1 (9 _ 1
Ve >0, I(0;q) — B Do<x<q:}) = fj [h (m) - 1] F(z)dx +o () .
q q Jo q q
By the dominated convergence theorem, E(X 1 x>43) | 0 as ¢ — +oo and then:
E(X 1% — 1
Ve >0, 1(0;q) — g = 7[ [h (az) —1] F(z)dz +o () )
q q Jo q q
For any a > 0, choose now e such that |h(x) — 1| < a/(1 + E(X;)) for all € [0,¢]; this yields

E(X4) o EXTox<qe)) ] @ 1 _a
S 1+E(XS) q

I(0; q) — - <
(0:4) 1+E(X+)g ¢

for ¢ large enough. Because « is arbitrary, this completes the proof of (iii).
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To show (iv), use (B.2) to get for any ¢ > 0:
+0

(0;9) = % J " (”q”) F(z)dx + f h(z)F(gz)da + J h(z)F(qx)d

0 1/q
for ¢ large enough. By the right-continuity of h at 0 and part (i) of the present Lemma, we get

* h(@)Flga)ds + O (max [;,F@)]) .

1/q

10:0) = |
[1—«/4,1+ a/4] when z € [0,e]. We get

For an arbitrary « € (0, 1), choose now ¢ so small that h(x)

€ € €
1/q 1/q 4 1/q
1 [ _ e _ 1 (%
< (1 - 2) - F(z)dx < J h(z)F(qz)de < (1 + E) 7J F(z)dz.
47 q ) 1/q 479 )
By Proposition 1.5.9a in Bingham et al. (1987), the function z — Sl r)dr = S1 {zF(z)}dx/z is slowly varying in
a neighborhood of 400 (i.e. regularly varying with index 0) so that for ¢ large enough
1 (9_ € _ 17—~
(1 — E) ,J F(x)dz < f h(z)F(gz)dz < (1 + Q) *J F(x)dz.
2/ qh 1/q 274 h

+00 as ¢ — 400 and, by Proposition 1.5.9a in Bingham et al. (1987)

Finally, we have {! F(z)dz 1 E(X1{x>1;) =

1 1 (79—
F(q) (a1 qF
as ¢ — +00. In other words, for g large enough,
(1-a) J’ F(x 1(0;9) < (1 + @) J’ F(x
Since « is arbitrary, this entails
IE(AX]I{O<X<q}) (1 + 0(1))

17—
gJ, F(z)dz(1+0(1)) =

100 -1 " Fa)da(1 + o(1)) =

q 1
as ¢ — +o0: the proof of (iv) is then complete.

To show (v), let 5 € (0,1) be such that 1/y <1 — 3 and use once again (B.2) to get
+o

100 =1 [0 (2) Faes [ n@Fo.
~(1=8) = o(F(q)) as q — +o0,

By the right-continuity of i at 0 and the asymptotic relationship ¢

qﬁ +% +%
1(0;q) = é Jo F(z)dz(1 +o(1)) + L_(l_ﬁ) h(z)F(qx)dx = L_(l_m h(z)F(qx)dx + o(F(q)).
In the spirit of the proof of (i), write now
v [F(qx) — x—l/'v] dx) +o(F(q)).

1(0:9) = F(q) (j h@)a1dz + LMW Flq)

PR CE)
¢® — 400, we may use again a uniform bound such as Theorem B.2.18

Since in the second integral we have qx

in de Haan and Ferreira (2006) to get

10:0 =F@) [ by (1 + o),

12



Finally, since —1/v > —1, the function = — /7 is integrable in a neighborhood of 0, and thus
o +oc
10:0)=F(@) [ hla)e a1 +o(1)
0

as ¢ — 400, which completes the proof of (v). O

Lemma 2. Assume that v, V are such that v(7) 1 00 and V(1) | 0, as 7 1 1, and there exists B > 0 such that

V)
Fu(r)

= B(1 + e(7))
where e(7) — 0 as 7 1 1. If condition Ca(vy, p, A) holds, with v > 0 and F strictly increasing, then

) = B7 e(r 0 T
sy = 2 (1400 +o) + a0y ) |

Br—1

+o(1>]> as 711

Proof. Apply the function U to get

or) o UBLE eIV
o) P U1V (7)) B

By Theorem 2.3.9 in de Haan and Ferreira (2006), we may find a function Ay, equivalent to A at infinity, such that

for any € > 0, there is to(e) > 1 such that for ¢, tx = to(e),

‘ 1 (U(tz)_xv>_xvxp—1‘< €
Ao(t) \ U(?) p | [@B)te + (B/2)+0][(2B)° + (B/2)~7]

27 P max (2%, x7°).

Thus, for 7 sufficiently close to 1, using this inequality with ¢ = 1/V(7) and « = B[1 + e(7)] gives that

1 U(B[1+e(r)]/V (7)) o (e ) — BY o(r L, BP(1+e(r) =1 .
ey (C oo - B o) - B ) ) <
and therefore
1 U(B[1+e(m)]/V (7)) - o)) LB —1 as 7
BTV oty B ) 2 T
The desired result follows by a simple first-order Taylor expansion. O

In the next result we use the fact that y — 7, (y;p)/p is continuously differentiable with derivative

o (yip) = |7 — Lgy<oy|y|P~ " sign(y).

Lemma 3. For all z, y€ R and 7 € (0, 1),
y

Lo — y30) — 1o (7)) = —yior (i) — f (or(@ — ;) — or (a: D))t
p 0

Proof of Lemma 3. The result follows from the identity

%(m(ﬂc —y;p) — (x5 p)) = Lzy ©r(s5p)ds = — J;y or(x —t;p)dt

obtained by the change of variables s = x — ¢. O

The next lemma gives asymptotic equivalents for a number of moments that will be used in our examination of the

convergence of the direct empirical estimator.

13



Lemma 4. Assume that the survival function F satisfies condition C1(v). Pick a > 1 and assume that v <
1/[a(p — 1)] and E(X** V) < o0. Then:
(i) We have

yB(a(p—1),y ' —alp—1))
B(p,y ' =p+1)

E(|o-(X—¢:(0): P)*Uix g, (o) = alp—1)[g-(p)]*? 1 (1-7) (1+0(1)) as 71 1.

(i) We have
E(lor (X = ¢-(0);0)|"Uix <o o) = 1= ) [a-(p)]* PV (1 +0(1)) as 71 1.

