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Abstract—Conventional fuzzy time series approaches make use
of type-1 or type-2 fuzzy models. Type-1 models with one index
(membership grade) cannot fully handle the level of uncertainty
inherent in many real world applications. The type-2 models with
upper and lower membership functions do handle uncertainties
in many applications better than its type-1 counterparts. This
study proposes the use of interval type-2 intuitionistic fuzzy logic
system of Takagi-Sugeno-Kang (IT2IFLS-TSK) fuzzy inference
that utilises more parameters than type-2 fuzzy models in time
series forecasting. The IT2IFLS utilises more indexes namely
upper and lower non-membership functions. These additional
parameters of IT2IFLS serve to refine the fuzzy relationships
obtained from type-2 fuzzy models and ultimately improve the
forecasting performance. Evaluation is made on the proposed
system using three real world benchmark time series problems
namely: Santa Fe, tree ring and Canadian lynx datasets. The
empirical analyses show improvements of prediction of IT2IFLS
over other approaches on these datasets.

I. INTRODUCTION

TIME series forecasting is an important application area that
has been extensively researched. It involves the sequential

collection of observations over time with the purpose of
developing a model that captures the underlying dependencies
among attributes of the data. A wide range of approaches
have been employed in the analysis of time series data. More
recently, the use of soft computing methodologies such as
fuzzy logic (type-1 and type-2), neural networks, simulated
annealing and genetic algorithms have been reported in the
literature for time series forecasting [1]–[4]. These latter
approaches have shown significant improvements over the
traditional statistical methods because they are non-linear and
are able to approximate any complex dynamical systems better
than linear statistical models [5].

Due to the prevalent uncertainty in data, fuzzy logic models
have been widely adopted. The reason behind this is that
the general framework of fuzzy logic connotes uncertainty.
However, because fuzzy logic systems lack the learning ca-
pability, they are often hybridised with learning algorithms
such as artificial neural networks (ANNs) - an approach that
is also adopted in this study. Fuzzy set (FS) theory was
introduced by Zadeh [6] as a generalisation of the classical
notion of a set. From the literature, a type-1 fuzzy logic
system (T1FLS) models uncertainty to a certain degree in
many applications and may not handle or minimise the effects

of uncertainties in some real world applications [7]. Zadeh [8]
therefore extended type-1 fuzzy set (T1FS) to include type-
2 fuzzy set (T2FS) which can handle uncertainties in a better
way in many applications because membership grades of T2FS
are themselves fuzzy.

Atanassov [9] extended the concept of Zadeh’s fuzzy sets
to intuitionistic fuzzy sets (IFSs), which handle uncertainty
using both the degrees of membership and non-membership
of an element x to a fuzzy set A together with some degree
of hesitancy. Intuitionistic fuzzy sets of type-1 have been
successfully employed in time series forecasting [10], [11].
However, because type-1 intuitionistic fuzzy sets (T1IFS) have
membership and non-membership grades that are precise, they
may not handle uncertainty well in many applications (see
[12]).

To this end, we propose an application of the recently
developed interval type-2 intuitionistic fuzzy logic system
(IT2IFLS) [12] framework for time series analysis. The
IT2IFLS utilises extra degrees of freedom in terms of interval
non-membership functions. This constitute a point of departure
of our model from other existing classical fuzzy models.
Our motivation is to apply IT2IFS to model uncertainty in
time series data with the objective of obtaining the minimum
prediction error.

The rest of the paper is structured as follows: In section II,
IFS, T2IFS and IT2IFS are defined. In section III, IT2IFLS is
designed and parameter update rules are derived. We present
our results in Section IV, and conclude in section V.

II. TYPE-1 AND TYPE-2 INTUITIONISTIC FUZZY SET

A. Intuitionistic Fuzzy Set (IFS)

Definition 1. [9] Given X as a non-empty set, an intu-
itionistic fuzzy set A∗ in X can be represented as: A∗ =
{(x, µA∗(x), νA∗(x)) : x ∈ X)}, where µA∗(x) : X → [0, 1]
is the membership grade and νA∗(x) : X → [0, 1] is the non-
membership grade of element x ∈ X and for each x ∈ X ,
0 ≤ µA∗(x) + νA∗(x) ≤ 1.

When νA∗(x) = 1−µA∗(x) for all x ∈ X , then A is a fuzzy
set. Moreover, πA∗(x) = 1 − (µA∗(x) + νA∗(x)) defines the
hesitancy of elements x in A∗.



