1	Recent developments in D ₂ O tracer approaches to measure rates of substrate	 Formatted: Subscript
2	turnover: implications for proteins, lipids and nucleic acid research	
3		
4		
5	Brook MS ¹ , Wilkinson DJ ¹ , Atherton PJ ¹ , Smith K ¹ .	
6		
7	¹ MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and	
8	Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby,	
9	UK.	
10		
11	Abbreviated Title: D ₂ O in the measurement of substrate turnover	 Formatted: Subscript
12		
13	Word Count: 2707	
14		
15	Correspondence:	
16	Professor Ken Smith	
17	MRC-ARUK Centre for Musculoskeletal Ageing Research	
18	Clinical, Metabolic and Molecular Physiology	
19	Royal Derby Hospital Centre	
20	University of Nottingham	
21	Uttoxeter Road	
22	Derby, UK	
23	DE22 3DT	
24		
25	Email: ken.smith@nottingham.ac.uk	
26 27 28 29		

30 **Abstract** 31 **Purpose of Review** 32 Methods that inform on dynamic metabolism that can be applied to clinical 33 populations to understand disease progression and responses to therapeutic interventions are of great importance. This review perspective will highlight recent 34 35 advances, development and applications of the multivalent stable isotope tracer D2O Formatted: Subscript 36 to the study of substrate metabolism with particular reference to protein, lipids and 37 nucleic acids, and how these methods can be readily applied within clinical and 38 pharmaceutical research. 39 40 **Recent Findings** 41 Advances in the application of D₂O techniques now permit the simultaneous dynamic Formatted: Subscript 42 measurement of a range of substrates (i.e protein, lipid and nucleic acids, along with 43 the potential for 'OMIC's methodologies) with minimal invasiveness- further creating opportunities for long-term 'free living' measures that can be used in clinical settings. 44 45 These techniques have recently been applied to ageing populations and further in 46 cancer patients revealing altered muscle protein metabolism. Additionally the efficacy 47 of numerous drugs in improving lipoprotein profiles and controlling cellular 48 proliferation in leukemia have been revealed. 49 50 Summary 51 D2O provides opportunities to create a more holistic picture of in vivo metabolic Formatted: Subscript 52 phenotypes, providing a unique platform for development in clinical applications and 53 the emerging field of personalized medicine. 54 55 Key words (3-5) deuterium oxide, D₂O, stable isotope, skeletal muscle, metabolism Formatted: Subscript 56 Abstract: 188

57	Introduction	
58	The ability to determine the metabolic regulation of diseases, ageing and trauma at	
59	the whole body or organ level has been a significant driver in scientific research. One	
60	of the major challenges to achieving this is how to capture the dynamic nature of	
61	metabolic processes in vivo, in humans. Stable isotopes are the research tool	
62	making this possible since they permit quantification of protein, lipid and nucleic acid	
63	metabolism, which has traditionally been performed through the use of substrate-	
64	specific tracers (e.g. ¹³ C/ ¹⁵ N amino acid tracers, ¹³ C palmitate, and ² H glucose) [1].	Formatted: Superscript
65	Recently, experimental use of the D ₂ O tracer, which can be considered "non-	Formatted: Superscript
		Formatted: Superscript
66	substrate specific" (i.e. incorporating into all major macromolecules), has undergone	Formatted: Subscript
67	a resurgence (Figure 1) [2]. Here, we consider how D2O is revolutionising the study	Formatted: Subscript
68	of in vivo dynamic metabolism; we describe the basis of D2O implementation,	Formatted: Subscript
69	focusing on its use in humans and recent technical advances that extend the utility of	
70	this tracer to study human substrate metabolism in vivo, in particular its rapidly	
71	progressing translation to a clinical setting.	
72		
73	Application of deuterium oxide as a stable isotope tracer	
73 74	Application of deuterium oxide as a stable isotope tracer D_2O was one of the first isotope tracers to be used in metabolic research soon after	Formatted: Subscript
		Formatted: Subscript
74	D ₂ O was one of the first isotope tracers to be used in metabolic research soon after	Formatted: Subscript Formatted: Subscript
74 75	D_2O was one of the first isotope tracers to be used in metabolic research soon after it's discovery by Harold Urey in 1932, the seminal works of Schoenheimer,	
74 75 76	D_2O was one of the first isotope tracers to be used in metabolic research soon after it's discovery by Harold Urey in 1932, the seminal works of Schoenheimer, Rittenberg and Ussing demonstrated incorporation of deuterium from D_2O into many	Formatted: Subscript
74 75 76 77	D_2O was one of the first isotope tracers to be used in metabolic research soon after it's discovery by Harold Urey in 1932, the seminal works of Schoenheimer, Rittenberg and Ussing demonstrated incorporation of deuterium from D_2O into many metabolic pools [1]. Once introduced into cellular pools D_2O equilibrates throughout	Formatted: Subscript
74 75 76 77 78	D_2O was one of the first isotope tracers to be used in metabolic research soon after it's discovery by Harold Urey in 1932, the seminal works of Schoenheimer, Rittenberg and Ussing demonstrated incorporation of deuterium from D_2O into many metabolic pools [1]. Once introduced into cellular pools D_2O equilibrates throughout all body water and is incorporated into metabolites via condensation/hydrolysis	Formatted: Subscript
74 75 76 77 78 79	D_2O was one of the first isotope tracers to be used in metabolic research soon after it's discovery by Harold Urey in 1932, the seminal works of Schoenheimer, Rittenberg and Ussing demonstrated incorporation of deuterium from D_2O into many metabolic pools [1]. Once introduced into cellular pools D_2O equilibrates throughout all body water and is incorporated into metabolites via condensation/hydrolysis reactions involving water; crucially, this occurs in a constant and predictable manner	Formatted: Subscript Formatted: Subscript