(ii) When a > 1, we have

vB(a(p—1),7 ' —alp—1))
B(p,y ' =p+1)

E(lo-(X — q-(p); p)|*) = alp — 1)[g-(p)]"®~ V(1 —7) (1+o0(1) as 711

Proof of Lemma 4. Define 6 = a(p — 1). To show (i), note that

E(lor(X = ¢-(0); D) “Vix =g, m}) = T°E(X = ¢ (01" N x 4, ()})

and apply Lemma 1(i) with H(z) = (z —1)?1,5,) and b =1 to get

s 8]

BX — 40 (0] Do, ) = 0o )] Flar () | (0= 107 du(1 4 0(1) as 711,
1
Combining this equality with Proposition 1 and the change of variables u = 1 — v~ !, we obtain
B0,y —0)
B(p,y ' =p+1)

E([X — ¢-(0)]* L x =g, o)3) = Ola-(»)])? (1 — 7) (1+0o(1)) as 711

which is (i). To show (ii), write

x 1°
E(|e- (X — QT(p);p)|aﬂ{X<qr(p)}) =(1- T)a[Qr(p)]e]E ([1 - qT(M] H{quT(p)}) :

The conditions v < =% and E(X?) < oo ensure that E|X|? < o0. Recall that ¢, (p) 1 400 as 7 1 1 and use the

dominated convergence theorem to get

E(|or (X = a7 (0)i 2)|"Dix<q, y) = (1= 7)[a-(0)]" (1 + 0(1))
as required. Finally, combining (i) and (ii) gives (iii) and concludes the proof. O
Lemma 5. Let (x,) be a positive sequence tending to infinity and (hy ), t € T, be a class of functions such that

sup sup |y n(z)] =0 as n — .
teTl, T=Tn

(i) Assume that the survival function F satisfies condition H1 (7). Then:

F(LE(I;‘(Zt),n(x))) B <1 _ htf”)‘ 0 as n— .

sup sup |hn(x) |*1

teT,, T=2xy

(ii) Assume that the survival function F satisfies condition Ca(v, p, A). Then:

F(I(l;‘(i;t),n(x))) B <1 _ htn(x))‘ 50 as n— o.

sup sup [max(|he,q(@)], [AQ/F(@))]

teT, T=2xn

5




Proof of Lemma 5. We first prove (i). Write for any (h, z):

F(z(1+h 1+h o(1+h) A
7(x£ + 1) = (1+h)71/770(x( +h)) exp j 7(u)du : (B.3)
o) @) . w
By the mean value theorem, we have for n large enough
c(z(1 + hen(2))) —c(2)] < |zhen(x max c < 2lhyn(z max c
o1+ B (0) = )] < lahen(@)] w0 < 2Ahan@)] _max o)
for all t € T;, and x > xz,,, which entails
1
sup sup ————|c(z(1 + hyn(2))) —c(z)| > 0 as n — . (B.4)
teT, x>, Pt ()]
Furthermore (oo (o))
1 i then (@) A log(1 + hyp,
f () gu| < |128E+ e () max  |A(y)] =0
|hen ()] |Jo u hin () vele,o(1+he ()]

as n — oo for all t € T), and = > x,,, so that the inequality |e* — 1| < |z|el*| yields

z(1+hen(x)) A
exp (J () du) -1

u
Combine (B.3), (B.4) and (B.5) with the Taylor expansion (1 +h)~Y7 =1 — h/y + o(h) as h — 0 to complete the

sup sup
teT, =2y

1
_— —0as n — o0. B.5
(@) (B:5)

x

proof of (i).

We now turn to the proof of (ii). Using a uniform inequality such as Theorem B.3.10 in de Haan and Ferreira (2006)
applied to the function F, we get that for any € > 0 small enough there is 29 > 1 such that for all z > 2z and
s€e[1/2,2]:

‘A(l/;u)) [iﬂ&x)) ad

Applying this to s = 1 + hy (2), © = z, and letting ¢ — 0 we obtain:

L e.

| [Pttt hnte)

~ (L )]

sup su — =o(1).
o oo | A(L/F (x) F(z) S
Using again the Taylor expansion (1 + k)~ YY = 1 — h/y + o(h) as h — 0 completes the proof. O

The next result gives a Lipschitz property for the derivative ¢, .

Lemma 6. For all x, h€ R and 7 € (0,1), we have

or(x — h;p) — o (z;p) |7 — Lp<oy| (Jz — B[P~ " sign(z — h) — |z[P~" sign(z))

+ (1 =27)(Tcny — Tp<oy) |z — h|P~ ! sign(z — h).
Especially,

2|n|P—! ifl<p<2
lor(z = hip) — oo (@3 p)| < AP g igny + (1= 7 + Lipagy)
(p =)@+ D)(|p[P~" + zP72|h])  if p=2.

15



Proof of Lemma 6. The equality result is a straightforward consequence of the fact that

|7 = Ny — |17 = Np<oy| = (1 = 7)(Mgoscny — Na<oy) + T(Laony — Lzmoy) = (1 = 27) (Lzcny — Na<oy)-
To show the bound on the oscillation of ¢.-, note first that

]1{O<x<h} ifh>0
Wo<hy = Nasoy =
_ﬂ{h<x<0} ifh<0

and consequently

x—hP~ ey ifh>0
|(1_2T)(]1{9c<h} —]l{xéo})|m_h|p—1 Slgn(l’—h” < | | {0< $h}
| = AP cpcoy ifR <0

AP < )y (B.6)

YA\

Next, when 1 < p < 2, because v — vP~2 is decreasing on (0, c0) it is clear that

x—h
j (p— 1)[oP~2do

x

||z — h|P~ sign(x — h) — |z|P~ " sign(z)|

YA\

[k
(r—1) f [o[P~2du

—|h]
2|n|P~ 1. (B.7)

When p > 2, write

||z = hP~" sign(z — h) — |2~ sign(z)] =

x—h
f (b — D)o~ 2do

x

/N

(p =Dk max |vP~
vE[x,x—h

)

N

(p = DAz = 272 + 2 |'77]
by the monotonicity of v +— vP=2 on [0, ), and therefore

[l = hP~ sign(z — h) — [P~ sign(z)| < (p = DIAI(|2] + )72 + |2[77]

YA\

(p = 1)(2"72 + 1) h|[max(|z], |h)]"~

< (=D + DA+ [P 20). (B.8)
Combining (B.6), (B.7) and (B.8) completes the proof. O

The lemma below is a useful convergence result for the variance of row-wise partial sums of a triangular array of

strictly stationary, dependent and square-integrable random variables.
Lemma 7. Let (V; ;) be a triangular array of square-integrable random variables such that:
o for any positive integer n and any k < n, the random variable Vi, 1, is o(X}y)—measurable;

o for any positive integer n, the random variables V,, i, 1 < k < n are identically distributed.

16



Then, if the sequence (X,,) is p—mizing with ._, p(n) < o, we have
1 n
nh_r)I%C nVT (Z ) exists and is finite.

Proof of Lemma 7. Use the strict stationarity of the sequence to obtain

It is therefore enough to show that the sequence (s,,) defined by

Vn,;c) = nVar(V,1)+2 Z (n—Fk+1)Cov(Vin1, Vo)
k=2

n Var(V, <1 + 2 Z corr(Vn,1, Vn,k)) .

n
n—k+1
8, = Z — cort(Vp 1, Vo k)
k=2

converges, or equivalently, that it is a Cauchy sequence. For this, we use the definition of the mixing coefficients
p(n) to obtain, for any positive integers p and ¢,

p+q

p—k+1 p+qg—k+1 p+q—k+1
l5p = spral < D) - -1+ Y PELEEEL G )
k=2 p+a k=p+1 pta
= Ligp(l@—l)—l— NI wp(k_l)
p+qg= p W Pt
1p—1 p+q—1
< = Dlkpk)+ D plh).
pk:l k=p

Kronecker’s lemma gives that the first sum above is arbitrarily small for p large enough due to the convergence of
the series Z;Z:l p(n); besides, the second term is less than a remainder of this convergent series starting at the pth
term, and is therefore arbitrarily small as well for p large enough. Consequently |s, — sp4| is arbitrarily small if p

is chosen large enough, which entails the convergence of (s,) and concludes the proof. O
The last three results are the essential steps to the proof of Theorem 1.