B. Type-2 Intuitionistic Fuzzy Set (T2IFS)

A T2IFS [12] Ã∗ in X consists of type-2 membership and
non-membership grades of x ∈ X defined as µÃ∗(x, u) : u ∈
Jµx ⊆ [0, 1] and νÃ∗(x, u) : u ∈ Jνx ⊆ [0, 1] respectively.
where Jµx and Jνx in the domain (x, u) are defined as follows
[12]:

Jµx =
{

(x, u) : u ∈
[
µ
Ã∗ (x) , µÃ∗ (x)

]}
Jνx = {(x, u) : u ∈ [νÃ∗ (x) , νÃ∗ (x)]}

for membership and non-membership functions respectively.

Definition 2. A T2IFS [12] denoted by Ã∗ has a type-2
membership function µÃ∗(x, u), and a type-2 non-membership
function νÃ∗(x, u), i.e.,

Ã∗ = {(x, u) , µÃ∗ (x, u) , νÃ∗ (x, u) | ∀x ∈ X,
∀u ∈ Jµx ,∀u ∈ Jνx}

in which 0 ≤ µÃ∗ (x, u) ≤ 1 and 0 ≤ νÃ∗ (x, u) ≤ 1
where ∀u ∈ Jµx and ∀u ∈ Jνx conform to the T1 constraint
that 0 ≤ µA∗ (x) + νA∗ (x) ≤ 1. Thus, when uncertain-
ties disappear, a type-2 membership and non-membership
functions must collapse to a type-1 membership and non-
membership functions respectively and their amplitudes must
lie in the interval [0,1]. That is, 0 ≤ µÃ∗ (x, u) ≤ 1 and
0 ≤ νÃ∗ (x, u) ≤ 1. Alternatively,∫

x∈X

[∫
u∈Jµx

∫
u∈Jνx

{µÃ∗ (x, u) , νÃ∗ (x, u)}

]
/ (x, u)

where
∫ ∫ ∫

represents union over all admissible values of x
and u for a continuous universe of discourse, and

∑
is used

instead for discrete universe of discourse. When µÃ∗(x, u) = 1
and νÃ∗(x, u) = 1, a simpler version (IT2IFS) of a T2IFS is
obtained. (see Figure 1 and Equation (1)).

Definition 3. [13] An IT2IFS, Ã∗, consists of membership
and non-membership bounding functions defined as µ̄Ã∗(x),
µ
Ã∗(x) and ν̄Ã∗(x), νÃ∗(x) respectively for all x ∈ X with

constraints: 0 ≤ µÃ∗(x) + νÃ∗(x) ≤ 1 and 0 ≤ µ
Ã∗(x) +

νÃ∗(x) ≤ 1.

The IT2IFLS utilises two IF-indices which are defined as
follows [12]:

πc(x) = max (0, (1− (µÃ∗(x) + νÃ∗(x))))

πvar(x) = max (0, (1− (µÃ∗(x) + νÃ∗(x))))

πvar(x) = max
(

0,
(

1−
(
µ
Ã∗(x) + νÃ∗(x)

)))
such that: 0 ≤ πc(x) ≤ 1 and 0 ≤ πvar(x) ≤ 1.

As defined above, an IT2IFS Ã∗ is made up of interval type-
2 membership function, µÃ∗(x, u) and interval type-2 non-
membership function, νÃ∗(x, u) for every x ∈ X expressed

as in Eqn (1) [12].

Ã∗ =

∫
xεX

∫
uεJµx

∫
uεJνx

1/ (x, u)

=

∫
xεX

[∫
uεJµx

∫
uεJνx

1/ (u)

]/
x

(1)

where x is the primary variable, and u is the secondary vari-
able. The uncertainty about an IT2IFS is completely described
by membership and non-membership footprints of uncertainty
(FOUs) (see Figure (1)) and defined as in Eqns (2) and (3)
[12]

FOUµ

(
Ã∗
)

=
⋃
∀x∈X

[
µ
Ã∗(x), µ̄Ã∗(x)

]
(2)

FOUν

(
Ã∗
)

=
⋃
∀x∈X

[νÃ∗(x), ν̄Ã∗(x)] (3)

III. INTERVAL TYPE-2 INTUITIONISTIC FUZZY LOGIC
SYSTEM

Similar to a type-2 fuzzy logic system (T2FLS), a T2IFLS
consists of the fuzzifier, rule base, fuzzy inference engine and
output processing module.