Formatted: Subscript

protein, glucose into glycogen, fatty acids into triglycerides and ribose moieties into

nucleic acids (RNA/DNA) (Table 1) [2]. $D_{\underline{\rho}}O$ has a slow elimination rate from human

83

84

body water (t½ 9-11 days) and so steady or pseudo-steady state enrichments can be easily maintained by regular daily or weekly top-ups, providing the unique potential for measurements of metabolism to be performed over hours, days, weeks or even months [3–6]. Further, by collection of regular saliva (or urine) samples, body water enrichment can be easily monitored throughout, tracking with precursor labeling, enabling subjects to undertake their usual habitual activity and dietary regimes. These unique properties of D_2O has made the popularity of its application, particularly to human research, increase exponentially over recent years. A major advantage of using D_2O over substrate-specific tracers is the ease of administration, being orally consumed negating the need for sterile I.V infusions and a controlled laboratory environment, such that subjects can be studied 'free-living' over long periods [3,6]. This provides a unique opportunity to metabolically phenotype a greater range of populations particularly in a clinical setting where access has been restricted or contraindicated with I.V tracers (i.e. in care homes, adolescents etc.).

00

Formatted: Subscript

Formatted: Subscript

Recent progress in using D2O to study protein synthesis in humans

Although the application of D_2O to the measurement of protein turnover dates back to the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in health and disease, it is unsurprising the application of these techniques has initially been focused on the measurement of muscle protein synthesis (MPS). Moreover, the accessibility of skeletal muscle for biopsy coupled to the slow turnover of the body water pool makes D_2O ideally suited for application to the study of this slowly turning over metabolic pool. One of the first attempts to measure the rate of MPS in humans maintained body water around 2% over a 6-week period (by ingesting 150 ml D_2O (70 atom percent (AP)) per day during week 1 then 100 ml D_2O daily thereafter). In

comparing a young sedentary and an older group undertaking an aerobic training

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

113 program, the investigators showed greater MPS in the old group, demonstrating the 114 utility of D2O for investigating the mechanisms of long-term "anabolic interventions" 115 [2]. By further refining these principles with highly sensitive gas chromatography 116 pyrolysis isotope ratio mass spectrometry (GC-pyr,-IRMS), substantial improvements 117 in the analytical Jimit of detection (LOD) and resolution were made, leading to the possibility of reduced D2O dosing i.e. a single bolus 150ml 70AP, permitting MPS 118 119 measurement over 8 days [6]. This is especially important when one considers the 120 potential issue of nausea associated with consumption of increased volumes of D2O. 121 Using these refined techniques we proved the concept that exercise-induced 122 increases in myofibrillar, collagen and sarcoplasmic fractional synthetic rates could 123 be quantified over as little as 2 days, with measures of MPS over 3 hours (in 124 response to amino acid feeding) also possible, simply by increasing the D2O dose 125 [7]. Importantly, hourly MPS rates were identical to those we and others had shown 126 in prior acute studies using stable-isotopically labeled AA and in direct comparison 127 with substrate-specific AA tracers, D2O yielded quantitatively similar increases in 128 MPS with feeding [7]. 129 130 Following these initial measures of MPS with D2O, a series of studies have

demonstrated its wide applicability for the study of both short-term (4-7 days) as well as longer-term (4-8 wks) interventions [3–6]. Predominantly, these so far have been used to demonstrate what has been coined "integrated" responses of MPS to a range of anabolic stimuli including; resistance exercise, high intensity interval training [8], aerobic exercise and long-term (4-wks) sprint interval training [9]. Further, we have demonstrated that there is significant hypertrophy and structural remodeling in the early stages of resistance exercise (~3-wks) supported by integrated increases in MPS [10,11]. Interestingly as training continued (up to 6-wks), increased MPS was attenuated despite progressive intensity [10], reflecting an adaptive waning to the anabolic stimulus. These studies have provided an integrated understanding of the

