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Abstract. We present a novel approach to computing transition probabilities in quantum
field theory, which allows them to be written directly in terms of expectation values of nested
commutators and anti-commutators of field operators, rather than squared matrix elements.
We show that this leads to a diagrammatic expansion in which the retarded propagator plays a
dominant role. As a result, one is able to see clearly how faster-than-light signalling is prevented
between sources and detectors. Finally, we comment on potential implications of this approach
for dealing with infra-red divergences.

1. Introduction
The utility of scattering-matrix theory has biased the development of techniques in quantum field
theory towards the calculation of transition amplitudes. However, isolated transition amplitudes
are not physical observables and they often suffer from artefacts that are eliminated only after we
combine individual amplitudes into transition probabilities. For instance, the soft and collinear
infra-red (IR) divergences occurring in gauge amplitudes are cancelled by the interference of
virtual and real emissions by means of the Bloch-Nordsieck [1] and Kinoshita-Lee-Nauenberg
theorems [2, 3] (in the case of spin-1) or the Weinberg soft graviton theorem [4] (in the case
of spin-2). In non-Abelian gauge theories, unphysical polarisation states are removed by the
contributions from Faddeev-Popov ghosts [5]. It seems reasonable therefore to pursue means of
directly calculating transition probabilities that bypass the amplitude level altogether, the hope
being that such artefacts never appear explicitly.

Another (not unrelated) artefact of dealing with amplitudes, and one that we will focus on
in this note, is apparent a-causal behaviour, i.e. behaviour seemingly at odds with Einstein
causality and the forbiddance of faster-than-light signalling. The archetypal example of such a
signalling process is the famous Fermi two-atom problem [6]. Fermi considered two point-like
atoms, A and B, separated by a distance R. Atom A is initially prepared in an excited state,
and atom B is initially prepared in its ground state. Fermi calculated the probability that,
after a time T , atom A would be found in its ground state, and atom B would be found in an
excited state, following the exchange of a photon. Fermi claimed to prove that this probability
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Figure 1. The four amplitudes relevant to the Fermi problem. Fermi considered diagram (b)
in isolation, and it can be shown that |(b)|2 �= 0 for T < R/c. It is only in the combination
|(b)|2 + |(c)|2 + 2Re[(a)(d)∗] that the a-causal parts cancel. Notice that this cancellation relies
on the interference of diagrams involving only unobserved emissions.

is strictly zero for all times T < R/c. Fermi was in fact wrong, and one should expect a non-zero
probability for all T , since the simultaneous measurement of the states of atoms A and B does
not constitute a local measurement. Instead, we should ask for the probability that atom B is
found in an excited state after a time T without making any restriction on the states of atom
A or the electromagnetic field [7, 8, 9]. (A recent introduction to the Fermi problem and an
overview of its history can be found in Ref. [10].) As we will see, this local measurement is
independent of the state of atom A for all times T < R/c, therefore being manifestly causal in
the weak sense (see, e.g., Ref [11]).

The local measurement described above is fully inclusive over the states of atom A and the
electromagnetic field. As such, we must account for unobserved emission of photons in the final
state, and the four amplitudes relevant to the Fermi problem are shown in Fig. 1. By working
directly at the level of the probability, we will find that we do not need to sum explicitly
over these unobserved emissions [10]. This suggests that one may be able to write down semi-
inclusive transition probabilities in which the Bloch-Nordsieck cancellation is applied implicitly,
potentially having a significant impact on the way in which we deal with IR divergences in gauge
theories. As a step towards this, we will conclude the present note by describing an example of
a Fock-space projection operator for (semi-)inclusive observables (see Ref. [12]).

2. Causality
Causality is built into quantum field theory ab initio through the vanishing of the equal-time
commutator of field operators, in the case of bosons, or anti-commutator of field operators, in
the case of fermions. This is the so-called microcausality condition. For example, given a real
scalar field φx ≡ φ(x), we have

[
φx, φy

]
= 0 ∀ (x− y)2 < 0 (space-like) . (1)

However, it is the Feynman propagator

Δ(F)
xy ≡ Δ(F)(x, y) =

1

2
sgn(x0− y0) 〈

[
φx, φy

]〉 + 1

2
〈{φx, φy

}〉 =

∫
d4k

(2π)4
ie−ik·(x−y)

k20 − E2
k + iε

(2)

that is ubiquitous in S-matrix theory and it has support over space-like separations due to the
anti-commutator term 〈{φx, φy