A. Fuzzification

The fuzzification process employed is the interval singleton
type-2 fuzzification and involves the mapping of a numeric
input vector x ∈ X into an IT2IFS Ã∗ in X which activates the
inference engine. Here, interval singleton type-2 fuzzification
is employed. Hence, for every input x = x′, crisp numerical
values are obtained for membership (lower and upper values)
and non-membership (lower and upper values) with value
0 in all other positions where x 6= x′. The firing strength
for membership function and non-membership functions are
intervals [fµ, fµ] and [fν , fν] respectively.
Intuitionistic Gaussian membership and non-membership
functions with uncertain standard deviation are utilised for the
time series analysis which are defined as follows [12]:

Fig. 1: An IT2 intuitionistic Gaussian membership and non-
membership functions - IT2IFS [12]



µik (xi) = exp

(
− (xi − cik)

2

2σ̄2
2,ik

)
∗ (1− πc,ik(xi))

µik (xi) = exp

(
− (xi − cik)

2

2σ2
1,ik

)
∗ (1− πc,ik(xi))

νik (xi) = (1− πvar,ik(xi))−

[
exp

(
− (xi − cik)

2

2σ̄2
1,ik

)
∗ (1− πc,ik(xi))]

νik (xi) =
(
1− πvar,ik(xi)

)
−

[
exp

(
− (xi − cik)

2

2σ2
2,ik

)
∗ (1− πc,ik(xi))]

where πc,ik is the IF-index of center and πvar,ik is the IF-
index of variance [14]. The antecedent parameters are σ̄2,ik,
σ1,ik, πc,ik and πvar,ik.

B. Rules

The IF-THEN rule of an IT2IFLS has the same syntax as
that of the classical IT2FLS. The only difference is that IT2IFS
are used in the rule formation instead of ordinary IT2FS. The
rule representatipn is as follows:

Rk : IF x1 is Ã∗1k and x2 is Ã∗2k and · · · and xn is Ã∗nk
THEN yk is f (x1, x2, · · · , xn)

= w1kx1 + w2kx2 + · · ·+ wnkxn + bk (4)

where Ã∗1k,Ã∗2k, · · · ,Ã∗ik,· · · ,Ã∗nk are IT2IFS and yk is
the output of the kth rule formed by linear combination of
the input vector: (x1, x2, · · · , xn).

C. Inference

The IT2IFLS proposed in this study benefits from type-2
intuitionistic membership and non-membership functions in
the antecedent parts and a linear function in the consequent
parts, otherwise referred to as A2-C0 intuitionistic fuzzy
system

The output of IT2IFLS is computed as follows [12]:

y =
(1− β)

∑M
k=1

(
fµk + fµk

)
yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

+
β
∑M
k=1

(
fνk + fνk

)
yνk∑M

k=1 f
ν
k +

∑M
k=1 f

ν
k

(5)
where fµ

k
, f

µ

k , fν
k

and f
ν

k are the lower membership, up-
per membership, lower non-membership and upper non-
membership firing strength respectively. The implication op-
erator adopted for the study is the “prod” t-norm such that:

fµk (x) = µ
Ã∗

1k
(x1) ∗ µ

Ã∗
2k

(x2) ∗ · · · ∗ µ
Ã∗

nk
(xn)

fµk (x) = µÃ∗
1k

(x1) ∗ µÃ∗
2k

(x2) ∗ · · · ∗ µÃ∗
nk

(xn)

fνk (x) = νÃ∗
1k

(x1) ∗ νÃ∗
2k

(x2) ∗ · · · ∗ νÃ∗
nk

(xn)

fνk (x) = νÃ∗
1k

(x1) ∗ νÃ∗
2k

(x2) ∗ · · · ∗ νÃ∗
nk

(xn)

where ∗ is the “prod” operator, yµk and yνk are the output of the
kth rule corresponding to membership and non-membership
functions respectively. The user defined parameter β speci-
fies the contribution of the membership and non-membership
values in the final output, where β ∈ [0, 1]. It follows that
if β = 0, only the membership function is involved in the
output generation and if β = 1, then the system’s outputs is a
function of only the non-membership. The parameters of the
antecedent and consequent parts of the rules are tuned using
gradient descent algorithm (GDA). The cost function for a
single output is defined as follows:

E =
1

2
(ya − y)

2

where ya is the actual output and y is the simulated output.
The parameter update rules are as follows:

wik(t+ 1) = wik(t)− γ ∂E

∂wik
(6)

bk(t+ 1) = bk(t)− γ ∂E
∂bk

(7)

cik(t+ 1) = cik(t)− γ ∂E
∂cik

(8)

σ1,ik(t+ 1) = σ1,ik(t)− γ ∂E

∂σ1,ik
(9)