131

132

133

134

135

136

137

138

139140

Formatted: Subscript

Deleted: '
Deleted: '
Deleted: I
Deleted: R
Deleted: M
Deleted: S
Deleted: o
Deleted: sensitivity
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

149	role of protein turnover in regulating established physiological adaptation to exercise	
150	[2].	
151		
152	D ₂ O has also been recently used in a more clinical context. Advanced ageing is	Formatted: Subscript
153	associated with a continual and progressive decline in skeletal muscle mass, quality	
154	and function [12]. While the etiology of this in humans remains poorly defined, it is	
155	clear that older individuals display blunted acute responses to anabolic stimuli such	
156	as feeding (particular amino acids and RE - so called "anabolic resistance" [12,13].	
157	Using D ₂ O to compare long-term MPS between young and older individuals, we were	Formatted: Subscript
158	the first to demonstrate that blunted acute responses of MPS to exercise also	
159	manifest as long-term deficits in MPS [10]. This was not necessarily predictable	
160	given the lack of linkage between acute MPS responses to exercise and resulting	
161	muscle hypertrophy. Moreover, recently, it was shown that studying nutrition as well	
162	as exercise interventions was also feasible; in this study, the authors showed that	
163	adding supplemental leucine to meals could increase integrated MPS in older	
164	individuals [4]. These studies demonstrate that D ₂ O applications have the potential to	Formatted: Subscript
165	inform on integrated and temporal responses to nutrition and exercise interventions	
166	in a "mechanistic fashion". It is also of great interest that D2O has shown utility in a	Formatted: Subscript
167	clinical setting in being applied to measure MPS in patients with upper GI cancer.	
168	Using a single bolus approach over 4 days immediately prior to surgery, patients	
169	losing weight had higher rates of MPS (0.073 %/h) when compared to weight stable	
170	and controls (0.058 %/h), possibly indicating greater protein turnover rates, although	
171	to lose muscle mass over time, protein breakdown would have to exceed MPS [14].	
172	Nonetheless, this study does show the feasibility of applying $D_{\underline{z}}O$ in clinical	Formatted: Subscript
173	populations; future work will expand the use of this tracer and seek both mechanistic	
174	insight of disease/ageing processes in addition to nutritional, exercise or	
175	pharmacological interventions. Moreover, with the very recent introduction of	
176	dynamic proteomic techniques alongside the use of D_2O , it is now possible to	Formatted: Subscript
I		

177 measure the turnover of a large number of individual proteins [9] rather than studying 178 bulk myofibrillar or collagen protein fractions, as outlined by the recent "Virtual 179 Biopsy" technique [15]. These developments have opened up a whole new stream of 180 measures to aid in the mechanistic understanding of human ageing and disease. 181 182 Recent progress in using D₂O to study fat and lipid metabolism Formatted: Subscript 183 184 Lipid metabolism has been the mainstay application of D₂O for ~80 years. Great Formatted: Subscript 185 technical and methodological refinement over the past 70 years punctuated by the 186 seminal works of Jungas. Previs and Brunengraber and Hellerstein and Parks have 187 engendered an array of D2O based lipid assays [16]. For example, by measuring the Formatted: Subscript 188 amount of deuterium incorporated from water into newly synthesized fatty acids, 189 glycerol-3-phosphate and/or cholesterol combined with mathematical modeling 190 techniques, D2O has the unique potential for measuring rates of de novo lipogenesis Formatted: Subscript 191 (DNL), triglyceride synthesis (and turnover) and sterol biosynthesis simultaneously. 192 The details, development and technical considerations for these techniques is 193 beyond the scope of this review; the reader is directed to the following for more detail 194 [1,2,16]. 195 196 Much of the progress over the past 5-years has been in how these novel D₂O based Formatted: Subscript 197 techniques can be applied (rather than further development of the isotopic theory of 198 the models per se), particularly in terms of health, disease and the rapidly evolving 199 discipline of personalized medicine. For example these techniques have helped to 200 highlight the mechanisms underlying impaired adipose lipid metabolism in insulin 201 resistant humans (e.g. highlighting decreased adipose DNL and TG synthesis: [17]), 202 the mechanisms driving the increase in adiposity associated with chronic insulin 203 treatment (through an increase in triglyceride synthesis or inhibition of lipolysis and 204 the alterations to cholesterol flux due to dyslipidemia and coronary heart disease

