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Abstract—In computing the similarity of intervals, current
similarity measures such as the commonly used Jaccard and Dice
measures are at times not sensitive to changes in the width of
intervals, producing equal similarities for substantially different
pairs of intervals. To address this, we propose a new similarity
measure that uses a bi-directional approach to determine interval
similarity. For each direction, the overlapping ratio of the given
interval in a pair with the other interval is used as a measure
of uni-directional similarity. We show that the proposed measure
satisfies all common properties of a similarity measure, while
also being invariant in respect to multiplication of the interval
endpoints and exhibiting linear growth in respect to linearly
increasing overlap. Further, we compare the behavior of the
proposed measure with the highly popular Jaccard and Dice
similarity measures, highlighting that the proposed approach is
more sensitive to changes in interval widths. Finally, we show
that the proposed similarity is bounded by the Jaccard and the
Dice similarity, thus providing a reliable alternative.

I. INTRODUCTION

Similarity measures are widely utilized in a range of ap-
plications including decision making, data aggregation, ap-
proximate reasoning, and machine learning. Measuring the
similarity between two objects captures the degree to which
they are alike. Similarities are commonly expressed as non-
negative real numbers, often between 0 (completely dissimilar)
and 1 (identical) for simplicity. Similarity is typically assumed
to be symmetrical; however, for certain stimuli, similarity may
be better modeled by uni-directional or asymmetric functions
[1]. Various similarity measures have been introduced in the
literature to assess the likeness of data structures including
numerals, intervals, and crisp and fuzzy sets. As individual
similarity measures have their respective strengths and weak-
nesses, the selection of the most appropriate measure is widely
considered to be application dependent.

Recently, interval-valued data and associated interval-
similarity have gained much interest as they enable the ef-
ficient representation of imprecise and uncertain information
[2]. Thus, intervals have been used in many applications,
including the modeling of survey data [3], the clustering
of symbolic data [4], and the capturing of natural language
expressions [2].

For comparing intervals in terms of their similarity, the
Jaccard [5] and Dice [6] similarity measures are the most
commonly used. Both of these measures provide a symmetrical
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Fig. 1. Two different example pairs of intervals.

similarity which increases gradually from minimum similarity
(0) to maximum similarity (1) in respect to increasing in-
tersection between the intervals. Nevertheless, they are often
subject to aliasing, i.e., they yield the same similarity for very
different interval pairs. Fig. 1 shows an example of two interval
pairs for which the Jaccard and the Dice similarity measures
give the same similarity of 0.33 and 0.50 respectively—though
intuitively, this is unexpected. Another way of viewing the
example is that the measures, in effect, are sometimes not
sensitive to (changes in) the relative width of the intervals,
being instead driven by the size of their intersection and union.

It is reasonable to consider that as the width of an interval
varies, the similarity varies as well. Therefore, we propose a
new similarity measure for pairs of intervals that focuses on
the following similarity features:

• sensitivity to changes in the width of the intervals;
• sensitivity to the size of the intersection when one interval

is a subset of another.

The proposed similarity measure uses the reciprocal over-
lapping ratios of the intervals to compute their asymmetric
similarities which in turn are used to establish an overall
symmetrical similarity, bounded by [0,1]. We compare the
behavior of the new measure with the Jaccard and the Dice
similarity measures using synthetic interval datasets. Along
with the standard properties of similarity measures, we explore
the properties of invariance and linearity for all three similarity
measures.

The paper is structured as follows. Section II briefly re-
views the Jaccard and the Dice similarity measures. Section
III introduces the proposed similarity measure based on the
overlapping ratio of intervals and discusses its properties. We



demonstrate the behavior of the proposed similarity measure
in comparison to both Jaccard and Dice in Section IV. Lastly,
Section V concludes the paper and provides suggestions for
future work.

II. BACKGROUND

We now briefly review the concept of similarity measures as
well as the specific similarity measures of Dice and Jaccard,
the two commonly applied measures in the literature.

