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26 Abstract

27 The purpose of this study was to establish whether functional near-infrared spectroscopy (fNIRS), an 

28 emerging brain-imaging technique based on optical principles, is suitable for studying the brain 

29 activity that underlies effortful listening. In an event-related fNIRS experiment, normally-hearing 

30 adults listened to sentences that were either clear or degraded (noise vocoded). These sentences 

31 were presented simultaneously with a non-speech distractor, and on each trial participants were 

32 instructed to attend either to the speech or to the distractor. The primary region of interest for the 

33 fNIRS measurements was the left inferior frontal gyrus (LIFG), a cortical region involved in higher-

34 order language processing. The fNIRS results confirmed findings previously reported in the 

35 functional magnetic resonance imaging (fMRI) literature. Firstly, the LIFG exhibited an elevated 

36 response to degraded versus clear speech, but only when attention was directed towards the 

37 speech. This attention-dependent increase in frontal brain activation may be a neural marker for 

38 effortful listening. Secondly, during attentive listening to degraded speech, the haemodynamic 

39 response peaked significantly later in the LIFG than in superior temporal cortex, possibly reflecting 

40 the engagement of working memory to help reconstruct the meaning of degraded sentences. The 

41 homologous region in the right hemisphere may play an equivalent role to the LIFG in some left-

42 handed individuals. In conclusion, fNIRS holds promise as a flexible tool to examine the neural 

43 signature of effortful listening. 

44
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48 1. Introduction

49 Listening to speech in the complex environments of daily life can be an effortful task, 

50 especially for individuals with hearing loss (Alhanbali et al., 2016; McGarrigle et al., 2014). The need 

51 to expend greater cognitive effort to understand an auditory message can have serious 

52 consequences: listeners may have more difficulty remembering what they have heard (McCoy et al., 

53 2005; Rabbitt, 1990; Ward et al., 2016) and may perform more poorly in situations that require 

54 multitasking (Hicks and Tharpe, 2002; Picou et al., 2013; Sarampalis et al., 2009); in the longer term, 

55 feelings of stress and fatigue associated with the increased effort of listening may lead to greater 

56 need for recovery after work (Nachtegaal et al., 2009), increased incidence of sick-leave (Kramer et 

57 al., 2006), and, ultimately, social withdrawal and isolation, potentially accelerating cognitive decline 

58 in older adults (Lin et al., 2013). It is therefore critical to improve our understanding of the 

59 neurocognitive processes that underlie effortful listening, so that we may detect and remediate it 

60 more effectively in future. The present study aimed to establish the potential of the emerging brain-

61 imaging technique functional near-infrared spectroscopy (fNIRS) to shed light on the brain activity 

62 that underlies effortful listening.      

63 A non-invasive technique based on optical measurements, fNIRS is rapidly gaining popularity 

64 as a flexible tool for imaging the haemodynamic response to neuronal activity in the human brain 

65 (Boas et al., 2014). The technique works by illuminating the brain with infrared light through the 

66 intact scalp. By measuring the intensity of light that returns to the surface, changes in local 

67 concentrations of oxygenated (HbO) and de-oxygenated (HbR) haemoglobin are derived 

68 (Scholkmann et al., 2014). Since active brain regions demand the delivery of oxygen to support their 

69 metabolic needs (Iadecola, 2004), changes in HbO and HbR concentrations can be taken as indicators 

70 of cortical activation. Interest in using fNIRS to study central auditory processing has grown rapidly in 

71 recent years (Chen et al., 2015; Hassanpour et al., 2015; Hong and Santosa, 2016; Plichta et al., 2011; 

72 Pollonini et al., 2014; Sevy et al., 2010; van de Rijt et al., 2016; Wiggins et al., 2016). However, 
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73 compared to more established brain-imaging techniques like functional magnetic resonance imaging 

74 (fMRI) and electroencephalography (EEG), the application of fNIRS in hearing research is in its 

75 infancy and the fundamental capabilities of the technique are still being established. Despite this, 

76 the potential benefits of fNIRS are clear: it is quiet, affordable, mobile, relatively forgiving of subject 

77 motion, compatible with hearing aids and cochlear implants, and suitable for use with all age groups 

78 and in naturalistic testing environments.     

79 A common theme in models and conceptual frameworks that seek to explain effortful 

80 listening is that as the quality of the auditory input is reduced, additional cognitive resources are 

81 recruited to help recover meaning (Pichora-Fuller, 2016; Ronnberg et al., 2013). Brain-imaging 

82 studies using fMRI have proven useful in elucidating some of the brain regions and networks 

83 responsible for performing this additional work (Adank et al., 2012; Davis and Johnsrude, 2003; Davis 

84 and Johnsrude, 2007; Eckert et al., 2016; Erb et al., 2013; Evans et al., 2016; Golestani et al., 2013; 

85 Hervais-Adelman et al., 2012; Obleser et al., 2007; Scott and McGettigan, 2013; Wild et al., 2012; 

86 Zekveld et al., 2006; Zekveld et al., 2014). The regions in question primarily lie beyond the auditory 

87 cortex in higher-order language-sensitive areas (Peelle et al., 2010), as well as other non-auditory 

88 areas that support performance monitoring and attention (Eckert et al., 2016). One region that has 

89 often, although not universally (Adank, 2012), been implicated in compensating for acoustic 

90 degradation to the speech signal is the left inferior frontal gyrus (LIFG). Across a range of studies, the 

91 LIFG has been shown to respond more strongly to degraded-yet-intelligible speech than to either 

92 clear speech or unintelligible noise (Adank et al., 2012; Davis and Johnsrude, 2003; Hervais-Adelman 

93 et al., 2012; Wild et al., 2012; Zekveld et al., 2006). 

94 Importantly, Wild et al. (2012) showed that elevated LIFG activation depends critically on 

95 attention to speech, indicating that it reflects the active attempt to recover meaning from degraded 

96 speech, rather than an obligatory response resulting merely from exposure to a degraded signal. 

97 Subsequently, Wild et al. (2012) proposed that measuring activation in frontal, speech-sensitive 
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98 regions using fMRI may provide a brain-based objective measure of listening effort. Such a measure 

99 could potentially be used to help evaluate and optimize the design and programming of hearing 

100 devices. The use of a brain-based objective measure may be advantageous compared to the intuitive 

101 approach of simply asking listeners to rate their perceived effort, since such subjective ratings are 

102 prone to bias and listeners may struggle to report mental effort independently of perceived 

103 performance or task difficulty (McGarrigle et al., 2014). Such a measure may also prove useful in 

104 cases where behavioural assessment is challenging, for example in fitting hearing devices to infants. 

105 However, practical applications may be compromised by methodological challenges inherent to 

106 fMRI, including high levels of scanner noise (Peelle, 2014) and incompatibility with implanted 

107 auditory prostheses. Could fNIRS, a neuroimaging modality that is silent, child-friendly, and 

108 compatible with cochlear implants (Bisconti et al., 2015; Chen et al., 2016; McKay et al., 2016; Olds 

109 et al., 2015; Sevy et al., 2010; van de Rijt et al., 2016), provide a more flexible alternative? 

