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Abstract. We present a novel framework for efficient retrospective respiratory 

motion correction of 3-D abdominal MRI using manifold regression. K-space 

data are continuously acquired under free breathing using the stack-of-stars radial 

golden-angle trajectory. The stack-of-profiles (SoP) from all temporal positions 

are embedded into a common manifold, in which SoPs that were acquired at sim-

ilar respiratory states are close together. Next, the SoPs in the manifold are clus-

tered into groups using the k-means algorithm. One 3-D volume is reconstructed 

at the central SoP position of each cluster (a.k.a. key-volumes). Motion fields are 

estimated using deformable image registration between each of these key-vol-

umes and a reference end-exhale volume. Subsequently, the motion field at any 

other SoP position in the manifold is derived using manifold regression. The re-

gressed motion fields for each of the SoPs are used to determine a final motion-

corrected MRI volume. The method was evaluated on realistic synthetic datasets 

which were generated from real MRI data and also tested on an in vivo dataset. 

The framework enables more accurate motion correction compared to the con-

ventional binning-based approach, with high computational efficiency.  

Keywords: 3D abdominal MRI, manifold learning, manifold regression, motion 

correction.  

1 Introduction  

Magnetic resonance imaging (MRI) has been commonly used in different regions of 

interest in the body for disease detection and diagnosis. However, the acquisition speed 

of MRI is not sufficiently fast to permit enough data to be acquired quickly enough to 

reconstruct fully sampled images with high spatial resolution, especially for 3-D imag-

ing. Therefore, image artefacts may be introduced into the reconstructed images due to 

motion (e.g. respiratory, cardiac, bulk motion).  

 In the context of this paper, only respiratory motion correction is discussed and so 

our focus is on the abdominal region. Breath-hold imaging is a simple and efficient 

solution to the problem of respiratory motion but it is not applicable to all patients and 

MRI sequences. Respiratory gated acquisition is a commonly used alternative [1]. With 

gating, acquired data is only retained when a diaphragm navigator falls within a prede-

fined small gating window. However, gated scans normally result in a longer acquisi-

tion time due to low scan efficiency (i.e. discarded data needs to be reacquired). To 

increase the scan efficiency and use all (or almost all) of the acquired data for recon-

struction, a number of works have either used image navigators [2] or self-gating meth-

ods [3] to group the k-space data into different motion states and applied image regis-

tration techniques to warp the data from different motion states to a reference motion 



state. A key weakness of this approach is the simplicity of the respiratory signal that 

typically only groups the data into a limited number of motion states (bins), which 

causes complex intra-cycle and inter-cycle variations in respiratory motion (known as 

intra-bin motion) to be averaged out. In [4] a technique was proposed for reconstructing 

a dynamic volume for each k-space acquisition, but in order to use these volumes for 

motion correction a large number of computationally demanding image registrations 

would be required.  

In this paper, we propose an efficient technique to retrospectively reconstruct a non-

rigid motion corrected 3-D volume from k-space data acquired in the abdominal region 

using a stack-of-stars (SoS) acquisition [5] under free breathing. The main contributions 

of this work are: (1) In contrast to state-of-the-art binning methods, instead of using a 

small number of motion states (usually 3 to 5), the proposed method allows the motion 

to be derived and corrected for each of the acquired stack-of-profile (SoP) positions, 

meaning that intra-bin motion can be corrected; (2) In contrast to [4], only a small num-

ber of volumes are reconstructed and registered at key SoP positions. The deformable 

motion fields for the remaining SoPs are estimated using manifold regression which is 

highly computationally efficient.  

2 Methodology 

As illustrated in Fig. 1, the proposed framework consists of k-space data acquisition, 

manifold embedding and clustering, motion field estimation and motion-corrected vol-

ume reconstruction, which are described in the following subsections.  

 
Fig. 1. Overview of the proposed framework.  



2.1 K-space Data Acquisition 

Data acquisition is performed under free breathing using a SoS radial golden-angle 

(RGA) trajectory. In the SoS acquisition, one k-space profile is acquired at each of the 

S slice positions at the same angle, followed by S profiles at the next angle separated 

by 111.25° and so on (see Fig. 1 (a)). We denote the SoP at each angle by 𝑋𝑝  (

},,2,1{ Pp  , P is the total number of angles). Using the SoS RGA trajectory, the 

k-space centre at each slice position is repetitively sampled through the entire acquisi-

tion period. The magnitudes of the central k-space lines (denoted by 𝑥𝑝, blue lines in 

Fig. 1(a)) of the SoPs correlate well with respiratory motion. We use a manifold learn-

ing method to reduce the dimensionality of 𝑥𝑝 from S to d (d<<S), and embed all the 

SoPs into a common manifold, where SoPs from similar motion states are close to each 

other. Details are described in the next subsection. 

