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Abstract

We investigate the dimensional dependence of dynamical fluctuations related to dynamic hetero-

geneity in supercooled liquid systems using kinetically constrained models. The d-dimensional spin-

facilitated East model with embedded probe particles is used as a representative super-Arrhenius

glass forming system. We investigate the existence of an upper critical dimension in this model by

considering decoupling of transport rates through an effective fractional Stokes-Einstein relation,

D ∼ τ−1+ω, with D and τ the diffusion constant of the probe particle and the relaxation time of the

model liquid, respectively, and where ω > 0 encodes the breakdown of the standard Stokes-Einstein

relation. To the extent that decoupling indicates non mean-field behavior, our simulations suggest

that the East model has an upper critical dimension at least above d = 10, and argue that it may

actually be infinite. This result is due to the existence of hierarchical dynamics in the East model

in any finite dimension. We discuss the relevance of these results for studies of decoupling in high

dimensional atomistic models.
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I. INTRODUCTION

The East model and its higher dimensional generalizations [1–4] describe the cooperative

relaxation dynamics of glass formers through a simple facilitation mechanism. This simple

model captures fundamental features of the dynamics close to the glass transition, such

as super-Arrhenius growth of the relaxation time [5], dynamic heterogeneity [6], transport

decoupling [7–10], the existence of space-time transitions [11, 12], thermodynamic anomalies

under cooling [13] and melting of ultrastable glasses [14]. (For reviews on the glass transition

problem see, for example, Refs. [15–17]).

The theoretical perspective on the glass transition that emerges from the study of the

East model and other kinetically constrained models (KCMs), sometimes called dynamic

facilitation (DF) theory, is one of fluctuation dominance in the dynamics with a very lim-

ited role played by the thermodynamics of glass formers (see [18] for a review). Extensive

theoretical and simulation studies have demonstrated that dynamical facilitation

arises from the correlated motions of densely packed particles. Particle displace-

ments that persist for a significant period of time require correlated motion of

several particles inside of what is termed an “excitation.” The concentration of

these excitations drops with the temperature, allowing fewer particles to make

persistent moves at lower temperature [19].

This perspective contrasts with theoretical approaches based on mean-field theory, in

particular that of the random first-order transition (RFOT) perspective (see [20, 21] for

reviews). Within RFOT, mean-field critical exponents for the dynamics are ex-

pected to be recovered above the upper critical dimension du = 8 [22–24] where

the fluctuations due to heterogeneous dynamics become irrelevant. In particular,

a recent computational study of hard sphere dynamics in large dimensions [25] tested this

prediction by considering the violation of the Stokes-Einstein relation, with numerical re-

sults that seemed compatible with an absence of transport decoupling - and thus mean-field

behavior - for dimensions d ≥ 8. It is worth noting that transport decoupling is also

observed in finite-dimensional, mean-field models as well [26]. These intriguing

numerical observations in hard spheres and other models prompted us to consider in detail

the problem of dimensional dependence of decoupling in the East model where it is expected

that the hierarchical non mean-field dynamics would be present at all dimensions [4].
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In this work we study the transport properties of the East model in dimensions d = 1

to d = 10 by means of extensive numerical simulations. By careful consideration of long-

time limits and finite size effects, we argue that the upper critical dimension of the East

model is larger than d = 10, the largest dimension we study. This would be compatible

with the expectation that dynamics is actually fluctuation dominated at all dimensions.

We do so by considering the relation between structural relaxation time τ and diffusion

rate D, which in the normal liquid state obeys the mean-field like Stokes-Einstein relation

(SER), D ∼ τ−1. Departure from this relation, termed transport “decoupling” [27], is a

manifestation of fluctuating, non mean-field, dynamics. Like in previous works [7, 28–30]

we characterize the breakdown of the SER in terms of a “fractional” SER, D ∼ τ−1+ω,

with ω > 0 encoding the degree of violation of the standard SER. We show that for the

East model ω > 0, and therefore the relevance of dynamical fluctuations, for all dimensions

between d = 1 and d = 10.