110 Hassanpour et al. (2015) recently showed that high-density diffuse optical tomography (HD-DOT), a 

111 technique closely related to fNIRS, is capable of mapping distributed patterns of brain activation 

112 during speech perception, including in higher-order frontal regions. However, most commercially 

113 available fNIRS systems use a sparser arrangement of sources and detectors than in HD-DOT, which 

114 reduces the spatial resolution of the measurements and increases susceptibility to interference from 

115 physiological signals of extra-cerebral origin (Scholkmann et al., 2014). Based on the existing 

116 literature, it is unclear whether standard fNIRS systems are capable of measuring elevated frontal-

117 lobe activation associated with the processing of degraded speech.

118 The aims of the present study were: (i) to establish whether fNIRS is a suitable imaging 

119 modality for measuring frontal-lobe activation during speech perception; (ii) to corroborate using 

120 fNIRS Wild et al.’s (2012) fMRI findings that suggest elevated activation in the LIFG during listening to 

121 degraded speech depends critically on attention. To achieve these aims, we designed an fNIRS 

122 experiment broadly based on the procedures described by Wild et al. (2012), in which we included a 
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123 subset of the stimulus conditions that were used in their study. Briefly, we used fNIRS to measure 

124 frontotemporal brain activation while participants listened to clear or degraded (four-channel noise-

125 vocoded) sentences in the presence of a non-speech auditory distractor. Listening to four-channel 

126 noise-vocoded speech is known to be an effortful task for normally hearing individuals, as revealed 

127 by behavioural measures (e.g. increased response time on a secondary task; Pals et al., 2013), self-

128 reported effort (Pals et al., 2013) and pupil dilation (Winn et al., 2015). On each trial, participants 

129 were cued to attend either to the speech or the distractor. Based on the extant findings, we 

130 predicted elevated LIFG activation in response to degraded versus clear speech, but only when 

131 attention was directed towards the speech.

132 2. Materials and methods

133 2.1 Participants and ethical approval

134 Twenty undergraduate students from the University of Nottingham (mean age 20.3 years, 

135 range 18–22 years, 11 males) participated in the study after giving written informed consent. All 

136 participants were native speakers of English with no known hearing problems (self-reported), normal 

137 or corrected-to-normal vision, and no history of any motor or cognitive impairment. The majority of 

138 participants (17 out of 20) were right-handed as assessed using the Edinburgh Handedness Inventory 

139 (Oldfield, 1971). The study was approved by the University of Nottingham Faculty of Medicine and 

140 Health Sciences Research Ethics Committee.

141 2.2 Equipment

142 Testing took place in a double-walled sound booth. Participants were seated at a distance of 

143 75 cm from a visual display unit. Auditory stimuli were presented in the free-field using a Genelec 

144 (Iisalmi, Finland) 8030A loudspeaker. Presentation levels were measured at the listening position 

145 using a Brüel & Kjær (Nærum, Denmark) Type 2250 sound level meter with the participant absent. 

146 Brain activity was non-invasively measured using a Hitachi (Tokyo, Japan) ETG-4000 continuous-
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147 wave fNIRS system. The ETG-4000 measures simultaneously at wavelengths of 695 nm and 830 nm 

148 (sampling rate 10 Hz), and uses frequency modulation to minimize crosstalk between channels and 

149 wavelengths (Scholkmann et al., 2014). Participants entered their responses using an “RTbox” 

150 button box (Li et al., 2010). The experiment was implemented in MATLAB (MathWorks, Natick, MA) 

151 using the Psychtoolbox-3 extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

152 2.3 Experimental design

153 We simultaneously conducted an event-related fNIRS imaging experiment along with a 

154 behavioural task. A 2x2 factorial design was used with factors “speech clarity” (clear vs. degraded) 

155 and “attention” (attend speech vs. attend distractor). On every trial, participants were presented 

156 with a mixture of a sentence (either clear or degraded) and a non-speech distractor. A visual prompt 

157 presented 1 s before the onset of auditory stimulation cued participants to attend either to the 

158 speech or the distractor. Following the offset of stimulation, after a delay of 0.5 s, participants were 

159 questioned on the cued stimulus in a yes/no decision task. Each trial type was presented 20 times in 

160 random interleaved order. An additional 20 silent trials, randomly interspersed among the 

161 stimulation trials, were included to act as a baseline. On silent trials, instead of responding to a 

162 specific question, participants were instructed to press any button in response to an appropriately 

163 timed on-screen prompt. The stimulus-onset asynchrony (SOA; the time between the onset of 

164 auditory stimulation on one trial and the next) was randomly varied in the range 6–12 s. 

165 Randomizing the SOA helps to reduce the influence of preparatory and anticipatory factors and can 

166 improve the efficiency of event-related designs (Dale, 1999). The timing of the behavioural task set a 

167 lower bound for the SOA, while the range of SOAs was informed by a previous event-related fNIRS 

168 study (Plichta et al., 2007). The total duration of fNIRS imaging was approximately 15 minutes.

169 2.4 Speech stimuli

170 Speech material consisted of recordings of Bamford-Kowal-Bench sentences (Bench et al., 

171 1979) spoken by a male talker. Twenty sentence lists were available, each comprising sixteen 
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172 sentences and a total of fifty keywords. An example sentence with keywords underlined is: “The 

173 clown had a funny face.”  For each participant, we selected a random subset of the available lists to 

174 use for testing.

175 We used noise vocoding to create sentences that were acoustically degraded, yet still mostly 

176 intelligible. Noise vocoding reduces spectral clarity while preserving temporal envelope cues 

177 (Shannon et al., 1995). Speech signals were filtered into four adjacent frequency bands spaced 

178 approximately equally along the basilar membrane (Greenwood, 1990). The four bands spanned an 

179 overall bandwidth of 180–8000 Hz. Zero-phase bandpass filtering was performed by filtering signals 

180 first in the forward and then in the reverse direction (MATLAB filtfilt function) using 6th-order digital 

181 elliptic filters. The amplitude envelope within each frequency band was extracted by half-wave 

182 rectification followed by low-pass filtering at 160 Hz (1st-order elliptic filter applied consecutively in 

183 the forward and reverse directions). Each envelope was then applied to a white-noise carrier and 

184 bandpass filtered using the same scheme as described above. The root-mean-square (RMS) output 

185 level after processing was matched to the input level on a within-band basis. Summation of the four 

186 frequency bands gave the final degraded speech stimulus. On clear-speech trials, the vocoder was 

187 bypassed but the speech signal was passed through the same filter-bank to ensure equivalent 

188 bandwidth on clear- and degraded-speech trials. Speech stimuli were presented at 65 dB SPL (A-

189 weighted).

190 2.5 Non-speech distractor

191 The non-speech distractor comprised a sequence of three or more 200-ms narrow-band 

192 ramped noise bursts (described to participants as “chirps”). The distractor stimulus began 0.1 s after 

193 the sentence and ended at approximately the same time as the sentence. The temporal spacing of 

194 individual noise bursts was fixed within a trial, but varied randomly across trials (inter-burst silence: 

195 100–180 ms).

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



9

196 To create each noise burst, broadband white noise was passed through a 1000-Hz fixed-

197 bandwidth filter (6th-order Butterworth) with a centre frequency randomly selected in the range 

198 4500–5500 Hz. Onset and offset linear ramp durations for the standard bursts were 190 ms and 10 

199 ms, respectively, meaning that each burst had a gradual onset and an abrupt offset. The level of the 

200 standard noise bursts was approximately 60 dB SPL. 