}〉. In Eq. (2), Ek =
√
k2 +m2 is the on-shell energy (for a

field of mass m), and sgn(x0 − y0) is the signum function, which may be expressed in terms of
unit-step functions as sgn(x0 − y0) ≡ Θ(x0 − y0)−Θ(y0 − x0).
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The fact that causality is not manifest at the amplitude level can be understood directly
in terms of the Feynman prescription (k20 → k20 + iε, ε = 0+), since this choice of analytic
continuation allows us to Wick rotate between Minkowski space-time, which has causal structure,
and four-dimensional Euclidean space, which does not. It is perhaps even more disconcerting
that the a-causal part of the Feynman propagator actually corresponds to on-shell propagation,
that is the part that we would normally associate with real particles. If causality is to be
manifest then it is surely the retarded and advanced propagators

Δ(R)
xy = Δ(A)

yx =
1

i
Θ(x0 − y0) 〈

[
φx, φy

]〉 =

∫
d4k

(2π)4
e−ik·(x−y)

k20 − E2
k ± iε sgn(k0)

(3)

that should play the dominant role, since these have support only over light- and time-like
separations. Note that neither the retarded (k20 → k20 + iε sgn(k0), ε = 0+) nor advanced
(k20 → k20 − iε sgn(k0), ε = 0+) pole prescriptions permit us to Wick rotate, as we should expect.
In the next section, we will show that the retarded and advanced propagators do in fact play
this dominant role but only at the level of probabilities, and their presence will ensure that
faster-than-light signalling is forbidden. Moreover, we will see that they emerge through the
interplay of time- and anti-time-ordered products of field operators.

Time-ordering of the two-point function corresponds to the Feynman prescription (k20 →
k20 + iε), which places the positive- and negative-frequency poles in the second and fourth
quadrants of the complex plane, respectively. Instead, anti-time-ordering corresponds to the
Dyson prescription (k20 → k20 − iε), which places the positive- and negative-frequency poles in
the first and third quadrants, respectively. It is through combinations of terms involving these
two prescriptions that both poles can appear in the lower-half complex plane to give the retarded
propagator or the upper-half complex plane to give the advanced propagator.

The role of both time orderings can also be illustrated by means of the Bogoliubov-Shirkov
causality condition [13]. We begin with the familiar S-matrix operator

S[λ] = T exp

[
− i

∫
d4zHint

z (λ)

]
, (4)

where T is the time-ordering operator and the domain of integration over z0 is ]−∞,∞[. Taking
a local interaction Hamiltonian density Hint

z (λ) = λφ4
z/4!, we imagine promoting the coupling λ

to one of two space-time dependent functions λz ≡ λ(z) or λ′z ≡ λ′(z). If the coupling functions
λz and λ′z coincide for all z0 earlier than some time t, the product S[λ′]S†[λ] must be independent
of the behaviour of these functions for all times z0 < t by unitarity. Letting λ′z = λz + δλz,
where the infinitesimal variation δλz is only non-zero for z0 > t, we expand

S[λ′]S†[λ] = S[λ]S†[λ] +
δS[λ]

δλy
δλy S

†[λ] = I +
δS[λ]

δλy
δλy S

†[λ] , (5)

in which the integral over y (for y0 > t) in the first functional variations is left implicit. If this
product is to be consistent with causality, Eq. (5) must still be independent of the behaviour of
the coupling function for all times x0 < t < y0 and, by Lorentz covariance, for all x and y that
are space-like separated. We therefore require that the quantity

δ

δλx

[
δS[λ]

δλy
S†[λ]

]
(6)

vanish for all x � y, i.e. for all x causally preceding or space-like separated from y. This gives
the Bogoliubov-Shirkov causality condition [13]:

δ2S[λ]

δλx δλy
S†[λ] +

δS[λ]

δλy

δS†[λ]
δλx

= 0 ∀ x � y , (7)
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which can be satisfied only through the cancellation of terms originating from S (time-ordered)
and S† (anti-time-ordered).