The paper is organized as follows: In Sec. II, we introduce the probe-coupled East model

generalized to arbitrary dimension to study their SER. In Sec. III, we present our results on

the upper critical dimension of the East models by investigating numerical scaling relation-

ships of the diffusion constant and the mean persistence time in various spatial dimensions.

We carefully analyze our results by performing finite size effects in Sec. IV. In Sec. VI we

conclude by connecting our results to the observations in atomistic simulations of Ref. [25].

II. MODEL AND SIMULATION DETAILS

We study the East [1, 2] model generalized to arbitrary dimensions [2–4], with the addition

of probe particles [7, 8] in order to study transport dynamics. The East model is a two state

lattice model with a dynamic constraint. The energy function of the system is defined,

E =
N∑
i=1

ni (ni = 0, 1). (1)

ni = 0 represents an unexcited and immobile state while ni = 1 represents the excited

state that allows motion. There are no energetic interactions between lattice sites and

therefore the thermodynamic properties of the model are trivial. However, there are kinetic

constraints that control the dynamics of the system. The flipping rates k±i at lattice site
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i are defined, k+i = e−1/Tfi({nr}) and k−i = fi({nr}). The kinetic constraint fi({nr}) is a

facilitation function that regulates the flipping events according to

fi({nr}) = 1−
d∏
l=1

(1− nri−ûl
), (2)

where ûl is the unit vector in the l-the direction of a hypercubic lattice of dimension d. The

kinetic constraint above allows a spin flip at a given site only if at least one of its nearest

neighbours in the specified directions is in the excited state. For one dimension, only sites

to the East of an excitation can flip (and thus the name of the model); in two dimensions

only sites to the North or East of an excitation, and so forth.

The scarcity of excitations in equilibrium at low temperatures makes the dynamics of the

East model slow and glassy. The model is conveniently studied numerically with continuous-

time Monte Carlo algorithm and the Monte Carlo with absorbing Markov chains methods

[4, 31]. To check for finite size effects, we increase the size of the system until the physical

quantities measured differ less than 1%. We set total simulation times to be 50∼100 times

the relaxation time. We vary the temperature of the system to cover over 6 orders of

magnitude in the relaxation times. We average physical quantities over 10∼103 independent

trajectories.

To calculate diffusion constants for particles through a supercooled liquid, we add probe

particles to our model system (see Refs. [7–9] for more details). The probe particles occupy a

site on the East model lattice, but we neglect the back reaction on the East model dynamics,

or their mutual interaction. After each Monte Carlo sweep, each probe particle attempts

to move to a neighboring site. To mimic the effect of caging in a supercooled liquid, a

probe particle can only move if it is on an excited site of the underlying East model, and to

satisfy the detailed balance, they can only move if their target site is also excited. We then

determine the diffusion constant from the mean-square displacements of the probe particles

as, D = limt→∞〈[∆r(t)]2〉/2dt, where ∆r(t) = r(t)− r(0).
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FIG. 1. (a) Temperature dependence of the mean persistence time. In all dimensions, τper is

well fitted to the Eq. (3), which means the system is super-Arrhenius for all d. Lines denote the

quadratic fit to data points. (b) The fitting shows that J2 is inversely proportional to the dimension

(with a small constant off-set), where J2 is a fitting parameter.
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FIG. 2. (a) Temperature dependence of the diffusion constants is shown. As the dimension is

increased, super-Arrhenius behavior gets weaker. Lines denote the quadratic fit to data points.

(b) The fitting shows that K2 is inversely proportional to the dimension (with a small constant

off-set) similar to the case of the mean persistence time.
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III. DIMENSIONAL DEPENDENCE OF SER BREAKDOWN IN THE EAST

MODEL

We now investigate the properties of transport decoupling in the East model as we vary

dimensionality. If an upper critical dimension du exists for the East model, then for d > du

the SER will be obeyed. For this purpose we calculate the structural relaxation times and

the diffusion constants for dimensions d = 1 to d = 10.

We use the mean persistence time of the system, τper = 〈tper〉, for the relaxation time τ .

The persistence time, tper, is the waiting time at which the first flip event occurs

for a particular spin from a randomly chosen time [7]. The persistence time can be

interpreted as the decay time of self-intermediate scattering function in the limit of large

wavevector [3]. Using the mean persistence time, the relaxation time in different dimensions

can be compared without wavevector dependence.