201 On 50% of trials, a randomly selected noise burst within the sequence (never the first or last) 

202 was designated as a target. The target burst was distinguished from the standard bursts by a reversal 

203 of the onset and offset ramp durations (resulting in an abrupt onset and gradual offset) and by a 4-

204 dB level enhancement.

205 2.6 Speech intelligibility testing

206 Speech intelligibility tests were conducted at the start of the session, prior to fNIRS imaging. 

207 Sentences were presented one at a time, with the participant asked to repeat back as many words as 

208 they could. The number of keywords correctly reported was scored by the experimenter using a 

209 touchscreen interface. No feedback was provided to participants. To allow participants practice 

210 listening to noise-vocoded speech, the intelligibility of degraded speech was initially measured using 

211 two consecutively presented lists. Subsequently, the intelligibility of both clear and degraded speech 

212 was measured using one additional list per condition. During this later stage of testing, clear and 

213 degraded sentences were randomly interleaved to achieve listening conditions more representative 

214 of those encountered during fNIRS imaging.

215 2.7 Main task

216 In the main task, conducted simultaneously with fNIRS imaging, participants were asked a 

217 yes/no question after each trial that related to the cued stimulus. When cued to attend to the 

218 speech, participants were asked to identify whether a word shown on the display had featured in 

219 the sentence. On 50% of trials the word was a true keyword, while on the other 50% of trials the 

220 word was a replacement foil word. Foil words were chosen to rhyme with a keyword, and, where 
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221 possible, to be semantically plausible (e.g. in the sentence “The green tomatoes are small”, the 

222 keyword “green” might have been replaced with the foil word “clean”). Foil words were equally 

223 likely to fall towards the start, middle or end of the sentence. When cued to attend to the non-

224 speech distractor, “Target?” was presented on the display and participants were asked to identify 

225 whether a target had been present in the distractor stimulus. Participants gave their responses by 

226 pressing one of two buttons to signify a “Yes” or “No” response according to labels shown on the 

227 display. For even-numbered participants, the “Yes” and “No” buttons were placed on the right and 

228 left side, respectively; the sides were reversed for odd-numbered participants. Participants had up to 

229 2 s to respond, otherwise a missed response was recorded.

230 Participants were given time to practise the main task before data collection began. In initial 

231 practice runs, the speech and distractor stimuli were presented separately to allow participants to 

232 practise the respective tasks in isolation. In later practice runs, the speech and distractor stimuli 

233 were presented simultaneously. To encourage selective attention to the cued stimulus, participants 

234 were explicitly instructed to ignore the un-cued stimulus. 

235 Sensitivity (d’) for detecting true keywords (attend-speech trials) or the presence of a target 

236 (attend-distractor trials) was determined for each experimental condition by subtracting the z-

237 transform of the false-alarm rate (i.e. the proportion of “Yes” answers in response to a foil 

238 word/absent target) from the z-transform of the hit rate (i.e. the proportion of “Yes” answers in 

239 response to a true keyword/present target). 

240 2.8 Sentence recognition post-test

241 Following Wild et al. (2012), we conducted a surprise sentence recognition test immediately 

242 after fNIRS imaging to test participants’ memory for the sentences they had heard. Participants had 

243 to decide whether each of a series of presented sentences had featured during fNIRS imaging or was 

244 an unfamiliar sentence not heard previously. All sentences, regardless of how they had originally 
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245 been presented, were played as clear speech. Twelve sentences out of 20 from each of the four 

246 experimental conditions were randomly selected and interspersed among 24 unfamiliar sentences 

247 (chosen randomly from all so-far unused lists). This gave an overall 2:1 ratio of familiar to unfamiliar 

248 sentences. Sensitivity (d’) for detecting familiar sentences was determined based on the z-transform 

249 of the hit rate for each experimental condition minus the z-transform of the common false-alarm 

250 rate across all unfamiliar sentences. 

251 2.9 fNIRS data acquisition

252 We used a 3 x 11 optode array comprising 17 emitters and 16 detectors, giving 52 

253 measurement channels in total. The source-detector spacing was fixed at 30 mm. The international 

254 10-20 system (Jasper, 1958) was used to guide optode placement over the frontal and (superior) 

255 temporal lobes. The central optode in the bottom row of the array was placed on the forehead over 

256 position Fpz with the outermost optodes in the bottom row aligned inferolaterally towards position 

257 T3/T4 (Fig. 1a). 

258 To evaluate the consistency of optode placement across individuals, a 3D digitizer was used to 

259 record the positions of the optodes, as well as anatomical surface landmarks, on eight volunteers. 

260 The measured positions were registered to the “Colin 27” atlas brain (Collins et al., 1998) using the 

261 AtlasViewer tool (Aasted et al., 2015). Across individuals, the standard deviation in the position of 

262 each optode was 6.64 ± 0.53 mm (mean ± SD across optodes) (Fig. 1b), which we considered 

263 satisfactory relative to the 30-mm source-detector spacing. The mean optode positions across the 

264 eight volunteers were used as the basis for subsequent assessments of probe sensitivity and for data 

265 visualization.

266 < Please insert Figure 1 here>

267
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268 We also used AtlasViewer to confirm that our optode array provided sensitivity to the cortical 

269 region of interest (ROI): the LIFG. First, a cortical sensitivity profile was calculated for each 

270 measurement channel by running the photon migration forward problem, i.e. by simulating the 

271 probabilistic path of photons as they traverse through the head from source to detector (Aasted et 

272 al., 2015). The forward problem was evaluated using the Monte-Carlo photon transport software 

273 tMCimg (Boas et al., 2002), with 1 x 107 simulated photons launched from each optode. We then 

274 computed the aggregate sensitivity profile for three channels (Channels 30, 40 & 51) overlying the 

275 LIFG (Fig. 1c). We pre-selected these three channels as our primary ROI for subsequent analyses, as 

276 studies of fNIRS test-retest reliability have consistently indicated that fNIRS response amplitude is 

277 more reliable when averaged across a small number of channels overlying a cortical ROI than when 

278 assessed on a single-channel basis (Plichta et al., 2006; Schecklmann et al., 2008; Wiggins et al., 

279 2016).     

280 2.10 fNIRS data analysis

281 The fNIRS recordings were analyzed in MATLAB using functions provided in the HOMER2 

282 package (Huppert et al., 2009) together with custom scripts. Since poor optode–scalp contact can be 

283 a limiting factor affecting fNIRS data quality, we initially screened the measurements to exclude 

284 channels that suffered from unacceptable signal quality. To do this, we used the scalp coupling index 

285 (SCI) approach introduced by Pollonini et al. (2014). In this method, the raw fNIRS signals at each 

286 wavelength are bandpass filtered between 0.5 and 2.5 Hz to isolate the cardiac component and the 

287 strength of correlation between the two wavelengths is taken as a measure of the quality of 

288 optode–scalp contact. Since our probe array did not provide for spatially overlapping channels, we 

289 were motivated to exclude channels from the analysis as sparingly as possible. We therefore 

290 adopted a liberal threshold of SCI ≥ 0.32 to retain channels in the analysis, chosen to exclude only 

291 the worst 5% of channels across the entire dataset. 