[18]. However, more recently there has been marked progress in their implementation

205

alongside high throughput OMIC technologies, in order to gain a more holistic insight into the metabolic regulation of health and disease [16]. This has been in a large part driven by the rapid evolution of new mass spectrometry technologies, in particular the introduction of high resolution mass spectrometers (HRMS) such as Fourier Transform-MS and Orbitrap MS, which can provide isotopic resolution as high as 500,000 for some instrumentation. This increase in resolution when combined with liquid chromatography (i.e. LC-HRMS) has provided capabilities for measuring low levels of 2H enrichment (comparable to that of traditional "gold standard" GC-IRMS techniques) of free fatty acids in a high throughput manner, alongside the measurement of associated whole lipid/lipoprotein species (in the form of lipidomics/proteomics). This has provided a unique analytical platform capable of determining how changes in lipid flux interact to influence the whole lipidome/lipoproteome, hence providing exquisite insight the regulation and control of lipid metabolism and its interaction with other aspects of metabolism under health and disease in vivo using D2O. For example, incorporating traditional lipidomics with D₂O permitted the measurement of dynamic changes in lipid profiles associated with dietary manipulation in animal models. Moreover the simultaneous incorporation of D₂O into high density lipoproteins, alongside cholesterol allows the measurement of the kinetics of HDL in vivo, an important technique which could greatly benefit the development of HDL targeted therapies in conditions such as dyslipidemia and atherosclerosis. Indeed, this has been the target in recent years with a number of recent studies utilizing these D2O techniques to provide a greater insight into the mechanisms and efficiency of a number of LDL-cholesterol lowering therapies in particular. For example, D2O techniques have help to identify that the cholesterol ester transfer protein (CETP) inhibitor anacetrapib was effective in promoting preβ HDL formation potentially helping to lower LDL-cholesterol levels, acting as a beneficial treatment for coronary heart disease. In addition, the administration of the cholesterol lowering drug ezetimibe was shown to increase the flux of plasma-

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

234 derived cholesterol into fecal neutral sterols and hence increased excretion of 235 cholesterol from the body, thereby helping to reduce LDL-cholesterol formation and 236 hence atherosclerosis. These studies highlight the added insight the inclusion of D2O Formatted: Subscript 237 to lipidomics can provide, and how these techniques will continue to benefit medical 238 and pharmaceutical insight in future when combined alongside standard biochemical 239 techniques and novel high throughput OMICs platforms; this is clearly where the 240 future lies for this niche technique. 241 242 Recent progress in the use of D2O in the study of nucleotide turnover Formatted: Subscript 243 244 There are many scenarios whereby the ability to quantify DNA and RNA turnover is 245 desirable (e.g. tumourogenesis, skeletal muscle satellite cells, ribosomal biogenesis 246 etc.). Yet to date, advances in the dynamic measurement of nucleotide metabolism 247 have considerably lagged behind that of proteins and lipids due to the lack of suitable 248 precursor compounds. Bromodeoxyuridine and tritiated (radio-active) thymidine have 249 been utilized, although they are incorporated via salvage pathways that are variable 250 and affected by extracellular nucleoside concentrations. Moreover, these analogues 251 are toxic and cannot be used in humans. The potential use of D2O overcomes many Formatted: Subscript 252 of these restrictions by labeling nucleosides via de novo synthesis - a pathway (figure 253 1) that is up regulated during cellular division, is unaffected by extracellular 254 nucleoside concentrations and rarely relies on reutilization. As such methods that are 255 safe for human use and measure cellular division are available [19]. 256 257 Initial measures of cellular proliferation using D2O in humans were that of fast Formatted: Subscript 258 turnover blood cells such as PBMC's. Outside of this, these techniques have been 259 used over extended periods (4-6 weeks) to quantify DNA synthesis in skeletal 260 muscle in response to nutritional and exercise interventions [2,20]. This is an area of 261 specific current interest since controversy still exists to the role of skeletal muscle 262

stem cells (satellite cells) e.g. in sarcopenia and exercise adaptation [21,22]. With