A. Similarity Measures
A similarity measure S(A,B) → [0, 1] is a real-valued

function that determines the similarity between two objects
A and B. Generally, the similarity between two objects is
bounded by 0 and 1, where 0 means that both objects are
completely different and 1 means that they are identical. The
four common properties of a similarity measure for sets A, B
and C are as follows [7]:
• Boundedness: 0 ≤ S(A,B) ≤ 1;
• Symmetry: S(A,B) = S(B,A);
• Reflexivity: S(A,B) = 1 ⇐⇒ A = B ;
• Transitivity: If A ⊆ B ⊆ C then S(A,B) ≥ S(A,C).

B. Jaccard Similarity Measure
The Jaccard similarity measure [5] is one of the most widely

used similarity measures. It satisfies all of the above properties
of a similarity measure [7]. Generally, the Jaccard similarity
of two sets is defined as the ratio of the cardinality of their
intersection and the cardinality of their union,

SJ(A,B) =
|A ∩B|
|A ∪B|

. (1)

Using the crisp set difference operation [8], (1) can be written
as

SJ(A,B) =
|A ∩B|

|A ∩B|+ |A\B|+ |B\A|
, (2)

where A\B is the set of items that are in A but not in B and
B\A is the set of items that are in B but not in A. Note that
this alternative form of the Jaccard similarity measure at (2)
is relevant for showing its relationship with the Dice and our
proposed similarity measures, detailed in Section III.

Beyond crisp sets, the Jaccard similarity measure is used
to estimate the similarity for intervals or sets of intervals [9],
[10]. A closed interval Īi is a set of real numbers characterized
by two endpoints I−i and I+

i with I−i ≤ I+
i . The interval Īi

is often represented as [I−i , I
+
i ]. For comparing the intervals

Īi and Īj , the Jaccard similarity measure is expressed as

SJ(Īi, Īj) =
|Īi ∩ Īj |
|Īi ∪ Īj |

, (3)

where |Īi ∩ Īj | is the size of the intersection between Īi and
Īj and |Īi ∪ Īj | is the size of the entire interval segment(s)
covering both Īi and Īj . Hence, SJ(Īi, Īj) = 1 when Īi
and Īj are completely overlapping and 0 when they are not
overlapping at all. Similar to (2), we can rewrite (3) as

SJ(Īi, Īj) =
|Īi ∩ Īj |

|Īi ∩ Īj |+ |Īi\Īj |+ |Īj\Īi|
, (4)

where |Īi\Īj | is the size of the interval segment of Īi that is
not overlapping with Īj and |Īj\Īi| is the size of the interval
segment of Īj that is not overlapping with Īi.

Along with crisp sets and intervals, many use the Jaccard
similarity measure for assessing the similarity between type-1
sets [11]. A fuzzy set [12] is defined as a set where the set’s
elements have membership ranging between 0 and 1. Formally,
a type-1 fuzzy set F in the universe of discourse X is written
as [13]

F = {(x, µF (x))|x ∈ X} (5)

where µF (x) ∈ [0, 1] is the membership grade of the element
x in F . For two type-1 fuzzy sets F1 and F2, the Jaccard
similarity can be written as [14]

SJ(F1, F2) =

∑N
i=1 min(µF1

(xi), µF2
(xi))∑N

i=1 max(µF1
(xi), µF2

(xi))
, (6)

where µF1
(xi) and µF2

(xi) are the membership grades of xi
in F1 and F2 respectively.

Equation (6) yields a value of 1 when the fuzzy sets are
identical and 0 when they are completely disjoint. Note that
the Jaccard similarity measure has been extended for interval
type-2 [15], [16] and general type-2 fuzzy sets [17]; though,
this is not discussed here.

C. Dice Similarity Measure

The Dice similarity measure [6] is closely related to Jaccard
and is also a popular similarity measure. It considers the ratio
of the size of the intersection of two sets and the average of
their cardinality/size. Like the Jaccard similarity, it produces
outputs in [0, 1]. Specifically, for two crisp sets A and B, the
Dice similarity is expressed as

SD(A,B) =
|A ∩B|

1
2 (|A|+ |B|)

, (7)

where |A| is the size of the set A. We can rewrite (7) by
applying the crisp set difference operation [8]

SD(A,B) =
|A ∩B|

|A ∩B|+ 1
2 (|A\B|+ |B\A|)

. (8)

Note that the alternative expressions of Jaccard (2) and Dice
(8) show clearly that the averaging operation in the denomi-
nator of (8) results in the Dice similarity always being equal
(when sets are identical) to or larger than the Jaccard similarity.
We expand on this in Section III.