Figure 1 shows that the mean persistence time undergoes super-Arrhenius growth for

dimensions one through 10. At fixed temperature, τper decreases as dimension is increased.

As expected [3–5, 32, 33], the leading dependence on inverse temperature is quadratic. In

order to connect with the DF phenomenology we fit ln(τper) with the “parabolic” form

[19, 34]

ln(τper/τo) = J2(1/T − 1/To)
2. (3)

where τo, J and To are the fitting parameters. We find that J2 is inversely proportional to

the spatial dimension, J2 ≈ 0.67/d + 0.15. This fit provides evidence that the dynamics in

the East model is hierarchical and therefore super-Arrhenius in all dimensions. Our fit is

similar to that of Ref. [4]. The 1/d dependence we find is also consistent with the rigorous

analysis of Ref. [33] which gives the asymptotically exact result of J2 = b/d, where b is

1/(2log2) ≈ 0.721.

Figure 2 shows the corresponding numerical results for the diffusion constant D of the

probe particles as a function of temperature for the different dimensions. While less pro-

nounced than for τper, the diffusion constant is still super-Arrhenius at all dimensions, which

gets less pronounced as dimension is increased. Similar to the mean persistence time,

the diffusion constant is well fitted by a parabolic form,

ln(D/Do) = −K2(1/T − 1/T
′

o)
2. (4)
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FIG. 3. (a) Diffusion of a probe coupled to the one-dimensional East model, as in Ref. [7] (data

first reported in [35]). The left panel shows the inverse of the diffusion constant of the probe, D−1,

as a function of relation time τper (i.e., the mean persistence time). The red line is a fit D ∼ τper−ξ
over the whole range, and the black line the case of no SE breakdown. Pronounced decoupling is

obvious. (b) A test of the Dτper ∼ c−α scaling proposed in Ref., with c = 1/(1+exp(1/T )). A best

fit to the full range of data yields α = 1.7, and that to an asymptotic limit for τper > τcut = 104

yields α = 1.87 (cf. Ref. [10].)

We also find that K2 is inversely proportional to the spatial dimension, K2 ≈

0.56/d+ 0.15.

While both the mean persistence times and the diffusion constants both show super-

Arrhenius behavior, the decrease of the diffusion rate is less pronounced than the increase

of the relaxation time and there is transport decoupling in the model [7]. In Ref. [7] it was

originally observed that the observed decoupling could be fitted with a fractional Stokes-

Einstein relation (fSER), D ∼ τ−1+ω, in analogy with the way decoupling is usually described

in phenomenological observations [28]. More recent simulations, first presented in Ref. [35],

and which we reproduce in Fig. 3(a), extended the range of that of Ref. [7] over nine orders

of magnitude in d = 1 case. The range of conditions considered in Fig. 3(a) is that in τper

which is accessible to reversible glass-forming melts. For that range, the graphed results can

be fitted with a fSER, D τ−1+ωper with ω ≈ 0.26, in a satisfactory manner. The value of the

exponent is consistent with those used to fit experimental data,[28] and it is consistent with

value first considered in Ref. [7].

Diffusion of a probe particle in the East model was also studied rigorously in Ref. [10].

There it was found that in the limit of very low temperature the inequality c2 ≤ Dτ ≤ 1/cα

holds, where α > 0 and c is the equilibrium concentration of excited sites, c = (1 + e1/T )−1.
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FIG. 4. (a) The power law relations between τper and the diffusion constant, D ∼ τ−1+ω, are

shown. Data points which have τper longer than 104 MC steps are used for the power-law fitting

(not shown). Temperature decreases at τper increases. (b) The power law relations between Dτper
and the concentration of excitations, c, are shown. Temperature increases as τper increases, so the

low temperature asymptotic fit is taken over concentrations below those which have τper longer

than 104 MC steps.