292
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293 Processing of the data for the retained channels proceeded as follows. First, the raw intensity 

294 signals were converted to changes in optical density (Huppert et al., 2009). Next, we used wavelet 

295 filtering to suppress motion artefacts. Specifically, we used the hmrMotionCorrectWavelet function 

296 provided in the HOMER2 package, which implements a simplified form of the algorithm described by 

297 Molavi and Dumont (2012). This function applies a probability threshold to remove outlying wavelet 

298 coefficients, which are assumed to correspond to motion artefacts. We excluded coefficients lying 

299 further than 0.719 times the interquartile range below the first quartile or above the third quartile. 

300 Assuming a Gaussian distribution of wavelet coefficients, this is equivalent to the α = 0.1 threshold 

301 adopted in previous evaluations of fNIRS motion-correction techniques (Brigadoi et al., 2014; Cooper 

302 et al., 2012).     

303 Following motion-artefact correction, we band-pass filtered the optical density signals 

304 between 0.02 and 0.5 Hz to attenuate low-frequency drift and cardiac oscillations. At this point, the 

305 optical density signals were converted into estimated changes in the concentrations of HbO and HbR 

306 using the modified Beer-Lambert law (Huppert et al., 2009). We used a default value of 6 for the 

307 differential path-length factor at both wavelengths. Note that this does not account for the partial-

308 volume effect associated with focal changes in absorption (Boas et al., 2001). However, this was not 

309 a major concern here as our interest was not in estimating absolute changes in haemoglobin 

310 concentrations, but rather in contrasting relative response magnitude across experimental 

311 conditions.

312 As a final stage of pre-processing, we applied the haemodynamic signal separation algorithm 

313 described by Yamada et al. (2012) to isolate the functional component of the haemodynamic signal. 

314 This algorithm aims to reduce systemic physiological interference by exploiting the fact that changes 

315 in the concentrations of HbO and HbR tend to be negatively correlated in the functional cerebral 

316 response, but positively correlated in systemic physiological fluctuations (Yamada et al., 2012). We 

317 have shown previously that application of this algorithm can markedly improve the reliability of 
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318 group-level speech-evoked fNIRS responses (Wiggins et al., 2016).  

319 We used the general linear model (GLM) approach to quantify fNIRS response amplitude on a 

320 channel-wise basis (Schroeter et al., 2004). The design matrix included a set of three regressors for 

321 each of the four experimental conditions plus an additional set for the silent trials. Each trial was 

322 modelled as a short epoch corresponding to the period of auditory stimulation (mean duration 1.64 

323 s; audio muted on silent trials). The trial time-courses were convolved with the canonical dual-

324 gamma haemodynamic response function (HRF) provided in SPM8 

325 [http://www.fil.ion.ucl.ac.uk/spm] together with its temporal and dispersion derivatives. Inclusion of 

326 the derivative terms allows the model to capture responses that are shifted in time or have 

327 extended activation durations compared to the canonical HRF (Friston et al., 1998; Lindquist and 

328 Wager, 2007; Lindquist et al., 2009). Within each condition, the regressor corresponding to the 

329 temporal derivative was orthogonalized with respect to the regressor for the canonical HRF, and the 

330 regressor corresponding to the dispersion derivative was orthogonolized with respect to both the 

331 canonical and temporal-derivative regressors. Model estimation was performed using the two-stage 

332 ordinary least squares procedure described by  Plichta et al. (2007), which incorporates a correction 

333 for serial correlation (Cochrane and Orcutt, 1949). 

334 To quantify response amplitude free from bias by any systematic differences in 

335 latency/dispersion between conditions, we combined the beta weights for the non-derivative and 

336 derivative terms using the ‘derivative-boost’ technique (Calhoun et al., 2004). We post-normalized 

337 the relevant columns of the design matrix following Steffener et al. (2010). Note that some authors 

338 (e.g. Cignetti et al., 2016) imposed additional constraints when applying the derivative boost, such 

339 that the beta weight for the canonical HRF is boosted by the non-derivative term(s) only when the 

340 estimated response meets certain criteria, for example, having a time-to-peak within the range 4–6 

341 s. No such constraint was imposed here, although additional analyses (not shown) confirmed that 

342 the key findings were unchanged if the derivative boost was selectively applied only to responses 
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343 peaking within a certain time window.  

344 At the single-subject level, contrast images were formed by subtracting the estimated 

345 response amplitude for the silent baseline condition from that for each of the four experimental 

346 conditions. These contrast images formed the basis for subsequent statistical testing. Note that 

347 while the convention in fNIRS studies is to report results for both HbO and HbR, here we report 

348 results for HbO only. This is because the haemodynamic signal separation algorithm assumes a linear 

349 relationship between HbO and HbR in the functional response (Yamada et al., 2012), meaning that 

350 the two chromophores become statistically redundant after application of this algorithm.

351 2.11 Statistical analyses

352 Analyses of variance (ANOVAs) were carried out using IBM SPSS Statistics for Windows 

353 Version 22.0 software (IBM Corp., Armonk, New York). The Greenhouse-Geisser correction for non-

354 sphericity was applied where necessary. Follow-up pairwise comparisons were Bonferroni corrected 

355 to account for multiple comparisons. Where appropriate, error bars in figures were corrected to 

356 make them suitable for repeated-measures data (Field, 2009).

357 2.11.1 Behavioural data

358 Behavioural data from the main task and sentence recognition post-test were analysed using 

359 two-way repeated-measures ANOVAs (RM-ANOVAs) with within-subjects factors “speech clarity” 

360 (two levels: clear vs. degraded) and “attention” (two levels: attend speech vs. attend distractor). A 

361 different approach was used to analyse the speech intelligibility data, since the RM-ANOVA 

362 approach is ill-suited for use with proportional data. We analysed the proportion of keywords 

363 correctly identified using logistic regression implemented within the context of a generalized linear 

364 mixed-effects analysis (Dixon, 2008). This analysis was conducted in R software (R Core Team, 2016) 

365 using the ‘lme4’ package (Bates et al., 2015). A random effect (intercept only) of “participant” was 

366 included to account for individual variability in performance, and “list” was treated as a fixed effect 

367 with four levels (three sentence lists for degraded speech plus one list for clear speech). Follow-up 
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368 pairwise comparisons were conducted on the estimated marginal means to test for differences in 

369 intelligibility across lists, with Tukey’s method used to control the familywise error rate. 

370 2.11.2 fNIRS data

371 To test for significant cortical activation in each experimental condition compared to the silent 

372 baseline, we conducted group-level random-effects analyses using one-tailed t-tests on the 

373 corresponding contrast images. To account for the multiple comparisons issue arising from 

374 separately testing for cortical activation in 52 measurement channels, we controlled the false 

375 discovery rate (FDR) (Benjamini and Hochberg, 1995). We used the original formulation of the FDR 

376 procedure, which assumes either independence or slight positive dependency among channels, as 

377 recommended for fNIRS data analysis by Singh and Dan (2006).

378 Analysis of response amplitude within the primary ROI was conducted using a two-way RM-

379 ANOVA similar to those used to analyse the behavioural main task and sentence-recognition post-

380 test data. The same approach was also used to analyse response amplitude in a number of 

381 secondary, post-hoc ROIs defined in a data-driven manner. The input data to these RM-ANOVAs 

382 were the contrast values for each experimental condition compared to the silent baseline condition, 

383 averaged across the constituent channels that made up each ROI.

384 To test for interregional haemodynamic timing differences between temporal and frontal 

385 areas, we reconstructed estimates of the haemodynamic response in each region by combining each 

386 individual’s GLM beta weights for the canonical and temporal derivative terms with the 

387 corresponding basis functions (Steffener et al., 2010). Time-to-peak values were extracted and 

388 compared across regions using a paired-samples t-test.