In [9], [10], the Dice similarity is used along with the
Jaccard similarity for interval-valued evidence. By following
(4), the Dice similarity for two intervals Īi and Īj can be
expressed as

SD(Īi, Īj) =
|Īi ∩ Īj |

|Īi ∩ Īj |+ 1
2 (|Īi\Īj |+ |Īj\Īi|)

. (9)

While less frequently used for fuzzy sets than Jaccard, the
Dice similarity measure was used in [18], [19] for trapezoidal
fuzzy numbers in the context of solving multicriteria decision-
making problems.



III. OVERLAPPING RATIO BASED SIMILARITY MEASURE

In this section, we introduce a new similarity measure
for intervals based on their overlapping ratio. The proposed
measure estimates the overall similarity of a pair of intervals
by considering the reciprocal similarity of each of the intervals
within the pair. We first define the concept of the overlapping
ratio for a pair of intervals and, later, present the new proposed
similarity measure and discuss its essential properties.

A. Overlapping Ratio of Intervals
Definition 1. The overlapping ratio (OR) of a given interval
Īi within an interval pair {Īi, Īj} captures the ratio of the size
of the intersection of the pair and the size of the given interval.
The OR is defined as

OR(Īi, Īj) =
|Īi ∩ Īj |
|Īi|

, (10)

where |Īi ∩ Īj | is the size of the intersection between Īi and
Īj and |Īi| is the size of Īi. Note that for any interval Īi with
a size of 0, i.e., |Īi| = 0, OR(Īi, Īj) is set to 0.

From (10), it is clear that the overlapping ratio for an
interval in a pair will fall under one of the following cases:

1) OR(Īi, Īj)=1 when Īi is identical to Īj ;
2) OR(Īi, Īj)=0 when Īi is disjoint from Īj ;
3) otherwise, 0 < OR(Īi, Īj) < 1.

B. Similarity Measure Based on the Overlapping Ratio
As noted, the motivation behind proposing a new similarity

measure is to capture the potentially (very) different width of
both intervals in the similarity calculation. Thus, the proposed
overlapping ratio based similarity measure SOR, defined next,
takes into consideration the reciprocal similarity of both inter-
vals within a pair in order to estimate their overall similarity.

Definition 2. The overlapping ratio based similarity measure
SOR for a pair of intervals, Īi and Īj , is the t-norm of their
reciprocal overlapping ratios, defined as

SOR(Īi, Īj) = F(OR(Īi, Īj), OR(Īj , Īi)), (11)

where F is a t-norm.

In this paper, we use the minimum t-norm for F
throughout. We will discuss the product t-norm in future
work.

Similar to (4) and (9), we can rewrite (11) as

SOR(Īi, Īj) = F

(
|Īi ∩ Īj |

|Īi ∩ Īj | + |Īi\Īj |
,

|Īi ∩ Īj |
|Īi ∩ Īj | + |Īj\Īi|

)
, (12)

where |Īi\Īj | is the size of the non-overlapping segment of
the interval Īi with respect to the interval Īj and vice-versa
for |Īj\Īi|.

Note that a distance measure DOR(Īi, Īj) can easily be
derived from the SOR similarity measure (11) by taking
its complement—i.e.,

(
1− SOR(Īi, Īj)

)
—thus capturing the

dissimilarity between both intervals. We discuss this distance
measure in more detail, including proving that it is a metric,
in future work.

C. Properties of the Proposed Similarity Measure

This section explores the properties of the proposed over-
lapping ratio similarity measure SOR(Īi, Īj).

Theorem 1. (Boundedness). SOR(Īi, Īj) is bounded by [0, 1].