σ2,ik(t+ 1) = σ2,ik(t)− γ ∂E

∂σ2,ik
(10)

where γ is the learning rate(step size). The derivatives in
Equations (6) and (7) are computed as follows:

∂E

∂wik
=
∂E

∂y

∂y

∂yk

∂yk
∂wik

=
∑
k

∂E

∂y

[
∂y

∂yµk

∂yµk
∂wµik

+
∂y

∂yνk

∂yνk
∂wνik

]
where yk is defined as in Equation (4). The derivatives in
Equations (8) to (10) are computed as follows:

∂E

cik
=
∑
k

∂E

∂y

[
∂y

∂fµ
k

∂fµ
k

∂µ
ik

∂µ
ik

∂cik
+

∂y

∂f
µ

k

∂f
µ

k

∂µik

∂µik
∂cik

+
∂y

∂fν
k

∂fν
k

∂νik

∂νik
∂cik

+
∂y

∂f
ν

k

∂f
ν

k

∂νik

∂νik
∂cik

]

∂E

σ1,ik
=
∑
k

∂E

∂y

[
∂y

∂fµ
k

∂fµ
k

∂µ
ik

∂µ
ik

∂σµ1,ik
+

∂y

∂fν
k

∂fν
k

∂νik

∂νik
∂σν2,ik

]

∂E

σ2,ik
=
∑
k

∂E

∂y

[
∂y

∂f
µ

k

∂f
µ

k

∂µik

∂µik
∂σµ2,ik

+
∂y

∂f
ν

k

∂f
ν

k

∂νik

∂νik
∂σν1,ik

]
In the next section, we carry out the evaluation of the devel-
oped model to assess its efficiency and performance on three
real world application domains.

IV. EXPERIMENTS AND RESULTS

In this section, three real world applications are investigated
to verify the feasibility and effectiveness of the proposed



IT2IFLS on time series datasets namely Santa Fe, tree ring and
Canadian lynx time series. The experiments are conducted and
the results are compared with similar studies in the literature.
The performance criteria used for the experiments are the root
mean square error (RMSE), the non-dimensional error index
(NDEI) and the mean absolute error (MAE) as expressed in
Equations (11) to (13) respectively.

RMSE =

√√√√ 1

N

N∑
i=1

(ya − y)
2 (11)

NDEI =
RMSE

std(ya)
(12)

MAE =
1

N

N∑
i=1

|ya − y| (13)

where ya is the desired output and y is the output of the model,
N is the number of testing data points.

Two intuitionistic Gaussian membership and non-
membership functions are utilised for all experiments.
The value of β is initially set to 0.5 to allow equal initial
contribution of membership and non-membership functions
to the model outputs. The values for the weights (w) and
bias (b) are randomly generated in the interval [0,1]. All
experiments are carried out using MATLAB c© 2014 running
on a 64-bit Intel core i3-4130 CPU@3.40GHz /8GB RAM
configuration computer.

A. Example 1 - Santa Fe time series

This example considers the Santa Fe Laser dataset of the
Santa Fe time series competition obtained from [15]. The
data were measured from a far-infra-red laser in a chaotic
state. This series was earlier analysed in [16], and a model
called pattern modeling and recognition system (PMRS) was
proposed. The performance comparison using neural network
(NN) and a statistical exponential-smoothing (ES) was also
reported. The Santa Fe time series is a univariate time series
measured from a physical system in the laboratory. The com-
putational protocols are similar to [17], 1000 samples are used
with five inputs and one output with the data generation vector
represented as: y(t) = (y(t−1)y(t−2)y(t−3)y(t−4)y(t−5)).
All samples are scaled to within the range [0, 1] by dividing
each by the maximum value of the dataset. Similar to [17],
90% of the samples are used for training while 10% are used
for testing. The parameters β = α = 0.5 with 100 training
epochs. Table I shows the performance of IT2IFLS with other
fuzzy approaches on both the training and test set. The results
show that IT2IFLS reduces the RMSE of the test set compared
to the non-fuzzy and other fuzzy approaches except SVR-FM
with ε = 0.001. The reason for this could be in the large
number of parameters (4484 parameters) which could lead to
the possible improvement in the approximation capability of
SVR-FM ( ε = 0.001). The performance of IT2IFLS on the
test set of Santa-Fe time series is an indication of a good
generalisation capability of the model.