Lemma 8. Work under the conditions of Theorem 1. Let

n

T n — Tn Xi_ Tn 5 .
1, mlzl an p 1410 ( q (p) p)

Then there is 0% € [0,00) such that

Tin LN (0,V(v:p)(1+0%) as n— o.

If moreover (X,,) is an independent sequence, then o% = 0.

Proof of Lemma 8. Note that the random variables ¢, (X; — ¢r, (p);p), 1 < ¢ < n are clearly centered because

qr, (p) = argmin E(ny, (X; — u;p) — 07, (X435 0)) = E(er, (Xi — ¢, (p);p)) =0

u€eR
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by differentiating under the expectation sign. Write then

Ty = Tiain+Tion (B.9)
with Ty, = ! znj e [ (X = 0 PP L, 1)~ B (7 (X = 07, 0): D), )]
(1 — ) (3 lgm., (p)] n ' : .

n
and Ty, = m Z: . (07, (Xi = 47, (0); D) Ny X, 5qr, ()} — B (07, (X = 7, (0); D) Dy x5q, 003) ] -

Here T, and 112, are again sums of centered variables, which we analyse separately. The first term 77 1, is
controlled by noting that since p(n) < 24/¢(n) (see Lemma 1.1 in Ibragimov, 1962), the series 3. | p(n) converges

and we may use Lemma 7 to get

Var (¢r, (X = g7, (0): D) ix<q,, ()} — B (@7, (X = @r, 0):P) Ny x <0, (0)}))
(1= 7)[gr, (p)]?P~ 1)

Var(Tl,Ln) =0

Using Lemma 4(ii), we conclude that Var(T1,1,,) = o(1 — 7,), proving that
Tiin 0. (B.10)

We now work on T3 5 ,. The essential step is to show that

T1,2,n

d
7Var(T1,2m) — N(0,1). (B.11)

For this, we use the Lindeberg-type central limit theorem of Utev (1990): taking, with the notation therein, j, = 1

and k, = n, and setting

Tiom = 2 Vi
i=1
1 1
n(1 —7,) [gr. (P)]P~

with V,, ; = [orn (Xi = 47, (0); D) Vx50, ()} — E (07, (X = 42, (0); D) x>qr, 03) ]

it is enough to show that

n

1 2
Ve >0 Gty 2B (i, seyiamia ) =0 s n— e

1=

Because the V,,;, 1 < ¢ < n are identically distributed, by writing Vnzﬂ- = ijévn—_f it is easy to see that this
convergence will be shown provided we prove that for some suitably small § > 0, the following Lyapunov condition

holds:
TL]E|Vn71 |2+5

[Var(T1727n)] 146/2

—0 as n— 0. (B.12)

To prove convergence (B.12), we first obtain an equivalent of the denominator. Apply Lemma 7 to get

. Var(T1 2 n)
3 lim ————22—< =
c € [0,00), ngnanar(Vn,l) c

Note then that by strict stationarity,

Var(Ti2,n)
n Var(V,, =142 Z Corr(Vn,h Vi k)-

18



It follows that ¢ = 1 in the case of independent observations; otherwise, the function z — ¢, (2—4r, (p); P) La>q,, ()}
is increasing, so that the positive quadrant dependence of (X1, Xj) implies that corr(Vy, 1, Vi k) is nonnegative for

any k and n, see Lehmann (1966). Consequently

Var(T12n) n Tl—k‘l‘l
Y12n) o NPT (Vi 1, Vi) = 1.
n Var(V,, 1) * ;2 n corr(Va,1, Vi k)

Letting n — o0 shows that ¢ > 1 and therefore ¢ = 1 + o2 for some 02 > 0, as required. Besides, using Lemma 4(i)

entails
B(2p—2,7v"'—2p+2)
Var(V,1) = 2y(p—1 — 0.
n Var(V,, 1) v(p—1) BT —p+ D) as n

The formulas B(z,y) = T'(z)['(y)/T'(z +y) and I'(x + 1) = 2I'(x) now yield
B(2p—2,7"' —2p+2)

27(p—1) B —ptl) V(v;p)

so that
lim Var(Ty2.,) = (1 +0?) lim nVar(V,,1) = V(y;p)(1 + 0?). (B.13)

n—o0 n—aC
Using this convergence, it follows that (B.12) and therefore convergence (B.11) will be shown if for some § > 0,
nE|V,,.1|>7% — 0. Choose now & > 0 so small that v < 1/[(2 4 6)(p — 1)] and E(X(_2+5)(p71)) < o0: the convergence
nE[V,,1/2*° — 0 is then a straightforward consequence of the Hélder inequality and Lemma 4(i). Hence (B.11),

which recalling (B.13) is exactly
Tiom =5 N (0,V(vip)(1 +0%)). (B.14)

Combine (B.9), (B.10) and (B.14) to conclude the proof. O

Lemma 9. Work under the conditions of Theorem 1. Let

n Junn (p)/ \V 7"(1_7-71)

Lol =~

. [E(¢r, (X = g, (p) — t;p)) — E(pr, (X — g-, (p); p))]dt.

Then

Proof of Lemma 9. By Lemma 6, we obtain

E(¢r, (X — ¢, (p) — t;p)) — E(or, (X — ¢, (p); 1))
= (1-2m)E(X — gr,(p) — """ sign(X — ¢r, (p) — ) (Dix<q,, (+1} — Lix<ar, 0)}))

+ E (|Tn - ]I{XSqm (p)}| (|X —d4r, (p) - t|p71 Sign(X —d4r, (p) - t) - |X —d4r, (p)|p71 Sign(X —d4r, (p)))) )

that is:

E(¢r, (X =47, (p) = t;p)) — E(pr, (X — g7, (p); D))
= (1 =27)E(|X — g5, (p) — t|"" " sign(X — ¢r, (p) — ) (Nx>q,, ()} — Vix>qr, () +13)
+ B ((1X = gr, (p) — "7 sign(X — g7, (p) — ) = |X — g7, (0)|P " sign(X — ¢-, () Uyx>q., (0)})
+ (1=7)E ((1X = ¢r, (p) = 11"~ " sign(X — gr,, () — ) = |X = gr, (D)~ sign(X — g7, (1)) Uix<qr, )

= (]. — QTn)T2717n(t) + TnT272,n(t) + (1 —_ Tn)T2737n(t).
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The idea is now to control the three terms appearing in the above representation. In all these terms, |¢| varies in

the interval I, (u) = [0, |u|¢-, (p)/+/n(1 — 7,)] which is such that

. [
p
\teln (u) rm (P)

— 0 as n — 0. (B.15)

In this proof, all o(-) and O(-) terms are to be understood as uniform in [t| € I,,(u). We also let G(z) = |z|P~! sign(z),

whose (Lebesgue) derivative is g(z) = (p — 1)|2[?~2 on R.