2.2 Manifold Embedding and Clustering 

Several studies have reported that respiratory motion can be represented in a low di-

mensional space by applying principle component analysis (PCA) [6] or manifold 

learning [4] to the central k-space lines of the SoPs. Laplacian Eigenmaps [7] is used 

in this paper, which embeds the SoPs into a low dimensional space by preserving the 

local relationships in the original high dimensional space. In our work, given P central 

k-space lines x1,…,xP in ℝ𝑆, a weighted graph is constructed in which each xp is con-

nected to a set of neighbouring data points 𝑥𝑞  ( },,2,1{ Qq   , Q is the number of 

neighbours). The weights (Wpq) are calculated using a Gaussian kernel (with standard 

deviation σ): 

𝑊𝑝𝑞 = {𝑒
−

‖𝑥𝑝−𝑥𝑞‖
2

2𝜎2 , 𝑖𝑓 𝑝, 𝑞 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (1) 

Then the coordinates (y) of the low dimensional embeddings are obtained by minimis-

ing the following objective function, 

𝑂(𝑦) = ∑ (𝑦𝑖 − 𝑦𝑗)
𝑇

𝑖𝑗 (𝑦𝑖 − 𝑦𝑗)𝑊𝑖𝑗 = 2𝑦𝑇𝐿𝑦                      (2) 

Where L=D-W, and D is a diagonal matrix in which the entries are column sums of W, 

calculated as 𝐷𝑖𝑖 = ∑ 𝑊𝑗𝑖𝑗 . By adding the constraint 𝑦𝑇𝐷𝑦 = 1, which removes an ar-

bitrary scaling factor in the embedding, the final d-dimensional vector y is given by the 

eigenvectors that correspond to the d smallest non-zero eigenvalues (λ), in the general-

ised eigenvalue problem: 

𝐿𝑦 = 𝜆𝐷𝑦                                                                          (3) 

As illustrated in Fig. 1 (b), each point represents the location of its corresponding 

SoP in the manifold. Points in the manifold that are close together have similar motion 

states. Next, we apply the k-means algorithm to automatically group the data points 

according to their locations in the manifold. In practice, the k-means algorithm is run 

20 times with different randomised initialisations to avoid local optima. The final clus-

tering is the one in which the sum of distances between each of the points to their cluster 

centroid is the shortest. Fig. 1(b) shows the clustering results with K=4 for demonstra-

tion purposes.  



2.3 Motion Field Estimation  

A key data point for each cluster is identified by calculating the mean distance of each 

point in the cluster to all other points in the same cluster. The point that has the shortest 

mean distance is used (points with black contours in Fig. 1(b)). Volume reconstruction 

is performed at each of these key data point locations. The reconstruction method used 

is the same as that described in [4], and uses C SoPs that have the closest Euclidean 

distances in the manifold to the SoP at the key data point. The contribution of each SoP 

is Gaussian-weighted based on its spatial distance to the key SoP. The non-uniform fast 

Fourier transform [8] is applied in a slice by slice manner for volume reconstruction 

(Fig. 1(c-i)).  

As illustrated in Fig. 1(c-ii), a reference volume is identified from the reconstructed 

key volumes by choosing the one which has the highest diaphragm position (i.e. the 

end-exhale motion state). Next, the DEEDS deformable image registration method [9] 

is employed to register all other key volumes to the reference volume. The motion fields 

for the key volumes are denoted by mk={m1,…, mK} (K is the number of clusters). mk is 

a vector that contains the concatenated motion displacements along the three Cartesian 

directions for all voxel locations at the kth key volume location.  

 Subsequently, the motion field op for the pth (non-key position) SoP is estimated by 

a weighted combination of the N nearest key motion fields: 

𝑜𝑝 = ∑ 𝑉𝑛𝑝
𝑚𝑛𝑝

𝑁
𝑛                                                               (4) 

where np is the index of selected nearest key motion field for the pth SoP. The weight 

𝑉𝑛𝑝
 is calculated by a Gaussian kernel function (with standard deviation equal to the 

standard deviation of y) of the manifold distance between the pth SoP location and the 

nth key SoP location. In this way, motion fields for all remaining SoPs are obtained (see 

Fig. 1 (c-iii)) for generating the final motion-corrected volume at the reference motion 

state. Note that, using this approach, a motion field is estimated separately for each SoP. 