389 To assess the effect of handedness on the lateralization of brain activation, we conducted 

390 mixed-design ANOVAs with “handedness” as a dichotomous between-subjects factor and 

391 “hemisphere” as a within-subjects factor. Separate ANOVAs were performed for superior temporal 
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392 and inferior frontal cortex, in each case contrasting brain activation between homologous regions in 

393 the left and right hemispheres.      
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394 3. Results and discussion

395 3.1 Behavioural results

396 3.1.1 Speech intelligibility

397 Participants’ ability to correctly understand noise-vocoded speech improved with practice, 

398 ultimately reaching ~85% correct (Fig. 2). Generalised linear mixed-effect analysis of the percentage 

399 of keywords correctly reported in each sentence list (three lists for degraded speech plus one for 

400 clear speech) showed a significant overall effect of list (χ²(3) = 119.51, p < .001). Follow-up pairwise 

401 comparisons revealed that intelligibility significantly improved between the first (mean 68.4%-

402 correct) and second (mean 81.9%-correct) degraded-speech lists (p < .001), but not between the 

403 second and third (mean 85.2%-correct) lists (p = .197). Performance appears to have approached a 

404 plateau at this stage, indicating that participants had received sufficient practice. As expected, even 

405 after practice, intelligibility was significantly worse for degraded (mean 85.2%-correct) than for clear 

406 (99.9%-correct) speech (p < .001). 

407 < Please insert Figure 2 here>

408

409 3.1.2 Main task

410 Mean sensitivity was significantly above chance level in all conditions (Fig. 3), suggesting that 

411 participants performed the tasks as instructed. Overall, performance was better on attend-speech 

412 trials than on attend-distractor trials (RM-ANOVA main effect of attention: F(1, 19) = 38.91, p < 

413 .001). That is, participants were more accurate at distinguishing between true keywords and 

414 rhyming foil words than they were at detecting the presence of a target in the distractor. 

415 Performance was better overall on clear-speech trials than on degraded-speech trials (RM-

416 ANOVA main effect of speech clarity: F(1, 19) = 18.28, p < .001). Interestingly, the deleterious effect 

417 of speech degradation did not depend on where attention was directed (RM-ANOVA speech clarity x 
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418 attention interaction: F(1, 19) = 0.03, p = .86, n.s.): participants were not only worse at the speech-

419 based task when the speech was degraded, but also at detecting the presence of a target in the 

420 accompanying distractor. We propose that the distractor may have been more difficult to 

421 perceptually segregate from the degraded (noise-vocoded) speech because of the noise-like quality 

422 of both signals. Alternatively, it is possible that participants may have found the degraded speech 

423 difficult to ignore, and thus may have partly attended to both the degraded speech and the 

424 distractor, rather than solely to the latter as instructed.

425 < Please insert Figure 3 here>

426

427 3.1.3 Sentence recognition post-test

428 Sensitivity for recognizing sentences that had been attended during fNIRS imaging was 

429 significantly better than for those that had been ignored (RM-ANOVA main effect of attention: 

430 F(1,19) = 62.21, p < .001). Indeed, recognition of ignored sentences was close to chance level (d’ 

431 close to zero; Fig. 3). The benefit for recognition performance of having attended to a sentence was 

432 similar for clear and degraded speech (RM-ANOVA speech clarity x attention interaction: F(1, 19) = 

433 1.39, p = .25, n.s.).    

434 Unexpectedly, participants’ memory was significantly better for sentences that had originally 

435 been presented as degraded speech than for those presented as clear speech (RM-ANOVA main 

436 effect of speech clarity: F(1,19) = 12.79, p = .002). This runs contrary to the expectation that memory 

437 for degraded speech would be worse than for clear speech on the basis that cognitive resources that 

438 might otherwise have been available for memory encoding would instead be needed to help 

439 understand the degraded speech (McCoy et al., 2005; Rabbitt, 1990; Ward et al., 2016). However, 

440 we note that our sentence familiarity post-test may not be representative of memory for speech in 

441 general, especially as participants were unaware that they would later be asked about the sentences 
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442 they had heard. It may also be pertinent that the BKB sentences used in the present study are 

443 relatively simplistic and repetitive, with the same semantic themes recurring regularly across lists. 

444 Under these specific circumstances, it is possible that the extra cognitive effort needed to 

445 understand degraded compared with clear sentences actually made them more, rather than less, 

446 memorable. Indeed, variation in the amount of attention that is paid while encoding items into 

447 memory has been shown to affect later recognition performance, and may in fact be a dominant 

448 confounding factor underlying previously reported list-length effects in recognition memory (Kinnell 

449 and Dennis, 2011).   

450 3.2 fNIRS results

451 3.2.1 Cortical activation maps

452 Group-level activation maps for each experimental condition contrasted against the silent 

453 baseline are shown in Fig. 4. Note that in this initial analysis testing was performed on all individual 

454 fNIRS measurement channels. Statistically significant activation (p < .05, FDR corrected) was 

455 observed in all conditions in channels overlying the left (Ch#42) and right (Ch#32) superior temporal 

456 gyri (i.e. in the vicinity of left and right auditory cortex). Significant activation beyond the superior 

457 temporal cortex was observed only when listeners actively attended to degraded speech: the 

458 additionally activated channels were located over left inferior frontal cortex (Ch#30, 40) extending 

459 towards (bilateral) pre-motor cortex (Ch#2, 9). Note that two of the additionally activated channels 

460 (Ch#30, 40) lie within the pre-defined LIFG ROI.

461  < Please insert Figure 4 here>

462

463

464 3.2.2 Response amplitude
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465 While the activation maps shown in Fig. 4 are useful for visualizing the extent of cortical 

466 activation in each condition, to address the experimental hypothesis requires a direct comparison of 

467 fNIRS response amplitude between conditions. Fig. 5a plots mean estimated response amplitude 

468 relative to silence for each experimental condition in the LIFG ROI. In support of the experimental 

469 hypothesis, response amplitude in the LIFG depended critically on the interaction between speech 

470 clarity and attention (RM-ANOVA speech clarity x attention interaction: F(1,19) = 5.43, p < .05). 

471 Compared to the silent baseline, the LIFG was activated only during attentive listening to degraded 

472 speech; the LIFG was not activated in response to clear speech (whether the participant attended to 

473 it or not), nor when participants attended to the auditory distractor in the presence of degraded 

474 speech.

475 To explore whether this response pattern was specific to the LIFG, Fig. 5b–d shows estimated 

476 response amplitude in several secondary (post-hoc) ROIs that were significantly activated in one or 

477 more of the experimental conditions, namely left and right STG and bilateral pre-motor cortex. None 

478 of the secondary ROIs showed a significant interaction between speech clarity and attention. 

479 Bilateral pre-motor cortex was preferentially activated on attend-speech trials compared to attend-

480 distractor trials (RM-ANOVA main effect of attention: F(1,18) = 9.77, p < .01). However, there was 

481 little evidence that the strength of this activation depended on whether the speech was clear or 

482 degraded (RM ANOVA speech clarity x attention interaction: F(1,18) = 0.25, p = .626, n.s.). Compared 

483 to the silent baseline, both left and right STG were robustly activated to a similar degree in all 

484 experimental conditions. In the left STG, there was a trend towards stronger activation when 

485 listeners attended to speech compared to when they attended to the distractor, although this effect 

486 did not reach statistical significance (RM-ANOVA main effect of attention: F(1,18) = 2.36, p = .142).