Fig. 2: Plot of Santa Fe laser time series dataset

Fig. 3: IT2IFLS prediction output of Santa Fe Laser

B. Tree Ring Time Series

The tree ring time series obtained from [21] contains annual
measures of tree rings width measured in Argentina for the pe-
riod 441-1974. The dataset is randomly split into 75% training
and 25% testing. In [22], the evolving fuzzy optimally pruned
extreme learning machine (eF-OP-ELM), was reported for
analysing this time series. The dynamic evolving neuro-fuzzy
inference system (DENFIS), evolving Takagi-Sugeno (eTS)
model and online sequential method for fuzzy systems based
on online sequential ELM (OS-fuzzy-ELM) were also reported
in [22] for tree ring time series analysis. All computational
protocols in this study are arranged as close as possible to
those reported in [22] to ease comparison. Table II shows the
average cross validation NDEI and standard deviation (Std)
of the tree ring dataset for 25 trials. From Table II, IT2IFLS
outperforms other fuzzy models with reduced NDEI.

TABLE II: Tree ring time series forecasting

Models NDEI Std NDE
DENFIS [23] 0.959 0.624

eTS [24] 0.714 0.457
OS-Fuzzy-ELM [25] 0.794 0.511

eF-OP-ELM [22] 0.841 0.536
IT2IFLS-TSK 0.395 0.157

C. Canadian Lynx Time series

This time series is selected in order to compare the perfor-
mance of IT2IFLS on non-fuzzy approaches. Canadian lynx



TABLE I: Performance comparison of IT2IFLS with other models on Santa Fe time series A dataset

Models Rule Number Parameter number Training RMSE Test RMSE
ES [16] - - - 56.20
NN [16] - - - 24.6

PMRS [16] - - - 14.23
SONFIN [18] 9 144 6.956 5.983

T2FLS-G 5 135 8.50 7.16
SEIT2FNN [19] 5 135 7.677 5.766

IT2FNN-SVR(N) [17] 5 106 13.565 4.337
IT2FNN-SVR(F) [17] 5 106 9.094 3.474

SVR-FM (ε = 0.1) [20] 31 188 14.370 9.707
SVR-FM (ε = 0.001) [20] 747 4484 7.069 1.650

IT2IFLS-TSK 32 434 8.355 2.261

dataset is a time series that shows the number of lynx trapped
in the Mckenzie river district per year in northern Canada
and corresponds to the period 1821-1934. Similar to previous
studies such as [26]–[28], the logarithms to the base 10 of
the data are used in the analysis. Figures 4 and 5 show the
original and the logarithmic transformed data of the Canadian
lynx series respectively, with a periodicity of approximately 10
years. The series consists of 114 observations of which 100
samples are used for training and the remaining 14 are used
for testing in order to validate the effectiveness of the model
proposed in this study. Similar to [28], the maximum training
epoch adopted is 2000. As shown in Table III, IT2IFLS
outperforms the listed non-fuzzy approaches on the Canadian
lynx dataset.

Fig. 4: Original Canadian lynx time series data (1821-1934)

Fig. 5: Transformed Canadian lynx time series data

TABLE III: Performance comparison of IT2IFLS with non-
fuzzy models on Canadian lynx time series

Models MSE MAE
Zhang’s ARIMA [26] 0.020486 0.112255

ANN [26] 0.020466 0.112109
ANN (p,d,q) [29] 0.013609 0.089625
Zhang’s Hybrid

ARIMA/ANNs model [26] 0.017233 0.103972
Hybrid ARIMA/ERNN model [30] 0.009 -

SETAR [31] 0.014 -
FNN [31] 0.009 -

Generalised Hybrid
ARIMA/ANNs model [32] 0.00999 0.085055

ANN/PNN model [27] 0.014872 0.079628
ARIMA/PNN model [27] 0.011461 0.084381

MNM-ANN-DEA [33] 0.00663 -
GA-BPNN 0.013599 0.081477
DE-BPNN 0.012899 0.080542

ANN Ensemble 0.00715 -
RBF-AR 0.0073 -

ADE-BPNN [28] 0.010392 0.070723
GLSSVM 0.00560 0.0552

L&NL-ANN 0.006 -
IT2IFLS-TSK 0.00463 0.0205

V. CONCLUSION

In this study, an IT2IFLS-TSK approach to time series
forecasting is presented. The IT2IFLS can accommodate more
imprecision in terms of non-membership function, thereby
modelling imperfect and imprecise knowledge better than
some classical fuzzy approaches. The key contribution in
this study is the integration of non-membership function and
IF-index in IT2FLS (IT2IFLS). These extra parameters of
IT2IFLS give it additional design degrees of freedom to handle
uncertainties well. In future, we intend to learn the parameters
of the IT2IFLS using hybrid approach of GD and Kalman filter
algorithms. We also intend to apply IFS to general T2FLS.
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