Proof: Two essential boundary conditions of the t-norm
(F) are F(a, 1) = F(1, a) = a and F(a, 0) = F(0, a) = 0,
∀a ∈ [0, 1] [20]. If a is considered as the overlapping ratio
of an interval, it is always within the interval [0, 1]. Thus,
SOR(Īi, Īj) is also bounded by [0, 1].

Theorem 2. (Symmetry). SOR(Īi, Īj) follows the property of
symmetry. That is, SOR(Īi, Īj) = SOR(Īj , Īi).

Proof: The t-norm (F) is symmetric [20]. Therefore,
SOR(Īi, Īj) is also symmetric.

Theorem 3. (Reflexivity). SOR(Īi, Īj) follows the property of
reflexivity. That is, SOR(Īi, Īj) = 1 ⇐⇒ Īi = Īj .

Proof: If Īi = Īj , then OR(Īi, Īj) = OR(Īj , Īi) =
1. From the boundary conditions of the t-norm(F) [20],
F(1, 1) = 1, thus making SOR(Īi, Īj) = 1. Alternatively,
SOR(Īi, Īj) = 1 means that both OR(Īi, Īj) and OR(Īj , Īi)
are equal to 1. This only happens when Īi and Īj are identical
intervals.

Theorem 4. (Transitivity). SOR(Īi, Īj) follows the property
of transitivity. That is, SOR(Īi, Īj) ≥ SOR(Īi, Īk) when Īi ⊆
Īj ⊆ Īk.

Proof: if Īi ⊆ Īj ⊆ Īk, then

SOR(Īi, Īj) = F

(
|Īi ∩ Īj |

|Īi|
,
|Īi ∩ Īj |

Īj |

)
= F

(
|Īi|
|Īi|

,
|Īi|
|Īj |

)
=

|Īi|
|Īj |

,

SOR(Īi, Īk) = F

(
|Īi ∩ Īk|

|Īi|
,
|Īi ∩ Īk|

Īk|

)
= F

(
|Īi|
|Īi|

,
|Īi|
|Īk|

)
=

|Īi|
|Īk|

.

As Īj ⊆ Īk, it follows that |Īj | ≤ |Īk|. Therefore, |Īi||Īj | ≥
|Īi|
|Īk|

and hence, SOR(Īi, Īj) ≥ SOR(Īi, Īk).

Theorem 5. SOR(Īi, Īj) is bounded by the Jaccard and the
Dice similarity measures when F is the minimum t-norm. That
is, SJ(Īi, Īj) ≤ SOR(Īi, Īj) ≤ SD(Īi, Īj).

Proof: For the interval pair {Īi, Īj}, consider the formula-
tions of the similarity measures at (4), (9), and (12). To prove
this theorem, we consider four cases: 1) Īi = Īj , 2) Īi∩Īj = ∅,
3) Īi ⊂ Īj , and 4) Īi ∩ Īj 6= ∅ and Īi 6⊂ Īj .

Case 1: If Īi = Īj , then all three measures yield a similarity
of 1. That is, SJ(Īi, Īj) = SD(Īi, Īj) = SOR(Īi, Īj) = 1.

Case 2: If Īi∩Īj = ∅ (do not intersect), then all three measures
give a similarity of 0. Thus, SJ(Īi, Īj) = SD(Īi, Īj) =
SOR(Īi, Īj) = 0.

Case 3: If Īi ⊂ Īj (complete subset), then |Īi∩Īj | = |Īi|. With
respect to Īi, there is no non-overlap segment of Īj ; hence,
|Īi\Īj | = 0. Inversely, there is a non-overlap segment of Īj in



Īi; thus, |Īj\Īi| 6= 0. In this case, the three similarity measures
can be simplified to

SJ(Īi, Īj) =
|Īi|

|Īi|+ |Īj\Īi|
,

SD(Īi, Īj) =
|Īi|

|Īi|+ 1
2 |Īj\Īi|

,

SOR(Īi, Īj) = F

(
|Īi|
|Īi|

,
|Īi|

|Īi|+ |Īj\Īi|

)
=

|Īi|
|Īi|+ |Īj\Īi|

,

which implies that

SJ(Īi, Īj) = SOR(Īi, Īj) < SD(Īi, Īj).