487 These results suggest that, among the cortical regions covered by our array, the interaction 

488 between speech clarity and attention was specific to the LIFG. However, we note that a definitive 

489 demonstration of regional specificity requires a direct statistical comparison across regions 

490 (Nieuwenhuis et al., 2011), i.e. in the present case, a region x speech clarity x attention interaction. 
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491 The significance of this higher-order interaction could not be confirmed in our data (RM-ANOVA ROI 

492 x speech clarity x attention interaction: F(3,51) = 1.30, p = .286, n.s.). We attribute this to a lack of 

493 power to detect this higher-order interaction, given that the study was powered (with 0.8 power and 

494 a Type I error rate of 0.05) only to detect the two-way speech clarity x attention interaction in the 

495 primary LIFG ROI. It should also be noted that the differing number of channels included in the 

496 various ROIs (3 in the pre-defined primary LIFG ROI; 1–2 in the data-driven, post-hoc ROIs) may have 

497 influenced the power of the statistical tests, since fNIRS response amplitude is generally more 

498 reliable when averaged across a small number of channels overlying a cortical ROI than at single-

499 channel level (Plichta et al., 2006; Schecklmann et al., 2008; Wiggins et al., 2016).      

500 < Please insert Figure 5 here>

501
502 3.2.3 Relative timing of the haemodynamic response in temporal versus frontal cortex

503 In a related fMRI study of sentence comprehension under varying levels of masking noise, 

504 Zekveld et al. (2006) discussed the possibility that the latency of the haemodynamic response may 

505 vary between speech-sensitive regions in the temporal and frontal lobes. However, the use of a 

506 sparse-sampling paradigm (Hall et al., 1999) in that study precluded any direct test of this possibility. 

507 In a later study, Davis et al. (2011) showed using time-resolved sparse fMRI that such interregional 

508 timing differences during sentence comprehension do exist: the haemodynamic response peaked 

509 significantly earlier (by ~1 s on average) in superior temporal cortex than in left inferior frontal 

510 cortex. The fact that no equivalent difference was seen when assessing a low-level baseline contrast 

511 (signal-correlated noise versus rest) was taken to suggest that interregional variation in the timing of 

512 the haemodynamic response likely reflected changes in the timing of underlying neuronal activity, 

513 rather than being an artefact associated with, for example, interregional differences in vasculature 

514 (Handwerker et al., 2012). 
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515 Here, we aimed to take advantage of the higher temporal resolution and continuous silent 

516 imaging offered by fNIRS to confirm this finding of interregional haemodynamic timing differences 

517 between temporal and frontal areas. We focused on the condition in which listeners attended to 

518 degraded speech, since the LIFG was significantly activated (compared to the silent baseline) only in 

519 this condition. The group-mean reconstructed haemodynamic responses for the LIFG compared to 

520 bilateral superior temporal cortex (i.e. the average of left and right STG responses) are plotted in 

521 Fig. 6. Only participants for whom the estimated haemodynamic response for both regions showed a 

522 positive peak were included in the analysis (N = 18 out of 20). Responses peaked later in the LIFG 

523 (mean time-to-peak = 6.7 s, SD = 1.6 s) than in bilateral STG (mean time-to-peak = 5.2 s, SD = 1.0 s), 

524 as confirmed by a paired-samples t-test (t(17) = 3.56, p < .01)1. This result is in agreement with the 

525 findings of Davis et al. (2011), both in terms of the direction of the interregional timing difference 

526 and its order of magnitude. 

527 Note that while the mean response for the LIFG in Fig. 6 appears to show signs of an early 

528 minor secondary peak around 2–3 s, this may be an artefact associated with the failure of the 

529 informed basis set to accurately capture the full shape of individual responses that deviate too far 

530 from the canonical HRF (Calhoun et al., 2004), and so the reader is cautioned against assigning 

531 physiological meaning to this component.

532 < Please insert Figure 6 here>

533 3.2.4 Handedness and the lateralization of cortical activation

534 All analyses presented thus far were conducted on the full sample of twenty participants, which 

535 included three left-handed individuals, all with a laterality index ≤-70 on the Edinburgh Handedness 

536 Inventory (Oldfield, 1971). Thus, the sample included left-handed participants approximately in 

1 The haemodynamic response similarly peaked significantly later in the LIFG than in the left STG (mean time-
to-peak 6.9 vs. 5.4 s, t(16) = 3.08, p < .01) and right STG (mean time-to-peak 6.7 vs. 5.0 s, t(16) = 3.50, p < .01) 
when comparing against each hemisphere separately. 
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537 proportion to their frequency (roughly 10%) in the population as a whole (Willems et al., 2014). 

538 However, it is well known that the lateralization of cortical function can differ between left- and 

539 right-handed individuals. While roughly 95% of right-handers show left-hemispheric dominance for 

540 language, the proportion of left-handers who show the same pattern is lower (~75%), with the 

541 remaining 25% displaying either bilateral activation or right-hemisphere dominance (Pujol et al., 

542 1999; Szaflarski et al., 2002). We therefore wished to explore whether there was any evidence of 

543 atypical lateralization of cortical activation in the subset of our sample who were left-handed.

544 We again focused on the contrast between attentive listening to degraded speech and silence, 

545 since the most extensive cortical activation was observed for this contrast (cf. Fig. 4). Fig. 7 plots 

546 mean contrast values for homologous regions in the left and right hemispheres, broken down by 

547 handedness. Data are shown for superior temporal and inferior frontal regions. In the superior 

548 temporal cortices, bilateral activation was observed, with no strong evidence that responses were 

549 lateralized to one hemisphere or the other in either left- or right-handers. Accordingly, a mixed-

550 design ANOVA showed no significant main effect of hemisphere (F(1,18) = 0.002, p = .966), no 

551 significant main effect of handedness (F(1,18) = 0.52, p = .479), and no significant interaction 

552 between the two (F(1,18) = 0.15, p = .703). In contrast, inferior frontal activation appears to have 

553 been left-lateralized in right-handers, but right-lateralized in left-handers. This differential 

554 lateralization between left- and right-handers was confirmed by a significant handedness x 

555 hemisphere interaction in the mixed-design ANOVA (F(1,18) = 8.86, p = .008). Thus, it is possible that 

556 the role played by the LIFG in processing degraded speech is shifted to the homologous region in the 

557 right hemisphere in at least some left-handed individuals.

558 The strength of right-hemispheric lateralization of inferior frontal activation in our subset of left-

559 handed participants is perhaps surprising, given that only around 25% of left-handed individuals are 

560 thought to display atypical language lateralization. However, given the small number of left-handed 

561 participants in the present study (N = 3), it would be inappropriate to generalize these findings to the 

562 wider population of left-handed individuals. 
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563 < Please insert Figure 7 here>
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566 3.3 General discussion

567 Using fNIRS, we confirmed an important finding from the fMRI literature (Wild et al., 2012): 

568 the processing of degraded speech depends critically on attention. Specifically, the LIFG exhibited an 

569 elevated response to degraded versus clear speech, but only when attention was directed towards 

570 the speech. This attention-dependent increase in frontal brain activation may be a cortical marker 

571 for effortful listening. Our results additionally indicate that the homologous region in right inferior 

572 frontal cortex may play an equivalent role in at least some left-handed individuals.