2.4 Motion-corrected Volume Reconstruction 

In [10], Batchelor et al. described a method for general motion correction in MRI. The 

relationship between the sampled k-space data (s) and a ‘motion-free’ image (s0) can 

be expressed as:  

𝑠 = ∑ 𝐴𝑡𝐹𝑢𝑡𝑠0𝑡 = 𝐺𝑠0                                                 (5) 

where ut is the motion in image space at acquisition time point t. F represents the Fou-

rier transform and At is the k-space sampling at time point t. The overall transformations 

can be represented by a matrix G. The motion corrected image s0 is obtained by calcu-

lating the inverse of matrix G and multiplying it by the acquired k-space data s. The 

authors in [10] used the conjugate gradient based algorithm to solve the matrix inver-

sion problem. This general matrix solution is typically used when the number of motion 

states is small (~ 3-10) due to computational constraints. In our work, we propose to 

perform the motion correction based on the motion fields derived from each of the ac-

quired SoPs, so we have hundreds of motion states, making this approach computation-

ally infeasible. In [10], the authors also described an empirical solution that sums up 

the individually motion corrected images of different motion states. Although this so-

lution is not valid when the motion direction is different to the readout direction, in our 



work the RGA acquisition is used which is less sensitive to motion due to the over-

sampling of the k-space center and varying readout direction. Therefore we employ the 

empirical solution. Specifically, each of the sampled k-space SoPs is firstly re-gridded 

to Cartesian coordinates with radial density compensation and by zeroing the k-space 

that has no acquired data. The inverse Fourier transform is then applied to the k-space 

data followed by image warping using the corresponding motion fields derived as de-

scribed in the previous section. The final motion-corrected volume is the sum of the 

individually motion-corrected volumes at all the acquired SoP positions. Note that the 

summation is performed using the complex values.  

3 Experiments and Results 

The proposed method was evaluated on both synthetic and in-vivo datasets. The syn-

thetic datasets were used to establish a ground truth for quantitative evaluation, and the 

results were compared with the binning-based motion correction (BMC) method. We 

also demonstrated the practical feasibility of our method using an in vivo dataset.  

3.1 Materials 

Synthetic dataset generation: Based on a respiratory gated high spatial resolution 

(RGHR) 3D volume and a dynamic 3D low spatial resolution sequence, the authors in 

[4] proposed a framework to generate high-temporal and high-spatial resolution dy-

namic sequences with randomised breathing cycles containing both intra- and inter-

cycle variation. We employed this method in our experiments. To mimic the SoS ac-

quisition, we generated 20 breathing cycles. Each breathing cycle lasted approximately 

5s and the interpolated volumes had a temporal resolution of ~4 ms. In total, 14000 

high spatial/temporal resolution dynamic volumes containing realistic intra-cycle and 

inter-cycle variation were obtained with a matrix size of 250×250×280 and isotropic 

resolution of 1 mm3. From each volume we perform a fast Fourier transform to produce 

k-space data. From the first volume’s k-space data we extract a single profile at the first 

slice position and profile angle. The profiles for subsequent volumes are extracted from 

the next slice positions. Once all slice positions have been sampled we move on to the 

next profile angle and repeat the procedure. With 35 slices (8 mm slice thickness), ap-

proximately 400 SoPs were simulated. According to the Nyquist sampling theory for 

an image resolution of 250×250, approximately 400 (250×π/2) radial profiles are re-

quired to produce an aliasing free image. We generated 5 such highly realistic synthetic 

SoP datasets to validate our method. 

In vivo dataset acquisition: A SoS acquisition with RGA trajectory was employed 

for data acquisition in the liver and lung region of a healthy volunteer. Data was ac-

quired on a Philips 1.5T scanner using a 28 channel-coil with T1 weighted sequence in 

sagittal slices. The settings were TR = 4.9 ms, TE = 2.2 ms, flip angle = 15°, and ac-

quired voxel size 2.0×2.0×8.0 mm3 with acquired matrix size of 176×176×38. A total 

of 500 SoPs were acquired under free-breathing in approximately 90 seconds.  