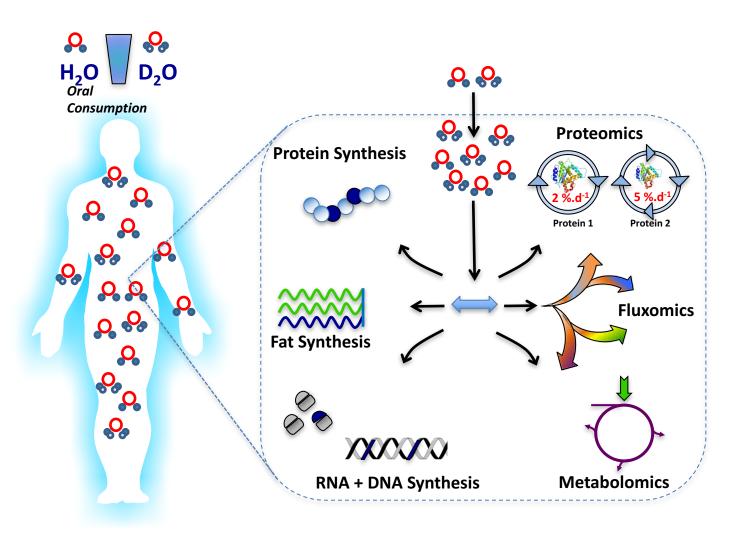
263 many disorders originating form altered cellular proliferation, these techniques have 264 also been used to investigate i) B and T cell kinetics in patients with leukemia or HIV 265 ii) breast epithelial cells in both normal and tumor tissues and, iii) in cellular areas 266 defined as benign or cancerous from prostate tissue - all showing altered rates of 267 proliferation. These methods have again therefore shown great potential for application in a clinical setting. Most recently, D2O was used to measure B cell 268 Formatted: Subscript 269 proliferation in patients with chronic lymphocytic leukemia (CLL). Deuterium was first 270 incorporated into CLL cells before treatment with the Bruton's tyrosine kinase 271 inhibitor ibrutinib. By monitoring CLL DNA enrichment over the following weeks, it 272 was demonstrated that ibrutinib dramatically decreases CLL cell birth via the lack of 273 deuterium label dilution and hence proliferation of new cells [23]. 274 275 In addition to circulating cells, DNA synthesis rates have recently been made from 276 tissue biopsies of fat, in attempts to link fat metabolism with obesity and insulin 277 resistance. Storage of excess fat involves adipocyte hypertrophy along with 278 preadiopacyte and adipocyte proliferation, with fat distribution and storage related to 279 obesity related diseases. To investigate this, pure adipocytes and preadipocytes 280 were isolated after D2O labeling, identifying abdominal and femoral fat depots have Formatted: Subscript 281 different proliferation kinetics [24]. Furthermore the rate of adipocyte replacement 282 rates positively correlated with BMI and visceral adiposity but negatively correlated 283 with insulin sensitivity – all signs of impaired metabolic health [25]. 284 285 Measures of RNA synthesis are also possible with D2O and have the potential to Formatted: Subscript 286 inform on dynamic ribosomal biogenesis- a primary determinant of protein synthesis 287 rates during growth, cellular proliferation and homeostasis. Deoxynucleotides are 288 reduced from nucleotides and as such opportunities arise for the measurement of 289 RNA synthesis using D2O; generally abiding by the same principles as above. Formatted: Subscript 290 Measurements of RNA synthesis in rodent liver have recently been made using D₂O Formatted: Subscript 291 [26]; however currently there is a lack of routine methods in the measurement of

292 human RNA synthesis, particularly that in slow turnover tissues i.e. muscle. The 293 development of such methods will have considerable impact in the clinical field, 294 especially due to the loss of cell cycle control in many conditions such as cancer [27]. 295 296 297 298 Conclusion 299 300 D₂O applications hold considerable promise to generate unheralded insight into Formatted: Subscript 301 dynamic metabolism in 'free living' and clinical environments. With development of 302 high-resolution mass spectrometry enabling "D2O-MICS" (protein/lipids/metabolites) Formatted: Subscript 303 a single bolus of D2O coupled to a tissue biopsy can reveal a more holistic picture of Formatted: Subscript 304 in vivo metabolic phenotypes and mechanisms of interventions than has ever been 305 possible in a clinical (i.e. studies in humans) context. Crucially, D2O-MICS can also Formatted: Subscript 306 give rise to 'translationally relevant' predictive, diagnostic and therapeutic biomarkers 307 in humans, reflecting disease progression and responses to therapeutic 308 interventions. 309 310 **Key Points** 311 312 Having methods that reveal the dynamic turnover of metabolic substrates are 313 of great importance in unraveling diseases processes and in the future of 314 personalized medicine. 315 316 D2O has shown effectiveness at providing longer-term, integrated, Formatted: Subscript 317 multisubstrate measures (proteins, lipids, nucleic acids) across a range of 318 tissues and populations. 319 320 The ease of application and opportunities created to measure a range of 321 substrates combined with the development of OMIC's methodologies, D2O Formatted: Subscript