Case 4: If Īi ∩ Īj 6= ∅ and Īi 6⊂ Īj (intersect but not complete
subset), then assume |Īi| = wi, |Īj | = wj and |Īi ∩ Īj | = wij .
Considering the case wi ≤ wj , the three similarity measures
can be rewritten as

SJ(Īi, Īj) =
wij

wij + (wi − wij) + (wj − wij)
,

SD(Īi, Īj) =
wij

wij + 1
2 ((wi − wij) + (wj − wij))

,

SOR(Īi, Īj) = F

(
wij

wij + (wi − wij)
,

wij

wij + (wj − wij)

)
=

wij

wij + (wj − wij)
, ∵ wi ≤ wj .

It is true that
wij

wij + (wi − wij) + (wj − wij)

<
wij

wij + 1
2 ((wi − wij) + (wj − wij))

,

thus SJ(Īi, Īj) < SD(Īi, Īj). Again, it is clear that
wij

wij + (wi − wij) + (wj − wij)
<

wij

wij + (wj − wij)
,

implying that SJ(Īi, Īj) < SOR(Īi, Īj). Also,

wij

wij + (wj − wij)
=

wij

wij + 1
2 (wj − wij) + 1

2 (wj − wij)

≤ wij

wij + 1
2 (wi − wij) + 1

2 (wj − wij))
, ∵ wi ≤ wj ,

indicating that SOR(Īi, Īj) ≤ SD(Īi, Īj). Hence, SJ(Īi, Īj) <
SOR(Īi, Īj) ≤ SD(Īi, Īj). Note that for the case wj ≤ wi, the
same procedure can be used to prove the above relation.

IV. DEMONSTRATION AND ANALYSIS

In this section, we demonstrate and analyze the behavior of
the proposed SOR similarity measure by comparing its output
to those of both Jaccard and Dice for a set of key synthetic
examples. We specifically focus on exploring the following
key aspects:
• Aliasing, i.e., similarity measures producing the same

output for different input intervals.
• Behavior when one interval is a complete subset of

another.

Ii4

Ij4

Ii3

Ij3

Ii2

Ij2

Ii1

Ij1

0 25 50 75 100

P
ai

rs
 o

f i
nt

er
va

ls

Fig. 2. Interval pairs used to demonstrate the results of similarity measures
for changes in the width of the intervals.

TABLE I
SIMILARITY RESULTS FOR THE INTERVAL PAIRS AS SHOWN IN FIG. 2.

Interval Pair SJ SD SOR

I 0.15 0.26 0.15
II 0.15 0.26 0.17
III 0.15 0.26 0.21
IV 0.15 0.26 0.26

• Behavior for intervals of equal size and equal overlapping
ratios.

• Invariance to scaling/multiplication of interval endpoints.
• Linearity in measure output in respect to linearly increas-

ing interval overlap.

1) Experiment on aliasing: In Fig. 2, four different pairs
of intervals {Īi, Īj} are considered, where all pairs have an
intersection of equal size. The similarity results for the pairs
using the three similarity measures are shown in Table I.
The SJ and the SD measures give a similarity of 0.15 and
0.26 respectively for all pairs. Indeed, both measures provide
identical similarities for pairs of intervals when the size of
the union of their non-overlapping segments remains constant.
On the contrary, the proposed SOR measure yields different
similarity for all cases. Note, that as shown in Theorem 5
the results of the SOR measure are bounded by the similarity
produced by the SJ and SD measures. The reason that the
SOR measure produces different results for each case is that
it captures changes in the width of both input intervals which
affects their reciprocal similarity and the overall similarity.

2) Experiment with interval pairs when one interval is a
complete subset of the other: Five interval pairs are shown in
Fig. 3, where Īj is a complete subset of Īi in all pairs and
overlapping by 10%, 20%, 30%, 40%, and 50%, respectively
of Īi. Table II presents the similarity for all pairs with all
three measures. Note that for all pairs, the overlapping ratio
of Īj is 1 while the overlapping ratio of Īi depends on the size
of Īi and Īj , i.e., |Īi∩Īj ||Īi|

. Therefore, intuitively their mutual

similarity can be at most |Īi∩Īj ||Īi|
for each pair. The SJ and

the SOR measures perform accordingly while the SD measure
exceeds this limit.
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Fig. 3. One interval as a complete subset of the other interval.