573 The precise role that the LIFG plays in supporting the recovery of meaning from degraded 

574 speech is unclear. The region of elevated activation lies in the vicinity of Broca’s area (Brodmann 

575 areas 44 and 45), classically considered a motor speech-production area (Nishitani et al., 2005). One 

576 possibility, therefore, is that elevated activation during listening to degraded speech corresponds to 

577 a process in which the degraded input is matched to internal articulatory templates (Hervais-

578 Adelman et al., 2012; Watkins and Paus, 2004), reminiscent of the motor theory of speech 

579 perception (Liberman and Mattingly, 1985). However, beyond its role as a motor speech area, the 

580 LIFG is also known to be extensively involved in higher-order language processing at the 

581 phonological (Poldrack et al., 1999), syntactic (Kaan and Swaab, 2002) and semantic levels (Rodd et 

582 al., 2005; Wagner et al., 2001), as well as in verbal working memory (Badre and Wagner, 2007; Nixon 

583 et al., 2004; Rogalsky and Hickok, 2010). Thus, an alternative explanation for elevated LIFG activation 

584 is that it reflects the unification of linguistic and contextual knowledge to infer the meaning of a 

585 degraded speech signal, potentially drawing on working memory resources (Hagoort, 2005). 

586 Interestingly, recent studies exploiting the greater temporal resolution of 

587 EEG/magnetoencephalography have shown that contextual information being processed in the LIFG 

588 is able to modulate activity in lower-level sensory regions of the STG in a top-down manner (Gow 

589 and Olson, 2016; Sohoglu et al., 2012).

590 Our fNIRS data confirmed that, during attentive listening to noise-vocoded sentences, the 

591 haemodynamic response peaks significantly later in the LIFG than in superior temporal cortex. This 
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592 corroborates a similar finding from an fMRI study of sentence comprehension in noise by Davis et al. 

593 (2011). While caution is needed in interpreting interregional haemodynamic timing differences 

594 (Handwerker et al., 2012; Lindquist et al., 2009), the combined results of both studies suggest that 

595 neuronal activation may peak later in the LIFG than in superior temporal cortex. It is noteworthy that 

596 in the present study the mean interregional latency difference of 1.5 s was comparable to the mean 

597 sentence duration (1.64 s). To the extent that the haemodynamic delay is a true reflection of 

598 differences in the timing of underlying neuronal activity, this suggests that neurocognitive 

599 computations being performed in the LIFG may persist beyond the period of auditory stimulation 

600 and into the response period. This hypothesis, if true, would seem compatible with the engagement 

601 of verbal working memory in the LIFG, and also with the subjective experience that the meaning of a 

602 degraded sentence often only becomes clear after a short period of active reflection.

603 An alternative possibility is that inferior frontal activation reflects not so much the process of 

604 recovering meaning from degraded speech, but rather a general decision-making process associated 

605 with response selection. Binder et al. (2004) conducted an fMRI study, in which listeners were tasked 

606 with discriminating between two synthesized speech syllables at varying signal-to-noise ratios, and 

607 found evidence for a role of the anterior insular and adjacent frontal operculum in decision making. 

608 The level of brain activation in these regions was positively correlated with response time. However, 

609 there are several reasons to suspect that the inferior frontal activation that we measured in the 

610 present study may not be directly comparable. Firstly, the areas highlighted by Binder et al. (2004) 

611 lie somewhat medially within the brain, and given the limited depth penetration of fNIRS (Strangman 

612 et al., 2013) it is unlikely that our measurements had much sensitivity to these regions. Secondly, 

613 Binder et al. (2004) observed anterior insular-opercular activation bilaterally, whereas inferior 

614 frontal activation in the present study was largely lateralized to the dominant hemisphere (cf. Fig. 7). 

615 Thirdly, the elevated activation that we observed in the LIFG seems to have been speech-specific. 

616 The LIFG was not significantly activated (compared to the silent baseline condition) during attentive 

617 listening to the non-speech distractor, despite the fact that this too presented a challenging listening 
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618 task. Thus, it seems likely that our measurements were primarily sensitive to language-related 

619 processing taking place more laterally in inferior frontal cortex. Binder et al. (2004) also observed 

620 activation in these more lateral areas, in addition to the insular-opercular activation that was 

621 modulated by decision time. 

622 The fact that the elevated LIFG activation that we observed in the present study was speech-

623 specific suggests that it may be a neural marker for effortful listening to degraded speech, but not 

624 for effortful listening in general. Conceivably, this could reflect a distinction between situations in 

625 which listening is effortful because of the need to rely heavily on knowledge of language 

626 (presumably as in our speech-based task) and other situations in which listening is effortful because 

627 of high attentional demands (distractor-based task), with the two cases drawing on separate neural 

628 mechanisms (Peelle and Wingfield, 2016).

629 Aside from inferior frontal cortex, we observed significant bilateral activation of the superior 

630 temporal cortices in all conditions, and of pre-motor cortex more selectively. In left STG, there was a 

631 trend towards stronger activation when listeners attended to speech compared to when they 

632 attended to the distractor, which might suggest that our fNIRS measurements in this area were 

633 preferentially sensitive to cortical sub-regions involved in speech processing. However, this effect of 

634 attention did not reach statistical significance, and so this should be considered a speculative 

635 proposition requiring further investigation. We did not find any evidence that STG activation in 

636 either hemisphere was stronger for more intelligible speech, as might have been expected based on 

637 prior fMRI research (Binder et al., 2004; Davis and Johnsrude, 2003; Wild et al., 2012). However, it is 

638 possible that our inclusion of only two levels of speech clarity, differing relatively modestly in 

639 intelligibility (85% versus ~100% correct), was insufficient to reveal such an effect. As regards pre-

640 motor cortex, we observed statistically significant activation of this region (compared to silence) only 

641 in the case that listeners attended to degraded speech. This would seem compatible with the 

642 suggestion that pre-motor cortex is part of the network selectively recruited to support effortful 

643 comprehension of degraded speech (Hervais-Adelman et al., 2012). However, a post-hoc analysis of 

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652



29

644 response amplitude suggested that pre-motor cortex was in fact fairly similarly activated when 

645 listeners attended to either clear or degraded speech. As such, further work is needed to clarify the 

646 role of pre-motor cortex in the present task. We note that since pre-motor cortex was not an a priori 

647 ROI in the present study, the results in this region should be interpreted with caution and cannot be 

648 considered definitive. 

649 The optode array used in the present study did not provide coverage of all cortical regions 

650 thought to be implicated in effortful listening. Like the LIFG, some other relevant regions are located 

651 superficially (i.e. close to the scalp) and are likely to be imageable using fNIRS. An example of such a 

652 region would be the angular gyrus of the left inferior parietal cortex, which has been shown to play a 

653 role in facilitating comprehension through the use of linguistic/semantic context (Golestani et al., 

654 2013; Hartwigsen et al., 2015; Obleser and Kotz, 2010; Obleser et al., 2007) and which forms part of 

655 a functional fronto–temporal–parietal network supporting speech comprehension (Abrams et al., 

656 2013). Other relevant regions, however, are probably located too deeply within the brain to be 

657 successfully imaged using fNIRS given the limited penetration depth of infrared light in biological 

658 tissue (Strangman et al., 2013). An example would be the previously mentioned medial aspects of 

659 the non-sensory-specific cingulo-opercular system, elevated activation in which is thought to reflect 

660 the need for and decision to allocate effort during a challenging task (Eckert et al., 2016). 