350	Figure Legend			
351	Figure 1			
3 52	$D_2O - A$ multivalent tracer. D_2O can be simply administered by oral consumption	E	ormatted: Subscript	
		******	ormatted: Subscript	
353	and becomes rapidly equilibrated within body water. Subsequently, deuterium			
354	becomes predictably incorporated into many precursors in which their metabolic fate			
355	can be followed.			
356				
357	Table Legend			
358	Table 1 -D ₂ O loading regimes. Table 1 shows the dose of D ₂ O and the analytical	F	ormatted: Subscript	
 359	machinery required to ensure detection of desired substrates. The doses are taken	F	ormatted: Subscript	
360	from published examples or experimental calculations and can inform on the			
361	necessary $D_{\underline{z}}O$ administration depending on the mass spectrometry instrumentation	F	ormatted: Subscript	
362	available. (*) Turnover rates of individual proteins and lipids vary and so earlier			
363	sampling is preferable to capture maximum number of analytes. AP, atom percent.	F	ormatted: Font:Bold	
364	LOD, limit of detection. GC-MS, gas chromatography mass spectrometry. GC-pyr-	F	ormatted: Font:Bold	
			ormatted: Font:Bold	1
365	IRMS, gas chromatography pyrolysis isotope ratio mass spectrometry. LC-HRMS,	_		\longrightarrow
	IRMS, gas chromatography pyrolysis isotope ratio mass spectrometry. LC-HRMS,	F	ormatted: Font:Bold ormatted: Font:Bold	
366	IRMS, gas chromatography pyrolysis isotope ratio mass spectrometry. LC-HRMS, liquid chromatography high resolution mass spectrometry.	F	ormatted: Font:Bold	
		F	ormatted: Font:Bold ormatted: Font:Bold	
366		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369 370		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369 370 371		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369 370 371 372		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369 370 371 372 373		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369 370 371 372 373 374		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369 370 371 372 373 374 375		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369 370 371 372 373 374 375 376		F	ormatted: Font:Bold ormatted: Font:Bold	
366 367 368 369 370 371 372 373 374 375 376		F	ormatted: Font:Bold ormatted: Font:Bold	

379	
380	
381	Acknowledgements
382	The authors would like to acknowledge the Dunhill Medical Trust, The Physiological
383	Society, a Medical Research Council Confidence in Concept award and the MRC-
384	Arthritis Research UK Centre for Musculoskeletal Ageing Research for supporting
385	our work in this area
386	
387	All authors contributed equally to this manuscript
388	
389	Financial support and sponsorship
390	None
391	
392	Conflicts of interest
393	There are no conflicts of interest
394	
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	

407		
407		
408		
409		
410		
İ		
4 11	*Macdonald et al 2015- Used D ₂ O in the measurment of musle protein syn	hesis in Formatted: Subscript
412	patients with upper GI cancer, demonstrating altered muscle protein synthe	
413	and the application of the D ₂ O approach within a clinical setting.	Formatted: Subscript
414	* Brook et al 2016 Application of D ₂ O techniques to measure long term mu	
415 416	protein synthesis in young and old individuals, demonstrating impaired and response to resistance exercise with age.	DOIIC
417	* Wilkinson et al 2015. First demonstration of D ₂ O in the acute measureme	nt of Formatted: Subscript
418	human muscle protein synthesis (≤3h), providing a less invasive and cost €	ffective
419	method. Additionally demonstrated synthesis rates determined by D2O to b	e Formatted: Subscript
420	equivalent to those using traditional amino acid tracer approaches.	
421	* Burger et al 2017. Provided the first in vivo demonstration in the effective	e of drug
422	treatment ibrutinib on cellular proliferation in CLL patients by monitoring de	
423	incoporation into DNA	
424		
425	References	
426		
427	Wilkinson DJ: Historical and contemporary stable isotope tracer	
428	approaches to studying mammalian protein metabolism. Mass	Spectrom.
429	Rev. 2016, 47 :987–992.	
400		
430	2. Wilkinson DJ, Brook MS, Smith K, Atherton PJ: Stable isotope trac	
431	exercise physiology: Past, present and future. J. Physiol. 2016,	:1-10.
432	3. Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Phillips BE, Szewcz	vk NJ,
433	Greenhaff PL, Smith K, Atherton PJ: Synchronous deficits in cum	
434	muscle protein synthesis and ribosomal biogenesis underlie ag	
435	anabolic resistance to exercise in humans. J. Physiol. 2016, 00:1	–19.
436	4. Murphy CH, Saddler NI, Devries MC, Mcglory C, Baker SK, Phillips	SM·
430	Leucine supplementation enhances integrative myofibrillar pro	
438	synthesis in free-living older men consuming lower- and higher	
439	diets: a parallel-group crossover study 1. Am. J. Clin. Nutr. 2016	
440	doi:10.3945/ajcn.116.136424.	
441	5. Damas F, Phillips SM, Libardi C a, Vechin FC, Lixandrao ME, Janni	1 PR
442	Costa L a R, Bacurau A V, Snijders T, Parise G, et al.: Resistance f	
443	induced changes in integrated myofibrillar protein synthesis ar	9
444	to hypertrophy only after attenuation of muscle damage. J. Phys.	siol. 2016,
445	doi:10.1017/CBO9781107415324.004.	