First term 751 ,,(t): Writing
V., w)<x<ar,m+ty  H1>0

]l{X>an (P)} - ]I{X>q7'n (p)+t} = .
=y, p)+t<x<q, (p)y HE<0

it follows that:

E(G(X ~ 4, (p) = t)]l{qfn (P)<X<gr, (p)+t}) ift>0
To1n(t) =

—E(G(X = ¢r,(p) — t)ﬂ{qm (P)+t<X<qr, wy) ift<0

X .
“E(§,. (o4t 90— r,(p) = )dvLiy () +e<x<qr, (0)}) ift<0

{E([G(t) + Sf ) 90 =z, (p) = o]y (py<x<q,, (p)+1y) HT>0
{G(t)ﬂ”(qrn () < X <ar, (@) + 1) + 507 g0 = g1, () = )P(v < X < g7, (p) + )0 i >0

0 90 = ()~ 0P < X < ar, ()0 .

If condition H1 () holds, then by (B.15) and Lemma 5(i) we get when ¢ > 0:

an (p) +t
j 9(0 = gr,(p) = OP(v < X < gr, (p) + t)dv

qr, (D)
Grp, (P) _ —v
S I A R e (T
il qr, (D)
=<wﬂfggw‘m<%@+ww”ummm
p—1,F(¢,(p)
p ! Yqr, (p) (1+0(1)

If now we work under condition C2(v, p, A), we can use Lemma 5(ii) instead to obtain

drpn (p) +t
j 90 = 47, () — OP(v < X < s, (p) + D)o

qr,, (P)
_ B qry, (P)+t . - ) qr, (p) +t—uv o o 1 ”
= =) [ ) o) | T o) 0 (4 (5 ) |
_ p—1,F(4-,() - 1 arn ()4 e
-yl u+ou»+o(me@»A(F@m@»)Lm@)<%Am+¢ ) d)
_ p—1_,F(q,(p) o olF 1 =1
= S (e (F@“@”A<F@u@»>t )
Likewise, when ¢ < 0 we have under condition H1 () that:
Grp, (P) o
[ g0 =) = 0B < X < a0 =~ (e T D o),
drr (p)+1 p Vq-, ()
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and under condition Ca(7y, p, A) that

B JQW (p) 1 w
Grp (

p)Hg(v —4r () )P0 < X < g, (P))dv = = (=) P

Using Lemma 5(i) again and Proposition 1 we get, under condition #1(7):

(1 = 25)Tonn(t) = L) (14 01y = o (t]lgn, )P Far, ()

P Y, (p)
o ([tllgr, P21 — 7)) - (B.16)

Similarly, under condition Ca(+y, p, A), we have by Lemma 5(ii) that

Y L Fan®) s o (T LY e
(=2m)Trat) = S Sk o(0) + o (Pl o)A (57— ) W)

= 0 (tllgr, (1) 72(1 = 7)) + 0 ([gr, @)~ AVT= 7). (B.17)

Second term T4 5 ,(t): In the same spirit, write

T3,2,0(t)

E

|
|
|

qufn (p)ft
f 9(W) x>, (p)ydv
X —qr, (p)

E (S]R Q(U)H{X_qm (p)<v<X—qr, (p)—t, X>qr, (p)}dv) ift<0

—E (§2 9(0)Ux —q,,, (5) - t<v<X—a,,, (p). X>a,, (3 V) i £ >0

S‘g’ g(0)P(gr, (p) + max(0,v +t) < X < ¢, (p) + v)dv ift<0

— Sig(v)ﬂ”(qm (p) + max(0,v) < X < q,, (p) +v+t)dv ift>0

So_t g(v)P(g-, (p) < X < gr, (p) +v)dv + So_ct g()P(q-, (p) + v+t < X <gqr, (p) +v)dv ift <0

— S(itg(v)]P(an (p) < X < qr,(p) +v+t)dv — S(ﬁ)[’ g()P(gr, (p) +v < X < ¢, (p) +v+t)dv ift>0.

When t < 0, we get by (B.15) and Lemma 5(i):

jo_ 9(0)P(gr, () < X < gr,.(p) +v)dv = f 9(0)F(gr, (1))

0 Y4, (p) (1+of1))dv

- DB [ et oy

F(qr,(p))
p D Y-, (p)

I
)

(1+0(1))

when 1 () holds. Working under Ca(v, p, A) instead and using Lemma 5(ii) entails

L )P, (0) < X < gr, (p) + v)dv

- Ltg(“)F(q“ ) gy 4+ o) +o (4 (F@i <p>>>)] w

_ (=t Fgn () = 1 et
- SR 0T o (Fan 004 (g ) o).
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Furthermore, applying Lemma 5 again yields:

[ sBa o)+ o+ 1< X <000+ 0o = [ g0, )40 40—

=

(14 0(1))dv
under Hq(7), and

fx g(V)P(qr, (p) +v+t < X <q,, (p) +v)dv

- [ oo e S e o4 (F(h Pror t)))] w

under Ca(v, p, A). Let ¢ > 0 be such that 2 +~~! —p — e > 0. By a uniform convergence theorem for regularly
oy

varying functions (see Theorem 1.5.2 in Bingham et al., 1987) we obtain

(qz) == *Y7F(qx)

—€

— — 0 +00.
ey b R
As a consequence
= —t
v)F(q- +ov+t 14 0(1))dv
|| 80P )+ v ) s (14 0(1)

—t L

= - (=Dl 1" F(qgr, (p)) L P2, (p) + v+ 1) dy

+ o (—t[an (p)]lh_af(qm (»)) f

"% (gr, (p) + v + t)_1_1/7+5dv) :
—t

Now, for n large enough and all w = 0,
t —1-1/y 1 —1-1/y
OSwp2<1+w+> SwPQ(—i-w)
¢, (p) 2

where the right-hand side defines an integrable function on (0, ). By the dominated convergence theorem, we get

X ¢ ¢ —1-1/v
J P2 g, (p)+ v+ )y = g, (p)]P2Y J wP2 (1 +w + ) dw
—t /4 () 4, ()

0

= [qm(p)]p*l”L w?2 (1 +w) " 777 dw(1 + o(1)).

The change of variables z = (1 +w) ™! yields

o0 1
f wP™2 (1 + w)fl*l/7 dw = J (1—2)P 22172 = B(p— 1,2+~ —p).
0 0
Similarly
{7\:‘
J VP (r, (p) + 0+ )T Ty = [qr, (D)) B(p — 1,2 497 —p—)(1 +0(1))

—t

so that under Hq(7):
f 9P, (p) +0+1 < X <, () +0)dv = (= Dlar, ()] *Flar, ) Blo— 1.2 477 =p)(1+0(1).

When Ca (7, p, A) holds, because the function F' x Ao (1/F) is regularly varying with index (p —1)/y < —1/ and
therefore

-1 1
p—2+pT<p—2—;<p—2+(2—2p)=—p<—1,
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we can argue along the same lines to obtain

[ s, )+ v+ 04 (o) @

F(gr,(p) +v+1)
1

o, )
0 (1. W Flar, ()4 (F(qi (p)))) |

(0 — D[gr, ()] F(gr, () A ( ) j 2y, (p) + v+ 1) du(1 1 o(1))

Thus

f_ 90 B(qr, (p) + v+t < X < gr, (p) + v)dv = %t(p = Dltr, 0P F (g, () B(p— 1.2+ 77" = p)(1 + 0(1))

# 0 (. 0P Flar, 04 (515 ) )

When ¢ > 0 and H1(y) holds, we get in a similar fashion

t* F(gr, (p)
P Y, (p)

0
|| 0P, 0) < X <0, 0) 0+ )0 - (1+0(1)

and

J 9(0P(0r, (1) +0 < X <0, () +0 + v = = (0= Dlar, OF Tl 0D B~ 1.2+ 7 =p)(1 +0(1).