661 A limitation of the paradigm used in the present study is that the measured haemodynamic 

662 response may have contained a contribution from neuronal activity associated with the planning or 

663 execution of the button press. We aimed to control for this by: (i) requiring a button press on every 

664 trial (including silent trials); and (ii) using an informed basis set in the analysis to allow us to assess 

665 response amplitude independently of variations in response latency/dispersion (as might have 

666 resulted from variations in the timing of the button press). However, we cannot say with certainty 

667 that there was no residual influence of activity related to the button press. Unfortunately, since we 

668 did not record response time, we are unable to assess whether there was any systematic difference 

669 in response time between conditions. The haemodynamic response estimates plotted in Fig. 6 may 
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670 have been particularly susceptible to a possible influence of neuronal activity related to the button 

671 press, since those estimates do not reflect any explicit subtraction of the response on silent trials. 

672 Reassuringly the interregional timing difference that we observed between temporal and frontal 

673 cortex is similar to that previously observed by Davis et al. (2011): Davis et al. designed their fMRI 

674 paradigm such that the measured haemodynamic response would be minimally sensitive to their 

675 behavioural task, indicating that a later response in the LIFG than in superior temporal cortex during 

676 sentence recognition is unrelated to button-press behaviour.

677 Following Wild et al. (2012), we conducted a surprise post-test of participants’ ability to 

678 correctly recognise sentences they had heard during the imaging session. Our results differed from 

679 those obtained by Wild et al., who reported that recognition of sentences originally presented as 

680 clear speech was good regardless of whether they were attended or not, whereas recognition of 

681 sentences originally presented as degraded speech depended on them having been attended. In 

682 contrast, here we found that attention to speech was critical for accurate recognition of familiar 

683 sentences, regardless of whether they were originally presented as clear or degraded speech. Thus, 

684 while participants in Wild et al.’s study appear to have processed clear speech even when it was not 

685 attended, our participants seem not to have done so. The reason for this discrepancy between 

686 studies is unclear. It may be related to the more simplistic sentence materials used here (as 

687 discussed in Sec. 3.1.3), although other procedural differences between studies may also have 

688 played a role (e.g. the present study included only a subset of the experimental conditions tested by 

689 Wild et al. and did not include a simultaneous visual distractor stimulus). Performance on the 

690 auditory distractor task in the present study (mean d’ = 2.74, SD = 1.50) was comparable to the 

691 auditory (mean d’ = 2.15, SD = 1.30) and visual (mean d’ = 3.17, SD = 0.55) distractor tasks in Wild et 

692 al.’s study, suggesting that distractor task difficulty is unlikely to have been an influential factor. 

693 Regardless of the reason(s) for the discrepancy in sentence recognition performance, it is 

694 noteworthy that both studies found a highly concordant effect of attention on the neural processing 

695 of degraded speech in inferior frontal cortex.
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696 To conclude, the present study (i) confirms that the processing of degraded speech in the LIFG 

697 depends critically on attention and (ii) demonstrates that fNIRS is a capable neuroimaging modality 

698 for investigating the amplitude and timing of the haemodynamic response to neuronal activation in 

699 this important region. In light of recent developments in fNIRS technology that enable wireless brain 

700 imaging of freely moving participants in natural environments (Pinti et al., 2015; Piper et al., 2014; 

701 von Luhmann et al., 2015), we propose that fNIRS holds promise as a flexible tool to study the neural 

702 signature of effortful listening.
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710 Figure captions

711 Fig. 1. Optode positioning and region-of-interest definition. (a) Photograph of the optode array 

712 holder placed on a volunteer’s head before insertion of the optodes. Red/blue colour coding 

713 on the holder indicates the locations of emitters and detectors, respectively. (b) Variability in 

714 digitized optode positions across eight volunteers after registration to an atlas brain. Optode 

715 positions for each volunteer are represented by different coloured dots. Variability was 

716 similar across the forehead and in the right hemisphere (not shown). (c) Aggregate 

717 sensitivity profile for the left inferior frontal gyrus (LIFG) region of interest (fNIRS channels 

718 30, 40 and 51). The colour scale depicts relative sensitivity logarithmically from 0.001 to 1.

719 Fig. 2. Speech intelligibility scores. Error bars show ±1 SEM corrected for repeated measures. 

720 Statistical results are shown for post-hoc pairwise comparisons between consecutive pairs of 

721 lists (*** p < .001 corrected; n.s. not significant). Note that degraded-speech lists 1 and 2 

722 were tested sequentially, while degraded-speech list 3 and the clear-speech list were tested 

723 in interleaved fashion.

724 Fig. 3. Mean sensitivity scores (d’) for the main task (left) and sentence recognition post-test 

725 (right). Error bars show ±1 SEM corrected for repeated measures. An asterisk above a data 

726 point indicates that mean sensitivity was significantly greater than chance level (one-tailed t-

727 tests against zero, p < .05 after Bonferroni correction for N = 4 comparisons).

728 Fig. 4. Group-level activation maps for each experimental condition contrasted against the silent 

729 baseline. Significantly activated channels are highlighted (q < .05, FDR corrected). L and R 

730 denote left and right hemisphere, respectively. Note that the maps are interpolated from 

731 single-channel results and the overlay on the cortical surface is for illustrative purposes only. 
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732 Fig. 5. Mean contrast values (i.e. estimated response amplitude relative to silence; arbitrary 

733 units) in (a) the primary LIFG ROI and (b–d) secondary (post-hoc) ROIs. Inset figures 

734 illustrate the fNIRS sensitivity profile for each region. Error bars show ±1 SEM corrected for 

735 repeated measures. Vertical lines with asterisks indicate significant simple effects of 

736 attention (p < .05, Bonferroni-corrected for comparisons at N = 2 levels of speech clarity).   

737 Fig. 6. Haemodynamic response estimates for the condition in which listeners attended to 

738 degraded speech. The mean response is compared between the LIFG (Ch#30,40,51; dashed 

739 line) and bilateral STG (Ch#32,42; solid line). Individual responses were normalized to a peak 

740 value of 1 before averaging. Shading indicates ±1 SEM across participants. The inset figure 

741 plots mean time-to-peak for each region, with error bars showing ±1 SEM corrected for 

742 repeated measures (* p < .01, paired-samples t-test).

743 Fig. 7. Handedness and lateralization of cortical activation. Mean contrast values (arbitrary units) 

744 for the contrast between attentive listening to degraded speech and silence, broken down 

745 by handedness and hemisphere. Data are shown for superior temporal (upper panel; left-

746 hemisphere Ch#42; right-hemisphere Ch#32) and inferior frontal (lower panel; left-

747 hemisphere Ch#30,40,51; right-hemisphere Ch#23,34,44) regions. Error bars show ±1 SEM.   
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Highlights

 The viability of event-related auditory fNIRS imaging is demonstrated
 Results corroborate important findings reported in the fMRI literature
 Processing of degraded speech in inferior frontal cortex depends on attention
 Haemodynamic responses peak later in frontal versus temporal speech-sensitive areas
 fNIRS holds promise for investigating the neural signature of effortful listening