While this implies breakdown of SER, it excludes fSER as T → 0 because τ grows faster

than any power of 1/c upon lowering temperature T in fSER. While heuristics suggest α = 2,

the best fit, shown in Fig. 3(b), gives instead α ≈ 1.7 for the whole data set and α ≈ 1.87

for an asymptotic region of τper >= τcut = 104 (to be explained in more details

later in Sec. IV.) Overall, Figs. 3(a) and 3(b) show that a fSER works extremely well as

an effective description of decoupling in the relevant temperature range, and prohibitively

long simulations would be required to fully clarify the scaling at vanishing temperatures

[35].

Decoupling between mean persistence times and diffusion constants is also found in higher

dimensions. In Fig. 4 we show both D against τ , in order to test the validity of a fSER,

and Dτ as a function of c, to test higher dimensional versions of the asymptotic scaling of

Ref. [10]. From both representations the presence of decoupling up to dimension d = 10

is evident. We note in passing that the non-monotonicity at high concentrations

of excitations is not a feature of real liquids. The East model is kinetically

constrained at any temperature, so the results at high temperature and high
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FIG. 5. (a) The power law exponents obtained using data points in Fig. 4. ω decreases non-

linearly as the dimension is increased. Based on the result, the upper critical dimension, du, is not

found up to d = 10. This result is distinctive from the result of the hard sphere system which shows

the linear decrease and du = 8. We suggest the fitting form ω(d) = (A/d + B)/(C/d + D). The

fitted graph shows a good agreement with the data points. The result shows that the exponent

ω decreases slowly to 1 and supports that du to be infinite in our model system. (b) The power

law exponent, ω, is shown with different minimum values of τper, which we name τcut. As higher

temperature data is included (τcut is reduced), ω in d > 7 varies significantly. Using the data

in Fig. 2, the power exponents ω in d > 7 converge when τcut > 104. The exponents in lower

dimensions converge for even lower values of τcut. To be consistent across dimensions, we chose

τcut = 104 for the calculations in Fig. 5(a).

concentration of excitations should not be interpreted as representative of real

liquids above their onset temperature. Rather, the asymptotic behavior of the

East model should be interpreted as a model of real liquids below their onset

temperature only.

We obtain the fSER exponent ω by linear fitting. The value of ω for the higher dimensions

considered is sensitive to the exact fitting procedure used. To minimize the error and to

investigate the systems in the low temperature limit, we use only data where the mean

persistence time is longer than 104 MC sweeps. We then recalculate ω removing one data

point at a time from the high temperature end of the data, stopping when we have only

five data points left. We define the error bar as half of the difference between the maximum

exponent and the minimum exponent from the varying number of data points we used. Our

results for the fSER exponent ω are shown in Fig. 5(a).

This result demonstrates that the East model violates standard SER up through 10

dimensions. The degree of violation, ω, also appears to be decaying very slowly, consistent
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numerically (using τcut = 104), and the dashed line is 2/d.

with the hypothesis that the upper critical dimension may be infinite. The decay of ω versus

d does not fit well to a line. As an alternative, we consider, ω(d) = (A/d + B)/(C/d + D),

suggested by our numerical evidences on the dimensional dependence of J2 and

K2. This form fits quite well. Although fitting four free parameters to 10 data points is far

short of a proof, it demonstrates that the data do not simply extrapolate to a finite upper

critical dimension. To ensure that we have reached the long time limit in all dimensions,

we vary the minimum persistence time at which we begin fitting the asymptotic slope.

Fig. 5(b) shows that the slopes appear to have plateaued at the cutoff we have chosen, but

that lower choices would have given meaningfully different results. Other systems, including

hard spheres, could be subject to similar sources of error.

The asymptotic scaling relation Dτ ∝ c−α introduced in Ref. [10] for d = 1

case can be extended to an arbitrary dimension in the following way. Since

the natural length scale in the East model behaves as ξ ∝ c−1/d, one may get

Dτ ∝ ξ2 ∝ c−2/d, which implies α = 2/d. By comparing numerically found values

of α and 2/d in Fig. 6, we find that they show an overall agreement with each

other[36].
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FIG. 7. System size dependence on the mean persistence time (top) and of the diffusion constant

(bottom) is shown in d = 6 and d = 9. As the system size L is increased, τper(L) increases and

converges to a constant value. D(L) similarly decreases as it converges.