If C2(, py, A) holds, we have

: PP o o (7 LN
[ s0P@, )< X <an, )+ 000 = 814 o)) + (F(qm (n)A (F(qm (p))> i )
and
f: g()P(gr, (p) +v < X < qr,(p) +v+t)dv = %(p — Dgr, )P *F(gr,(p))Blp—1,2+~ ' = p)(L + o(1))
r o ([qn )P~ Flar, (p)) A (F(ql(p)))) |
All in all, under H4 (), using (B.15) entails:
T2, (t)
t p—2F _ 1 o =)° 1y Elan @) .
[0l 0P Pl 018012497 =it o) + S -0 o) <0
L0 = Dlar, O Far, (DB~ 12477 —p)(1+0(1)) - ;Fv(j((ﬁ)” (1 +0(1)) if > 0

B ‘3@ = Dlar, ()P F(ar, (p))Bp — 1,2+ 77" = p)(1 + o(1)).

Working under Ca(7, p, A) gives instead:

Toaalt) = =50 Dlao 0P *Flar, 0)Bo=1.247 =100 +0 (fa 0 Flar, )4 (7))

because of (B.15) again. By Proposition 1 and the identity

B(z,y+1) = T(@) Ty+1) y
Vo,y >0, B(zx+1,y) T(x+1) T(y) =z
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this reads
TuTo2n(t) = —t(y™" = (p = 1))[gr, ()] 2 (1 = 7) (1 + 0(1)) (B.18)
under H1(7), and
TaTo2n(t) = —t(y™" = (0 = 1))[gr, ()P (1 = 7)(1 +0(1)) + 0 ([qm (PP~ 2VT - Tn) (B.19)
under Ca(7, p, A).

Third term T5 3, (t): Write

X*‘I‘rn(p)ft
To3n(t) = E j 9()ix<q,, (v | -

Split then the above integral as

X —qr, (p)—t X —qr, (p)—t
E f 9 lix<q,, ppdv | = E f 9() U x<q,, (p)/2ydV

X —qr, () X —qr, (p)

X*‘I‘rn(p)ft
E f 9() g, (n)/2<X<gr, ()30 | -
X—qr, (p)

_l_

The first term in the rhs above is

fl—t/(X—qfn ()

(p—1DE (IX — ¢r, (D)IP?[X = ¢r, (p)] ) [wP~2dwllix g, ()<—q., <p>/2}> :

Because sup|yjer, (u) [tl/¢r, (p) = 0 and |X — ¢, (p)| = ¢+, (p)/2 in the integrand, this term is equivalent to

p—2

~ - X
—t(p = DE (IX — ¢, 1" *Uix—q., y<—ar,)23) = —t—1gr, ()P °E ( )

~t(p — 1[gr, ()P (1 +o(1))

-1

Lix<q,, <p>/2}>

by the dominated convergence theorem. The second term, meanwhile, is equal to

X*QTn (p)ft
E f 9(W) g, (n)/2<X<qs, (0} AV
X*‘I‘rn (p)

E (fg 9(0)Ux g, (0)<v<X—ar (0) 1, 40 (0)/2< X <qr (03 A0) £ <0
—-E (S]R g(v)]l{X,an (p)—t<v<X—qr, (P); @r, (P)/2<X<qr, (p)}dv) ift>0

Se 9(V)P(gr, (p) + max(—g-, (p)/2,v +1) < X < qr,(p) + min(0,v))dv  ift <0

—§z 9(v)P(qr, (p) + max(—qr, (p)/2,v) < X < qr,(p) + min(0,v +t))dv if £ > 0.
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When #1(v) holds, we then have by Lemma 5(i):

X—=qr, (p)—t
E J g(v)]l{qm (p)/2<X<qr, (p)} AV

X—qr, (P)

S_ /2 9)P(gr, (p) + max(—gr, (p)/2,v + 1) < X < ¢y, (p) + min(0,v))dv  ift <0
S—t e, ()/2 g(v)P(gr, (p) + max(—q., (p)/2,v) < X < ¢, (p) + min(0,v +t))dv ift>0
- o 2 9OPr, () + v+ < X <gr (p) +v)dv <0
(. a2 IOP(Gr, (p) +0 < X <gr, (p) +v+1)dv if1>0
_ ¢ .
) S_ (/290 F(gr, (p )+U+t)'y(qm(p)+v+t)dv(1+0(1)) ift<0
_ t .
S—t ar, (D)/2 9(v)F(qr, (p) + v)mdv(l +0(1)) ift>0
_ It] Lqr /2g v)dv(1 + o(1)) ift<0
< F(gr.(p)/2) = It]) "
’Y((q‘rn (p)/2) - |t| {Stq,_n ()2 g( )d’l](]. + 0(1)) ift>0

p—2
= Pl o2 () 4 o(1) = o flan, ).

Similarly, when Ca(~, p, A) holds, we have by Lemma 5(ii):

X_qrn (p)—t
E f 9(0) Ny, (p)/2<X <, ()} AV

X =gz, (p)
Vars oy 0 ar, () 4 +) [v(qm(p)_i srp el Fe (A (F(qT (p)1+ vt t)))] dv it <0
< n
Sgtfqm (/290 F (a7, (p) +0) [W(l +o(1))+o <A (W))] dv ift >0

O (HFar, (), ) + 0 (Flar, )i, P4 (5 ))
= o (g, ()"72) + o ([ar, )P0 AVT= 7).
As a conclusion, if H1(v) holds:
(1= ) Tog.n(t) = =t(p = Dlar, (p)I" (1 = 7)(1 +0(1)) (B.20)
and if C3(v, p, A) holds then:
(=)o) = (L =7) | =t = Vg, @) (1 +0(V) +0 ([a, @0 NVI=7) | (B2D)
Combining (B.16), (B.18) and (B.20), we get

(1 =27)To1,n(t) + T T2 20 (t) + (1 —7) 12,30 (L) = —%[qm (P)]P72(1 — 7,)(1 + 0(1))
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and thus
Ton(t) = -
2n(v) IO
Rl — ) (U PYA/A0=T)
el et oll)
2

- §¢1+ou»

n ugr, (P)/A/n(1=7n)
f [E(or, (X — 4r, () — £:)) — Er, (X — ar, (p): p))]dt

0

if H1(7) is assumed. If we work under Cz(7y, p, A), we have by combining (B.17), (B.19) and (B.21) that:

(]- - QTn)TQ,l,n(t) + TnTZ,Z,n(t) + (]- - Tn)TQ,S,n(t) = _%[QT,Z (p)]p72(1 - Tn)(l + 0(1))

+ o (lgn P07 VI

and therefore

n Juq (n)//n(1=7)

Ton(u) [E(¢r, (X = qr, (p) — t;p)) — E(pr, (X — -, (p);p))]dt

a0 Jo
o [ (/) 47, (P)]”
- lw[qm(p)] 1 _T,L)L Edt(1 +o(1)) + 0 (nﬂ
= 5 (1+o(1).
The proof is complete. O

Lemma 10. Work under the conditions of Theorem 1. Let Sy, ;(v) := ¢-, (X; —v;p) — E(¢r, (X —v;p)) and

Lo Juqﬂ,mp)/\/n(lrn)

TS,n(u) = _m i=1

o [Sn,z (QTn (p) + t) - Sn,i(QTn (p))]dt

Then

T (w) 50 as n— .