Making use of the explicit form of the S-matrix operator in Eq. (4), Eq. (7) can be written

T

[
∂Hint

x

∂λx

∂Hint
y

∂λy
S

]
S† − T

[
∂Hint

y

∂λy
S

]
T̄

[
∂Hint

x

∂λx
S†

]
= 0 ∀ x � y , (8)

where T̄ is the anti-time-ordering operator. At lowest order in the coupling function, this requires

Θ(x0 − y0)

[
∂Hint

x

∂λx
,
∂Hint

y

∂λy

]
= 0 ∀ x � y , (9)

and, on substituting for the interaction Hamiltonian density, we obtain the constraint

i

(3!)2
Δ(R)

xy φ3
xφ

3
y +

1

(2!)3
[Δ(R)

xy ]2φ2
xφ

2
y −

i

3!
[Δ(R)

xy ]3φxφy − 1

4!
[Δ(R)

xy ]4 = 0 ∀ x � y . (10)

This is automatically satisfied due to the presence of the retarded propagators,† which have
originated from the commutator in Eq. (9). Proceeding to higher orders in the coupling,
the combination of time- and anti-time-ordered products will give rise to a series of nested
commutators of the Hamiltonian density that is again consistent with causality. In the next
section, we will show that this series can be obtained straightforwardly at the level of expectation
values by application of the Baker-Campbell-Hausdorff formula.

We remark that the Bogoliubov-Shirkov causality condition [Eq. (7)] can be expressed in
terms of the largest time equation [14], of which Eq. (10) is an example. This hints at the
fundamental relationship between unitarity and causality. This connection has recently been
emphasised [15] by means of the tree-loop duality relations [16, 17], and it can be made explicit
(see Ref. [18]) through the Kobes-Semenoff unitarity cutting rules [19, 20, 21] of the Schwinger-
Keldysh closed-time-path (or in-in) formalism [22, 23].

3. Sources and detectors
We now turn out attention to the signalling between sources and detectors. For simplicity,
we introduce a scalar analogue of the Fermi two-atom problem [10], which consists of a real
scalar field φ that interacts with two static “atoms” S and D, fixed at positions xS and xD,
respectively. Working in the interaction picture, the free part of the Hamiltonian is

H0 =
∑
n

ωS
n |nS〉〈nS | +

∑
n

ωD
n |nD〉〈nD| +

∫
d3x

(
1
2(∂tφ)

2 + 1
2(∇φ)2 + 1

2m
2φ2

)
, (11)

where the states {|nX〉} form a complete set of bound states for atom X ∈ {S,D}. The
interaction Hamiltonian is

Hint(t) = MS(t)φ(xS , t) + MD(t)φ(xD, t) , (12a)

MX(t) ≡
∑
m �=n

μX
mn e

iωX
mnt |mX〉〈nX | , (12b)

†We have made use of the result (valid for all integer n,m ≥ 1)

[
φn
x , φ

m
y

]
=

min(n,m)∑

k=1

(−1)k+1 n!m!

k!(n− k)!(m− k)!

[
φx, φy

]k
φn−k
x φm−k

y .
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where ωX
mn ≡ ωX

m − ωX
n and μX

mn are monopole moments.
At time t = 0, the system is prepared with atom D in its ground state (|gD〉), the field φ

in its vacuum state (|0φ〉) and atom S in an incoherent superposition of its ground and excited
states (|gS〉 and |pS〉). This corresponds to an initial density operator

ρ0 ≡ ρ(0) = γ |ip〉〈ip| + (1− γ) |ig〉〈ig| , |ip(g)〉 = |p(g)S〉 ⊗ |gD〉 ⊗ |0φ〉 , (13)

where γ ∈ R parametrises the admixture of the initial states of the source atom S. The
measurement (at some later time t = T ) is effected by an operator E, which projects into
the subspace of states in which the detector atom D is in its excited state (|qD〉) but with no
restriction on the states of atom S or the field φ:

E ≡ ES ⊗ ED ⊗ E = I
S ⊗ |qD〉〈qD| ⊗ I

φ . (14)

The probability of the local measurement outcome “atom D excited” is then

P(D∗) = Tr (EρT ) = Tr (U †T,0EUT,0ρ0) , (15)

where

UT,0 = Texp

[
− i

∫ T

0
dt Hint(t)

]
(16)

is the time-evolution operator. It is important to draw a clear distinction between the probability
of the measurement outcome in Eq. (15) and the sensitivity of the detector to the initial
preparation of the system. The latter tells us about our ability to signal between the source and
detector atoms, and it is given by

σpg ≡ dP(D∗)
dγ

= Pp(D
∗) − Pg(D

∗) , Pp(g)(D
∗) ≡ 〈ip(g)|U †T,0EUT,0|ip(g)〉 . (17)

By applying the Baker-Campbell-Hausdorff formula to Eq. (17), the combination of time-
ordered (from U) and anti-time-ordered exponentials (from U †) gives rise to an infinite series of
nested commutators [10, 18, 24, 25]. This can be written in the form [10, 18]