2	146 147 148 149 150	6.	Wilkinson DJ, Franchi M V, Brook MS, Narici M V, Williams JP, Mitchell WK, Szewczyk NJ, Greenhaff PL, Atherton PJ, Smith K: A validation of the application of D₂O stable isotope tracer techniques for monitoring day-to-day changes in muscle protein subfraction synthesis in humans. <i>Am. J. Physiol. Endocrinol. Metab.</i> 2014, 306:E571–9.
2	451 452 453 454	7.	Wilkinson DJ, Cegielski J, Phillips BE, Boereboom C, Lund JN, Atherton PJ, Smith K: Internal comparison between deuterium oxide (D_2O) and L-[ring- $^{13}C6$] phenylalanine for acute measurement of muscle protein synthesis in humans. <i>Physiol. Rep.</i> 2015, 3 :e12433.
2	455 456 457 458	8.	Bell KE, Séguin C, Parise G, Baker SK, Phillips SM, E T, Séguin C, Parise G, Baker SK, Phillips SM: Day-to-Day Changes in Muscle Protein Synthesis in Recovery From Resistance, Aerobic, and High-Intensity Interval Exercise in Older Men. <i>J. Gerontol. A. Biol. Sci. Med. Sci.</i> 2015, 70 :1–6.
2	459 460 461 462	9.	Shankaran M, King CL, Angel TE, Holmes WE, Li KW, Colangelo M, Price JC, Turner SM, Bell C, Hamilton KL, et al.: Circulating protein synthesis rates reveal skeletal muscle proteome dynamics . <i>J. Clin. Invest.</i> 2016, 126 :288–302.
2	463 464 465 466 467 468	10.	Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ: Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. <i>FASEB J.</i> 2015, 29 :4485–4496.
2	469 470 471 472 473	11.	Franchi M V., Wilkinson DJ, Quinlan JI, Mitchell WK, Lund JN, Williams JP, Reeves ND, Smith K, Atherton PJ, Narici M V.: Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle. <i>Physiol. Rep.</i> 2015, 3:e12593–e12593.
2	474 475 476	12.	Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, Atherton PJ: Skeletal muscle homeostasis and plasticity in youth and ageing: Impact of nutrition and exercise . <i>Acta Physiol</i> . 2016, 216 :15–41.
2	177	13.	Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ:

- 478 Human Skeletal Muscle Protein Metabolism Responses to Amino Acid
 479 Nutrition. Adv. Nutr. 2016, 7:828S-38S.
- 480 14. MacDonald AJ, Johns N, Stephens N, Greig C, Ross J a., Small AC, Husi H,
 481 Fearon KCH, Preston T: Habitual myofibrillar protein synthesis is
 482 normalin patients with upper Gl cancer cachexia. Clin. Cancer Res. 2015,
 483 21:1734–1740.
- 484 15. Hellerstein M, Evans W: Recent advances for measurement of protein synthesis rates, use of the "Virtual Biopsy" approach, and measurement of muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 2017,
- 487 doi:10.1097/MCO.000000000000370.
- 488 16. Previs SF, McLaren DG, Wang S-P, Stout SJ, Zhou H, Herath K, Shah V, Miller PL, Wilsie L, Castro-Perez J, et al.: **New methodologies for studying**