Proof of Lemma 10. As in the proof of Lemma 9, let I,(u) = [0, |u|g., (p)/+/n(1 — 7,)]. In the present proof, all

o(+) and O(+) terms are to be understood as uniform in |¢| € I,,(u).
Let Sp(v) := o7, (X —v;p) = E(pr, (X —v;p)). By Lemma 7,

n

Var(T5 ., (u)) = O (W Var (

Because for any ¢, Sn(qrn( ) +t) is centered and [¢,, (X — ¢., (p) — t;p)]? is integrable w.r.t. ¢ on the interval
[0, ugr, (p)/A/1 , we get

Var(Ts ,,(u))

funn (p)/A/n(1—74)

0

[Sn (g7, (p) +1) = Snlgr, (p))]dt>> :

@ (W J‘[O, i (p)/M]Q E([SH(Q'M (p) + 5) - SN(QTn (p))][Sn(QTn (p) + t) - Sn(an (p))])ds dt) .

The Cauchy-Schwarz inequality now yields
2

n uGr,, (p)//n(1=70)
Var(Tsn(v) € +— 73, (f VE(8n(gr, (p) + ) = Sn(gr, (0))I?) dt) : (B.22)

[g-, (@)]** \ Jo
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Applying Lemma 6, we get for any ¢

Sn(gr, (p) +1) = Snlgr, (p))]

< en (X — a7, (p) — t:p) — ¢r, (X — ¢, (0); )| + Elgpr, (X — ¢, (p) — ;D) — 97, (X — ¢7, (); D)]
< P (Yx—g,, wi<ieny + POX = a7, ()] < J2)
2[t|p—t ifl<p<?2
+ Q=7+ Uxsg,, ()
(=D Z+ D)t + X —gr, (PIP2]) ifp=>2
2lt[P1 ifl<p<?2
+ (1—7)
(p =12+ Dt~ + tEIX — ¢, (p)|P7?) ifp=>2
21tPP(X > qr, (p)) ifl<p<2
_l’_

(P =D+ D(FPPX > g7, (p) + HE(X = g7, (DIF?Dixsg,, py)) P> 2.

By Lemma 1 with H(x) = (x — 1)1’*2]1{,21} and Proposition 1, we have when p > 2 that

~ ~ X P2
E(IX = ¢r, (0" *Uixsq,, ) = [0 ()] ’E ([qT(m - 1] ﬂ{X>an<p>}>

= O((1 = 7)[gr, (0]P72)

and it is moreover a consequence of the dominated convergence theorem that

X

4, (p) !

E(IX = g7, (0)1"™?) = ¢, ())]"°E <

p—2
) = [¢7, ()P 72 (1 + 0(1)).
Recalling convergence (B.15), i.e. |t|/qr, (p) — 0 uniformly in |¢| € I, (u), and using Proposition 1 again, we get

|Sn(gr, (p) +t) — Sn(gr, (p))]
< P (Ux—g,,, 1 <tey + PUX = g7, ()] < J2)

2/t[p—t itl<p<?2
+ (=70 + Lixag., )))
(=)@ 2+ D)t + X =g, ()P 2)E]) ifp=2

O((1 — 7)) [t|P~h) ifl<p<?2

O ((1 = 7)lgr, (P)IP72[t]) ifp=>2.

Squaring, integrating and using convergence (B.15) once again, we obtain that there is a constant C' with

E|S,(ar, (p) +1) = Sular, () < CHPPVB(X — g7, (p)] < [1)

O((1 — 7,)t]2P~1) if1<p<?2
O (1 =7)lgr, PP 2t?) if p > 2.
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When #1 () holds, then by Lemma 5(i) and Proposition 1 again,

2[t|
Yqr,, ()

P(IX = gz, ()| < [t]) = F(g-, (p)) (1+0(1)) = ol = 7).

If we work under Ca(7y, p, A), then by Lemma 5(ii) and Proposition 1,

PX = 4r, ()] < 1) = Flarn, ) | - 2040 +0 (4 (55 ) )| =00 = )

Yqr,, ()

In any case,

O((1 = 7)) [t?P=1) ifl<p<?2
ElSn(gr, (p) +1) = Sular, (@) < 4
O (1 = 7)[gr PPT2IH2) + O (1 = m)20D) i p>2

9
-

O((1 — 7, |t]2P=1) ifl<p<?2

O ((1 = m)lgr, @)PE=2[t?) ifp>2

by using (B.15). Because

2

n uqry, (p)/A/n(1=7n) n(l = 7,) ugry, (p)/A/n(1=7n)
o Ve va) = 2o | e dt
qr,\P 47, \D 0

0
O([n(1 = 7)]'77) = o(1)

2

and
2 2
ugr,, (P)/A/n(1=74) _ UGry, (P)/A/1(1=Tn)
e V=l @2 ) = TR ( ] d
lg-. (P)]** \ Jo lg-, (p)] 0
= O([n(1 = 7)]™") = o(1)
we get 15, (u) -, 0 and the proof is complete. O

C Additional simulations

C.1 Extreme expectile estimation

We concentrate here on extreme L%—quantiles, or equivalently, expectiles. A comparison of the three estimators
gy (2) in (11), g (2) in (12) and g% _(2) in (13) (see the main paper) of the extreme expectile gq,, (2) is shown in
Figures 1 and 2, where we present the evolution of their relative MSE (in log scale) in terms of the value k. We used
the same considerations as in Section 6 for the choice of 7,, and the intermediate and extreme expectile levels 7,, and
7/ = . The experiments employ the Fréchet, Pareto and Student distributions with tail-indices v € {0.1,0.45}
and various values of p € (1,2) in the formulation (13) of ¢ (2).

In the case of Fréchet and Pareto distributions, we already know that g% (2) behaves better than g% (2) in terms
of relative MSE. In this case, it turns out that the accuracy of the estimator ¢ (2) is also superior to gy (2) and

is similar to that of c}ovfi (2) for very ‘small’ values of p (close to 1), as may be seen from Figure 1. In this Figure we
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only present the estimates of the relative MSE in a log scale. We do not graph the bias estimates to save space:
most of the error is due to variance, the squared bias being much smaller in all cases.

In contrast, in the case of the Student distribution, we know that ngz (2) behaves overall better than &X‘i (2):
we do not graph the curve related to the latter estimator in Figure 2 as it exhibits considerable volatility. Also, it
appears in this case that ¢%_(2) outperforms g (2) as well and has a similar behavior compared to to gy (2) for
very ‘large’ values of p (close to 2), as may be seen from Figure 2. There is also a significant improvement for large
7 in this case when using the estimator g5 _(2), probably because this estimator benefits from increasing robustness
(see the final lines of Section 6.2).