TABLE II
SIMILARITY RESULTS FOR THE INTERVAL PAIRS AS SHOWN IN FIG. 3.

Interval Pair SJ SD SOR subset by
I 0.10 0.18 0.10 10%
II 0.20 0.33 0.20 20%
III 0.30 0.46 0.30 30%
IV 0.40 0.57 0.40 40%
V 0.50 0.67 0.50 50%

3) Experiment with interval pairs of equal size and equal
overlapping ratio: In Fig. 4, five interval pairs are shown,
where the intervals are of equal size and their intersection is
varied to be 10%, 20%, 30%, 40%, and 50% of their size.
Table III provides the results for all pairs using the three
similarity measures. In all pairs, the overlapping ratio is equal,
and it is intuitive to expect the similarity to be the extent of this
overlapping ratio. In this case, the SD and the SOR measures
satisfy the expectation whereas the SJ measure yields lower
similarity.

4) Experiment on invariance: Five pairs of intervals are
shown in Fig. 5 where both endpoints of Ii1 and Ij1 are
gradually multiplied by a factor, n = {2, 3, 4, 5} to produce
new interval pairs. Yet, the overlapping ratio is maintained
for individual intervals in all the pairs. Adapting the definition
from [21], a similarity measure is invariant if its similarity out-
put remains constant regardless of multiplying the endpoints
of interval pairs by a factor. Table IV shows the similarity for
all pairs using the three measures where n refers to the factor
applied to the interval endpoints. The results shows that all
three measures satisfy the invariance property for the given
pairs of intervals.

5) Experiment on linearity: Adapting the definition from
[21], a similarity measure on intervals is linear if its similarity
output varies linearly in respect to a linear change in the size
of the intersection of the intervals. In Fig. 6(a), the intersection
between two intervals of equal size is gradually increased in
10% steps. The corresponding similarity outputs for the pairs
and all three measures are shown graphically in Fig. 6(b).
In this case, the SD and the SOR measures exhibit linearity
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Fig. 4. Interval pairs with equal width and equal ratio of intersection.

TABLE III
SIMILARITY RESULTS FOR THE INTERVAL PAIRS AS SHOWN IN FIG. 4.

Interval Pair SJ SD SOR intersected by
I 0.05 0.10 0.10 10%
II 0.11 0.20 0.20 20%
III 0.18 0.30 0.30 30%
IV 0.25 0.40 0.40 40%
V 0.33 0.50 0.50 50%
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Fig. 5. Interval pairs used to show the invariance of similarity measures.

TABLE IV
SIMILARITY RESULTS FOR THE INTERVAL PAIRS AS SHOWN IN FIG. 5.

Interval Pair SJ SD SOR multiplied by n
I 0.36 0.53 0.44 1
II 0.36 0.53 0.44 2
III 0.36 0.53 0.44 3
IV 0.36 0.53 0.44 4
V 0.36 0.53 0.44 5

while the SJ measure exhibits convexity (differences rise with
the increase of intersection).

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new similarity measure
that considers the reciprocal similarity of a pair of intervals
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Fig. 6. Interval pairs used to show the linearity of similarity measures.

in computing their overall similarity. We have used the over-
lapping ratio of the intervals within the pair for capturing the
asymmetric similarity. We have also demonstrated that the new
measure satisfies essential properties of a similarity measure.
Lastly, we have compared the behavior of the proposed
measure with the two popular Jaccard and Dice similarity
measures using synthetic datasets. The results have shown
that the proposed similarity measure is more sensitive to the
changes in the width of intervals, and further it is invariant
and linear. We have also proved that the proposed similarity
is bounded by the Jaccard and the Dice similarity.

In future, we will use the proposed similarity measure for
capturing the mutual agreement of interval-valued evidence
for aggregation. As each α-cut of a normal and convex fuzzy
set is a closed interval [22], we aim to extend the proposed
similarity measure for comparing fuzzy sets.
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