490 491		lipid synthesis and turnover: Looking backwards to enable moving forwards. <i>Biochim. Biophys. Acta</i> 2013, doi:10.1016/j.bbadis.2013.05.019.
492 493 494 495	17.	Allister C a, Liu L, Lamendola C a, Craig CM, Cushman SW, Hellerstein MK, McLaughlin TL: In vivo 2H_2O administration reveals impaired triglyceride storage in adipose tissue of insulin-resistant humans. <i>J. Lipid Res.</i> 2015, 56 :435–9.
496 497 498 499 500	18.	Johns DG, Chen Y, Wang SP, Castro-Perez J, Previs SF, Roddy TP: Inhibition of cholesteryl ester transfer protein increases cholesteryl ester content of large HDL independently of HDL-to-HDL homotypic transfer: In vitro vs in vivo comparison using anacetrapib and dalcetrapib. <i>Eur. J. Pharmacol.</i> 2015, 762 :256–262.
501 502 503 504	19.	Foletta V, Palmieri M, Kloehn J, Mason S, Previs S, McConville M, Sieber O, Bruce C, Kowalski G: Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry. <i>Metabolites</i> 2016, 6 :34.
505 506 507 508 509	20.	Konopka AR, Laurin JL, Musci R V., Wolff C a., Reid JJ, Biela LM, Zhang Q, Peelor FF, Melby CL, Hamilton KL, et al.: Influence of Nrf2 activators on subcellular skeletal muscle protein and DNA synthesis rates after 6 weeks of milk protein feeding in older adults. <i>GeroScience</i> 2017, doi:10.1007/s11357-017-9968-8.
510 511	21.	Egner IM, Bruusgaard JC, Gundersen K: Satellite cell depletion prevents fiber hypertrophy in skeletal muscle . <i>Development</i> 2016, 143 :2898–2906.
512 513 514 515	22.	McCarthy JJ, Dupont-Versteegden EE, Fry CS, Murach K a, Peterson C a: Methodological issues limit interpretation of negative effects of satellite cell depletion on adult muscle hypertrophy. Development 2017, 144:1363–1365.
516 517 518 519	23.	Burger J a., Li KW, Keating MJ, Sivina M, Amer AM, Garg N, Ferrajoli A, Huang X, Kantarjian H, Wierda WG, et al.: Leukemia cell proliferation and death in chronic lymphocytic leukemia patients on therapy with the BTK inhibitor ibrutinib. <i>JCI Insight</i> 2017, 2 :1–11.
520 521 522	24.	White UA, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E: Differences in in vivo cellular kinetics in abdominal and femoral subcutaneous adipose tissue in women . <i>Diabetes</i> 2016, 65 :1642–1647.
523 524 525	25.	White UA, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E: Association of in vivo adipose tissue cellular kinetics with markers of metabolic health in humans . 2017, doi:10.1210/jc.2016-4000.
526 527 528 529	26.	Mathis AD, Naylor BC, Carson RH, Evans E, Harwell J, Knecht J, Hexem E, Peelor FF, Miller BF, Hamilton KL, et al.: Mechanisms of <i>In Vivo</i> Ribosome Maintenance Change in Response to Nutrient Signals . <i>Mol. Cell. Proteomics</i> 2017, 16 :243–254.
530 531 532	27.	Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S: The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. <i>Semin. Cancer Biol.</i> 2016, 37-38 :36–50.

Application	Dose of D2O (70AP)	Measurement Duration	Minimal Analytical Requirement	LOD		
Acute	400ml	3hrs	GC- <i>pyr</i> - <u>IR</u> MS	0.0005%		
Chronic	150ml + 50ml/wk 150ml + 100-150ml/d	2d – 6wk 4wk– 6wk	GC- <i>pyr</i> - <u>IR</u> MS GC-MS	0.0005% 0.5%		
Individual*	150-400ml + 80-100ml/d	1d-4wk	LC-HRMS	0.0005%		
	Lipid	d turnover				
Acute	150ml + 50ml/wk	2d – 6wk	LC-HRMS	0.0005%		
Chronic	150-400ml + 100-150ml/d	4wk-10wk	GC-MS	0.5%		
Individual*	~300ml	1d- 6wk	LC-HRMS	0.0005%		
	Nucleic acid turnover					
DNA/RNA fast (>5%.d)	150 ml + 50ml/wk 150ml + 100-150ml/d	1d – 6wk 2d – 6wk	GC- <i>pyr</i> -I <u>R</u> MS GC-MS	0.0005% 0.5%		
DNA/RNA Slow (<5%.d)	150 ml + 50ml/wk 150ml + 100-150ml/d	1d – 6wk 4wk – 6wk	GC- <i>pyr</i> -I <u>R</u> MS GC-MS	0.0005% 0.5%		

Deleted: %