This might suggest the following strategy with a real data set. If the data set is concerned with a non-negative
loss distribution, it is most efficient to use GXZ (2) and ¢%_(2) with values of p very close to 1. At the opposite,
if the data set is concerned with a real-valued profit-loss random variable, we favor the use of g (2) and ¢, (2)
with values of p very close to 2. The important question of how to pick out p in practice, in order to get the best
estimates ¥, (2) from historical data, can be addressed by adapting the practical guidelines provided in Section 7

for selecting p in the extreme LP—quantile estimates g (p) and g% (p).

Fréchet : gamma=0.1 Fréchet : gamma=0.45
0.100 A 0.18 -
. variable . variable
D D
— 0.075 1 — Nt —1 s hat
S S o0.164
o tilde D tilde
S S
=2 — p=1.001 =2 — p=1.001
= ' P = P
= 0.050 A = = =
g p=1.0005 g p=1.0005
2 p=1.0001 L 0.14- p=1.0001
o = p=1.00005 o == p=1.00005
0.025 A
T T T T T 0'12- T T T T
o} 50 100 150 200 o) 50 100 150
k Kk
Pareto : gamma=0.1 Pareto : gamma=0.45
0.16 -
0.068 - . .
. variable . variable
‘% s hat ‘% 0.14 1 s hat
(&) (&)
I tilde I tilde
(=2 (=]
£ 0.064 1 — 5=1.001 =2 — =1.001
= = 0.124
o p=1.0005 o p=1.0005
2 p=1.0001 2 p=1.0001
& 0.060 - == p=1.00005 & 5.10- == p=1.00005
T T T T T 0-08- T T T T T
o} 50 100 150 200 o 50 100 150 200
Kk [

Figure 1: Fréchet and Pareto distributions—RMSE (in log scale) of qY (2) (blue), v (2) (red), and @& (2) with
p =1.001 (black), p = 1.0005 (grey), p = 1.0001 (yellow) and p = 1.00005 (green). From left to right, v = 0.1, 0.45.

From top to bottom, Fréchet and Pareto distributions.
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Student : gamma=0.1

Student : gamma=0.45

0.18
___ 0.13- 4 variable . variable
D D
1 s hat 1 s hat
S S 0.164
» —p=1.999 il m—p=1.999
[=)) (=)
£ 0.11 , p=1.9995 = p=1.9995
= =
o / p=1.9999 o p=1.9999
L p=1.99995 L 0.14 p=1.99995
0 0.09 4 p=1.99999 o p=1.99999
=
0'07 = T T T T 0-12 L T T T T
10 20 30 40 10 20 30 40
k k
Student : gamma=0.1 Student : gamma=0.45
0.8 1 /
| _ / .
0.6 variable / variable
= hat 0.61 p mm— hat
= p=1.999 4 = p=1.999
0.4 4
& p=1.9995 & 0.4+ p=1.9995
Foe) Foa) D
p=1.9999 _ p=1.9999
024 p=1.99995 0.2 4 { Z p=1.99995
p=1.99999 p=1.99999
0.0 4
0.0 4
10 20 30 40 10 20 30 40
k k

Figure 2: Student distribution. Top—RMSE (in log scale) of g (2) (blue) and &, (2) with p = 1.999 (black),
p = 1.9995 (grey), p = 1.9999 (yellow), p = 1.99995 (green) andp = 1.99999 (pink). From left to right, v = 0.1, 0.45.

Bottom—Bias estimates.

C.2 Extreme expectile composite estimation

w (p) in (16) of the extreme expectile ¢q,, (2), where a,, =

Here, we focus on the composite LP—estimator g2 (prormi2)
1 —1/n. A comparison with the benchmark estimators @), (2) in (11) and gy (2) in (12) is shown below in
Figures 3 and 4. We used the same considerations as in Section 6 and Supplement C.1 for the choice of 7,, and

the intermediate and extreme expectile levels 7,, and 7}, = a,. All the experiments employ the Fréchet, Pareto and

Student distributions with tail-indices v € {0.1,0.45} and various values of the power p € (1,2) in the formulation

Of Z]\‘IZZ(Pyan;Q) (p)

In Fréchet and Pareto models, where g (2) is known to be superior to g (2) in terms of MSE, it may be seen
from Figure 3 that @‘;‘,’ (p)an;z)(p) behaves similarly to g (2) for very small values of p (close to 1). Our simulations
also indicate that most of the error is due to variance, the squared bias being much smaller in all cases. We only
display in Figure 3 the estimates of the relative MSE (in a log scale) to save space.

In the Student model, where gy (2) is known to be superior to gy (2), it may be seen from Figure 4 that
ng(p,anﬂ)(p) performs at least like g\ (2), for large values of p (close to 2), in terms of both MSE (top panels) and

Bias (bottom panels). Interestingly, like ¢4 (2) in Supplement C.1, the composite estimator @‘?’Z (prcn:2) (p) seems to
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provide a better accuracy relative to gy (2) in the case of heavier tails (y = 0.45).
As regards the second composite estimator cﬁf‘,/ » Oén,Q)(p) in (17), the obtained Monte Carlo estimates do not

provide evidence of any added value with respect to the benchmark estimators gy (2) and gy (2), hence the results

are not reported here.

Fréchet : gamma=0.1

Fréchet : gamma=0.45
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Figure 3: Fréchet and Pareto distributions—RMSE (in log scale) of ¢ (2) (blue), Gy (2) (red), and ngff(p ani2) (p)
with p = 1.001 (black), p = 1.0005 (grey), p = 1.0001 (yellow) and p = 1.00005 (green). From left to right,
v = 0.1, 0.45. From top to bottom, Fréchet and Pareto distributions.

C.3 Quality of asymptotic approximations

This section gives Monte Carlo evidence that our limit theorems provide adequate approximations for finite sample
sizes. We first investigate the normality of the extrapolated least asymmetrically weighted LP estimators Z]‘Z‘,’ (p)
in (6) and the plug-in Weissman estimators cYZZ(p) in (7), for 1), = 1 —1/n and p € {1.2,1.5,1.8}. Hereafter we
restrict our simulation study to the Student distribution with independent observations. The asymptotic normality
of QZZ (p)/¢-: (p) in Theorem 2 can be expressed as r, log(tﬂ’z (p)/4-: (p)) 4, ¢, with r,, = m. Likewise,
the asymptotic normality of zﬁ’z (p)/gqr (p) in Theorem 3 can be expressed as 7, log(zﬁ’z (p)/q- (p)) N ¢. Following
Theorems 2.4.1 and 3.2.5 in de Haan and Ferreira (2006, p.50 and p.74), the limit distribution ¢ of the Hill estimator

under independence is N'(A/(1—p),7?), where A = lim,, .. VEA(%). It can be shown that a Student ¢, distribution
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Figure 4: Student distribution. Top—RMSE (in log scale) of Q\ZZ (2) (blue) and z’jg,/(p’an;z)(p) with p = 1.999 (black),

n

p = 1.9995 (grey), p = 1.9999 (yellow), p = 1.99995 (green) andp = 1.99999 (pink). From left to right, v = 0.1, 0.45.