Pp,g =

∞∑
j=0

∫ T

0
dt1 dt2 . . . dtj Θ12...j 〈ip,g| Fj |ip,g〉 , (18)

where F0 ≡ E,

Fj = 1
i

[
Fj−1, Hint(tj)

]
= 1

i

[
Fj−1, MS

j φ
S
j + MD

j φD
j

]
, (19)

and Θijk... is equal to 1 for ti > tj > tk > . . . and 0 otherwise. We use the short-hand notation
MX

j ≡MX(tj) and φX
j ≡ φ(xX , tj). By defining

EX
...k ≡ 1

i

[
EX

... , M
X
k

]
, EX

...
¯
k ≡ {

EX
... , M

X
k

}
, (20a)

E ...X...k ≡ 1
i

[E ...... , φX
k

]
, E ...X...

¯
k ≡ {E ...... , φX

k

}
, (20b)

we can introduce a convenient “undercircle” notation [10]

E
◦k◦l
E
•k•l
≡ EklE

¯
k
¯
l + Ek

¯
lE

¯
kl + E

¯
klEk

¯
l + E

¯
k
¯
lEkl , (21)
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which allows us to write the n-th order operator appearing in Eq. (18) as

Fn = 2−n
n∑

a=0

ES
(◦1...··· ◦a

ED
a+◦1...··· ◦n)

E(S...S D...D)
(•1 ...··· •a a+•1...··· •n)

. (22)

The parentheses indicate a summation over all unique ordered permutations of the indices, e.g.,
ES

(12E
D
3) = ES

12E
D
3 + ES

13E
D
2 + ES

23E
D
1 .

In the effect operator [Eq. (14)], we have made no restriction on the states of atom S or the
field φ, fixing ES = I

S and E = I
φ. We may then show that:

(i) ES
k... = 0, such that the first index on ES

... must always be underlined, with ES

¯
k = 2MS

k .

(ii) EX...
1... = 0 and EXY Z...

¯
123... = 0, such that the ‘1’ index (the latest time) is never underlined on

EX
1... and, more generally, any E ...... operator vanishes when its first k indices consist of more

non-underlined than underlined indices for any k.

These restrictions allow us to eliminate a large proportion of the terms in Eq. (22).
The first non-vanishing contributions to Eq. (17) arise from the fourth-order operator

F4 = 1
16

(
ED

12◦3◦4
EDDDD
¯
1
¯
2•3•4

+ ED
1
¯
23◦4
EDDDD
¯
12
¯
3•4

+ ED
12◦3

ES

¯
4 EDDDS

¯
1
¯
2•34

+ ED
1
¯
23E

S

¯
4 EDDDS

¯
12
¯
34

+ ED
12◦4

ES

¯
3 EDDSD

¯
1
¯
23•4

+ ED
13◦4

ES

¯
2 EDSDD

¯
12

¯
3•4

+ ED
12E

S

¯
3◦4
EDDSS
¯
1
¯
23•4

+ ED
13E

S

¯
2◦4
EDSDS
¯
12
¯
3•4

+ ED
1◦4
ES

¯
23EDSSD

¯
12
¯
3•4

+ ED
1 ES

¯
23◦4
EDSSS
¯
12
¯
3•4

)
. (23)

Substituting this expression into Eq. (17), the leading-order result for the sensitivity of atom D
to the preparation of the system is [10]

dP(D∗)
dγ

= 2
∑
n

∫
t1>t2>t3>t4

|μS
pn|2|μD

qg|2

×
[
cos(ωD

qgt12)
(
sin(ωS

pnt34)Δ
DS(H)
24 + cos(ωS

pnt34)Δ
DS(R)
24

)
Δ

DS(R)
13

+ cos(ωD
qgt12)

(
sin(ωS

pnt34)Δ
DS(H)
14 + cos(ωS

pnt34)Δ
DS(R)
14

)
Δ

DS(R)
23

+ cos(ωD
qgt13)

(
sin(ωS

pnt24)Δ
DS(H)
34 + cos(ωS

pnt24)Δ
DS(R)
34

)
Δ

DS(R)
12

+ sin(ωS
pnt23)

(
cos(ωD

qgt14)Δ
SD(H)
34 + sin(ωD

qgt14)Δ
SD(R)
34

)
Δ

DS(R)
12

]
+ · · · ,

(24)

where tij ≡ ti − tj , and we have defined the retarded and Hadamard propagators

Δ
XY (R)
jk ≡ 1

i Θjk 〈
[
φX
j , φY

k

]〉 , (25a)