IV. FINITE SIZE EFFECTS AND ASYMPTOTIC BEHAVIOR

To ensure the reliability of our results in high dimensions, we check for possible finite size

effects. Fig. 7 shows the system size L dependence of the values of τper and D. In the case of

τper, there are no significant finite size effects when d ≤ 9 and L is near the values we used for

the data already reported. For d = 9, the difference between τper(L = 5) and τper(L = 6) is

less than 1% for each temperature. For d = 10, however, the difference between τper(L = 4)

and τper(L = 5) is more pronounced at about 30% at the lowest temperature. For d = 9,

the difference between logD(L = 5) and logD(L = 6) is less than 2% for each temperature.

Similar to the case of τper, for d = 10, the difference is much lager and it is about 30% at

the lowest temperature. Based on these results, our model system does not show significant
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finite size effects up to d ≤ 9. Even though d = 10 does show stronger finite size effects

at low temperatures, this does not affect the conclusion from the numerics that the upper

critical dimension of the East model is greater than d = 10, neither the slowly decreasing

value of ω with dimension.

We also check that our data is in the asymptotic region compared to the onset of the

heterogeneous dynamics. To confirm whether we have reached the proper asymptotic limits

in various dimensions, we try the following variations in the fitting. First, we can introduce

an onset temperature by defining, dln(τper)/d(1/T ) = 2kBT at T = To. To(d) is defined as

the temperature at which the effective barrier to relaxation becomes order of kBT . To(d)

are marked as black dots in Fig. 8. It seems that τper(To) is on the order of 10-100 as we

vary dimension. It is interesting to note that although To becomes lower with d, τper(To)

gets shorter as d increases. This result comes from the fact that as the dimensionality

increases, the super-Arrhenius nature of the relaxation time becomes less pronounced. Also,

we can choose our cut-off time, τcut, so that only the data points τper ≥ τcut are used for the

asymptotic limit fitting. When τcut � τper(To), the system is in the asymptotic region and

ω is not sensitive to the choice of τcut, Fig. 5(b). Note that τcut = 104 is at least 1000 times

larger than τ(To) at every dimension considered.
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V. DISCUSSION

We have shown that transport decoupling occurs in the East model for all dimensions

between d = 1 and d = 10. This decoupling can be quantified by means of an effective fSER.

As expected, when the system dimension increases, more excited neighbors be-

come available for a particle to move around. Thus, the higher the dimension the

less striking fluctuation effects, which in turn manifests as decoupling becom-

ing less pronounced, leading to a systematic weakening of the SER breakdown.

Nevertheless it is still present at all the dimensions we simulated, which suggests that the

East model has no finite upper critical dimension above which the hierarchical character of

the dynamics disappears.

Related to this weakening of the effect of fluctuations is a decrease of the onset tempera-

ture with dimensionality. Again this is as expected: one needs to go to comparatively lower

temperatures as dimension is increased to see heterogeneous dynamics. A consequence is

that one could erroneously conclude that the East model has become mean-field at some di-

mension by simply comparing decoupling at some fixed temperature at different dimensions,

so that that temperature is in the heterogeneous dynamics regime at lower dimension but

on the homogeneous regime at higher dimension. Additionally, simulating sufficiently large

systems is obviously quite challenging, and here we have taken great care to demonstrate

the our simulation results are not hampered by finite size effects.

Out results here should also be compared to the observation of decoupling in hard spheres

in high dimension of Ref. [25]. As in that work we find that SER breaks down, but decoupling

gets attenuated as dimension increases. In contrast to Ref. [25] we do not see a recovery of

the SER at dimension d = 8, but decoupling in the East model persists up to d = 10 at least.

Given the weak nature of the decoupling, it is possible that in the more challenging setting

of the hard-sphere system it is difficult to distinguish weak from zero decoupling. Secondly,

comparing diffusion constants across dimensions requires very careful analysis of finite size

effects, such as the one we are able to do for the simpler case of the East model. Thirdly, the

onset temperature decreases (and equivalently, the onset packing fraction increases) with

increasing dimension, meaning that heterogeneous dynamics may not be apparent in high

dimensional simulations simply because the challenging computational nature of reaching

the necessary temperatures or densities.
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