Bottom—Bias estimates.

satisfies the conditions of the two aforementioned theorems with v = 1/v, p = —2/v and
1 2r 1)/2)vv—1/2
A(t) - v+ (Cut)72/1/7 c, = ((V + )/ )V
v+2 Jrnl(v/2)

Hence, we can compare the distributions of

—~

W, =

[ralog(@ (0)/ar, () = M1 = p)| /7 and W, =

[ 108(@ ()/ar, () = M(1 = )| /5

with the limit distribution A(0,1), with A ~ \/EA(%) for n large enough. The Q-Q-plots in Figures 5 and 6 present,
respectively, the sample quantiles of I//[\/'n and Wm based on 3,000 simulated samples of size n = 1000, versus the
theoretical standard normal quantiles. For each estimator, we used the optimal k selected by the data-driven method
described in Section 6.3 of the main article. It may be seen that the scatters for the Student ¢,,, distributions, with
v = 0.1, 0.45 displayed respectively from left to right, are quite encouraging for all values of p.

Next, we investigate the normality of the estimators ¢& (2) in (13) and qAI?/Z(p,an;Z) (p) in (16) of the extreme
expectile g4, (2), where o, = 1—1/n. For the Student distribution we used large values of p (close to 2) as suggested

by our experiments in Sections C.1 and C.2, but also smaller values of p, namely p € {1.2,1.5,1.8,1.99,1.999, 1.9999}.
The asymptotic normality of ¢% (2)/qa, (2) in Theorem 7 can be expressed as v, log(¢% (2)/qa,(2)) 4, ¢, with
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Uy = m. Likewise, the asymptotic normality of @‘;f (p704";2)(p) /4o, (2) in Theorem 8 can be expressed as

n

Un, log(('jg[,/(p an:2)(P)/ 40, (2)) —%, ¢. Thus we can compare the distributions of
W 1= [0 108, (2)/0, () = ML= 9]y and Wy iy 1= [0 108 () @/, (20) = /(1= )] /2
with the limit distribution A/(0,1). The Q-Q-plots in Figures 7 and 8 present, respectively, the sample quantiles of

Wn and I//I\/ﬁll(pptn;z), based on 3,000 simulated samples of size n = 1000 as above, versus the theoretical standard
normal quantiles. For each estimator, we used the optimal k selected by the data-driven method. The scatters for
the Student ¢,,, distributions, with v = 0.1, 0.45 respectively from left to right, indicate that the limit Theorems 7

and 8 also provide adequate approximations for finite sample sizes.

D Medical insurance data example

We consider here the Society of Actuaries’ Group Medical Insurance Large Claims Database which records all the
claim amounts exceeding 25,000 USD over the period 1991-92. Similarly to Beirlant et al. (2004), we focus on the
75,789 claims for 1991 that we treat as the outcomes of i.i.d. non-negative loss random variables Xy, ..., X,;. The
scatterplot and histogram of the log-claim amounts in Figure 9 (a) give evidence of an important right-skewness.
The model assumption of a heavy-tailed loss severity distribution has been already verified in Beirlant et al. (2004,
p.123) with Hill’s estimate 4,, around 0.35. Insurance companies typically are interested in an estimate of the claim
amount that will be exceeded (on average) only once in 100,000 cases. This translates into estimating the extreme
quantile g, (1) with the relative frequency oy, = 1 — m >1-— %, or equivalently, the generalized LP—quantile
¢r: (p) = qa,, (1) with the extreme level 7;, := 7, (p, @; 1) described in (9). The Value at Risk ga,, (1) = ¢77 (p,a,;1) (D)
can be estimated either by the traditional Weissman quantile estimator @o‘/}i(l) defined in (8), or by the composite

LP—quantile estimator qA‘?’Z (» (p) studied in Theorem 5. To calculate the two estimates g, (1) and @‘sz (prcnil) (p)

san3l)
of the VaR as well as the estimate 7/ (p, an; 1) of 7/, (p, an; 1) defined in (10), we used the optimal sample fraction
k selected by the data-driven method described in Section 6.3. The final composite estimates (’j‘;‘,:(p)a”;l)(p) are
plotted in Figure 9 (b) against the power p in blue, along with the constant traditional estimate (’]\Z[Z(l) in green
and the sample maximum in red. None of the two extrapolated VaR estimates qu',f (pvan;l)(p) and @XV(l) exceed
the sample maximum X, , = 4,518,420 USD. The classical L' —quantile based estimator qﬁ‘fi(l) relies on a single
order statistic ¢, (1), and hence may not respond properly to infrequent large claims. By contrast, the composite
LP—quantile estimator (f;‘,:(pﬂn;l)(p) relies directly on the least asymmetrically weighted LP estimator g, (p) given
in (3), and hence it bears much better the burden of representing a conservative measure of risk. It may also be
seen from the path p — @gz(p)a";l)(p) that this risk measure tends to be more alert to infrequent large claims as the
power p increases.

The resulting estimates 7, (p, an; 1) of the extreme level 7], := 7/, (p, an; 1) such that ¢,/ (p) = qa,, (1) are plotted
in Figure 9 (c) against p in blue, along with the constant tail probability «,, in red horizontal line. This plot is of
course of capital importance when it comes to use a generalized LP—quantile ¢,/ (p), for a given p € (1,2], as an
alternative risk measure to the quantile-VaR g¢q, (1), as it allows to select the value 7), such that ¢,/ (p) = ga,, (1).

For instance, if the practitioner wishes to employ the expectile g+ (2) but still keep the probabilistic interpretation
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of g, (1), Figure 9 (b) shows that the corresponding expectile level 7/, := 7/ (2, a,; 1) may be approximated in the
present setup by its estimate 7/, (2, a,; 1) = 0.9999942.

If the interest now is in estimating the expectile gg.g999942(2), one may wish to check how the LP—quantile
estimators ¢h g999942(2) in (13) and ‘?XZ(p,o.9999942;2)(p) in (16) differ from the benchmark estimators g'g999942(2)
in (11) and §i'g999942(2) in (12) when the power p varies between 1 and 2. In Figure 10 (a) we plot the optimal
estimates p — 5 9999940 (2) In green, p — qA‘?/Z(p70~9999942;2) (p) in blue, §8'5999942(2) in black, Gig999942(2) in orange,
and the sample maximum in red. As is to be expected, the asymmetric least squares estimate gg99942(2), in
black line, is clearly more pessimistic than the plug-in estimate §jg999942(2), in orange line, that heavily depends
on the optimistic Weissman quantile estimator §}'999042(1) as can be seen from (12). The more sophisticated
expectile estimate p — 5 g999942(2), as green curve, steers overall a middle course behavior since it approaches
39999942(2) as p tends to 2 and §}'5999942(2) When p tends to 1. By contrast, the composite expectile estimate
P Z]\XZ (9,0.9999942;2) (p), as blue curve, appears to be the most conservative risk measure, especially as p decays to
1. The evolution of the extrapolated estimator 7/ (p,0.9999942; 2) in (15) of 7/, (p,0.9999942; 2) in (14) is plotted in

Figure 10 (b) against p in blue, along with the expectile level 0.9999942 in red line.
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