Δ
XY (H)
jk ≡ 〈{φX

j , φY
k

}〉 . (25b)

Most importantly, we see that the latest time on the source atom is always connected to a
later time on the detector atom by a retarded propagator. As a result, Eq. (24) is strictly
zero if the source and detector atoms are space-like separated, and faster-than-light signalling is
manifestly prohibited. The expectation value of F4 is illustrated diagrammatically in Fig. 2. A
full exposition of the diagrammatic rules for this system is presented in Ref. [10]; this includes
results for the expectation values of general nestings of commutators and anti-commutators of
field operators, as well as the rules for computing the expectation values of the atom operators.

We remark that the above approach can be generalised to include additional fields, as well as
their mutual and self-interactions; local interactions that involve spatial and temporal derivatives
of the fields; and spatially extended sources and detectors (see Ref. [10]). In all of these cases,
the manifest causality of local measurements persists.
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Figure 2. Diagrammatic representation of F4, describing the evolution of the density operator
forwards in time due to the exchange of a φ quantum. The initial time t = 0 is at the bottom
of the diagrams and the time of the measurement t = T is at the top of the diagrams. The
solid vertical lines track the source (blue) and detector (green) atoms. Orange dashed lines with
arrows are associated with retarded propagators Δ

XY (R)
ij , and those without arrows are associated

with Hadamard propagators Δ
XY (H)
ij . Each vertex is associated with a monopole moment μX

mn.

4. Implications for (semi-)inclusive observables
In order to obtain a causal result in Sec. 3, it was necessary to sum inclusively over the
unobserved final states of the would-be photon field φ (and source atom S). Doing otherwise
would have required us to sample the state of the field everywhere simultaneously, which would
not constitute a local measurement. However, if we compare Figs. 1 and 2, we notice that the
unobserved emissions necessarily accounted for in the amplitude-level calculation never appeared
explicitly in the probability-level calculation. This can be traced back to the simple fact that,
at the probability level, the effect operator corresponding to a fully inclusive measurement
is just the unit operator, which trivially commutes with everything else, dropping out of the
calculation entirely. The import of this observation is the following: by working directly with
probabilities, we do not have to keep track of and calculate the individual amplitudes for all
possible unobserved emissions in the final state.

Notwithstanding the potential implications of this for treating IR divergences, probability-
level calculations allow us to introduce projection operators for (semi-)inclusive measurements,
which do not have simple analogues at the amplitude level [12]. As an example, the effect
operator that sums inclusively over final-state radiation with momenta below some scale μ is

Eμ = : e−Nμ : , Nμ =

∫
d3k

(2π)3
1

2Ek
θ(|k| − μ) a†kak . (26)

The colons indicate normal ordering, and a†k and ak are the usual scalar creation and annihilation
operators. In the limit μ→∞, the operator is fully inclusive over final-state radiation:

lim
μ→∞Eμ = I , (27a)

lim
μ→∞ 〈0|φ(x1)φ(x2)Eμφ(x3)φ(x4)|0〉 = 〈0|φ(x1)φ(x2)φ(x3)φ(x4)|0〉 , (27b)

where the appearance of the four-point amplitude is a consequence of the optical theorem. In
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the limit μ→ 0, the operator projects out the vacuum exclusively (see, e.g., Ref. [26]):

lim
μ→ 0

Eμ = |0〉〈0| , (28a)

lim
μ→ 0

〈0|φ(x1)φ(x2)Eμφ(x3)φ(x4)|0〉 = 〈0|φ(x1)φ(x2)|0〉〈0|φ(x3)φ(x4)|0〉 . (28b)

For finite μ, Eq. (26) defines an operator form of the Sudakov factor [27]. Such an object could
not be written down at the amplitude level.

5. Concluding remarks
In this note, we have outlined a method for directly calculating transition probabilities in
quantum field theory in terms of the expectation values of nested commutators and anti-
commutators of field operators. These transition probabilities are manifestly causal and have
the interesting feature that unobserved emissions are accounted for implicitly in (semi-)inclusive
measurements. The ability to sum implicitly over soft emissions may have important implications
for how we deal with IR divergences in gauge theories, and this motivates the further development
of technologies for evaluating these probabilities. Such technology may, for instance, exploit the
connection between causality and unitarity to which we have alluded, making use of the unitarity
cutting rules of the closed-time-path formalism and building upon ideas presented in Ref. [18].
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