3.2 Results 

Synthetic dataset: The manifold embedding of a synthetic dataset is shown in Fig. 2 

(a) with dimensionality of d=2. In our experiments the use of d=1 or d>2 did not pro-

duce better results. The colours represent the normalised head-foot diaphragm position 

of the ground truth. Similar coloured points grouping together indicates a good mani-

fold embedding. The clustering result with K=5 is shown in Fig. 2 (b). The black circles 

indicate the SoP positions for key-volume reconstructions. With a fixed number of in-

put SoPs of 400, we explored the effects of varying the number of clusters (K) and the 

number of nearest neighbours (N) for motion field regression. The reconstructed image 

quality was quantitatively measured based on the sum of squared differences (SSD) and 

peak signal-to-noise ratio (PSNR) against the ground truth. Based on one dataset, Fig. 

3 (a) and (b) respectively show the SSD and PSNR values of our method using different 

numbers of K with only the optimum number of N that produced the best results, and 

compares with results of the BMC method. Note that the result of using N=1 for our 

method is equivalent to the BMC method, since for each of the SoPs it uses the motion 

field of the nearest key motion state. It can be seen from Fig. 3 that performance in-

creases when a larger number of clusters are used, and a larger number of N is required 

to produce a better result. The optimum number of N for each cluster was found to be 

consistent across all five tested datasets even though their breathing patterns were sig-

nificantly different. In addition, our proposed method consistently outperformed the 

BMC method independent of the number of clusters (K). From the experiments, we 

conclude that the use of K=10 and N=3 achieved the best balance between reconstruc-

tion accuracy and computational time. Based on this setting, the proposed method re-

sulted in 5.8±2.8% smaller SSD and 0.9±0.3 dB larger PSNR, compared with the BMC 

method over the 5 synthetic datasets. The majority of the computational time was oc-

cupied by the DEEDS image registration process which was about 60s per volume. The 

volume reconstruction time is about 15 s per volume. The time for motion correction at 

individual SoP locations was less than 1s per SoP. Therefore, the overall computational 

time linearly increased with the number of clusters. As an example, the overall time for 

producing the final motion corrected volume for the input sequence of 400 SoPs using 

K=10 was about 20 mins on a 3.6 GHz computer. It was about 13 mins for the same 

dataset using the BMC method.  

    
 (a)                                                               (b) 

Fig. 2. (a) Manifold embeddings for a synthetic dataset (b) clustering results of K=5 with black 

circles indicating SoP positions for key volume reconstruction.  



  
(a)                                                               (b) 

Fig. 3. (a) SSD values (b) PSNR values of the proposed method using different numbers of clus-

ters (K) with the optimum number of nearest neighbours (N), compared with the binning-based 

motion correction method (BMC). 

     In vivo dataset: We applied the proposed framework to an in vivo dataset to demon-

strate the practicality of the method. For the dataset described in section 3.1, the recon-

structed volumes without motion correction and using our motion correction method 

are shown in Fig. 4 at specific slices in sagittal view and coronal view respectively. 

Bilinear interpolation is used for the coronal view as the slice thickness is 8 mm. An 

improvement in image quality and sharpness in the motion corrected volume can be 

seen, particularly at those regions that are highlighted by red arrows. A sharpness meas-

urement was used as a quantitative measure of image quality, which was measured as 

the average of the image gradient magnitude in the liver and liver-lung boundary (the 

larger the sharper). The sharpness measures for the motion corrupted volume and mo-

tion corrected volume were 0.2748 and 0.3545 respectively.  

 

Fig. 4. Volumes reconstructed for the in vivo dataset without motion correction (left two) and 

with the proposed motion correction method (right two) in sagittal and coronal views. 

4 Conclusion and Discussions 

We have presented an efficient motion correction framework that is able to correct de-

formable motions for each acquired stack-of-profiles using a stack-of-stars acquisition 

under free breathing. Based on synthetic datasets, compared with the BMC method, our 

method achieved better performance on SSD and PSNR measures against the ground 

truth without compromising computational efficiency. We believe that the improved 



performance of our method is due to the fact that intra-bin motions were corrected with 

the individual motion fields derived using manifold regression. Our method produced 

a motion corrected volume for 400 SoPs, using individual motion fields for each SoP, 

in about 20 minutes (10 registrations). In contrast, the current state-of-the-art [4] would 

require 400 registrations (one for each SoP), taking approximately 7 hours. We also 

demonstrated the practicality of the proposed method on an in vivo dataset which 

achieved a good motion correction result. Our proposed method is likely to have con-

siderable benefits over the conventional binning method when a longer MR sequence 

is acquired, as the intra-cycle and inter-cycle motion variations may become more sig-

nificant. For example, this is the case when MRI is used for motion correction of PET 

in an integrated PET/MRI scenario.  
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