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Abstract

Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative

medicine treatments for orthopaedic repair and beyond. Following developments in

isolation, expansion and differentiation protocols, efforts to promote clinical

translation of emerging cellular strategies now seek to improve cell delivery and

targeting. This study shows efficient live MSC labelling using silica-coated magnetic

particles (MPs), which enable 3D tracking and guidance of stem cells. A procedure

developed for the efficient and unassisted particle uptake was shown to support

MSC viability and integrity, while surface marker expression and MSC differentiation

capability were also maintained. In vitro, MSCs showed a progressive decrease in

labelling over increasing culture time, which appeared linked to the dilution effect of

cell division rather than particle release, and did not lead to detectable secondary

particle uptake. Labelled MSC populations demonstrated magnetic responsiveness

in vitro through directed migration in culture and when seeded onto a scaffold,

supporting MP-based approaches to cell targeting. The potential of these silica-

coated MPs for MRI-cell tracking of MSC populations was validated in 2D and in a

cartilage repair model following cell delivery. These results highlight silica-coated

magnetic particles as a simple, safe and effective resource to enhance MSC

targeting for therapeutic applications and improve patient outcomes.

Keywords: Mesenchymal stem cell, cell labelling, magnetic microparticle, cell

targeting, regenerative medicine
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1. Introduction

Over the past decades, a range of iron oxide-based magnetic particles (MPs) have

been developed for clinical applications in the field of magnetic resonance imaging

(MRI) (Gilchrist et al., 1957). Superparamagnetic iron oxide nanoparticles (SPIOs)

are a specific class of magnetic particles known for their application as T2-weighted

negative MRI contrast agents designed to overcome the inherent low sensitivity

associated with MRI (Pooley 2005, Bulte and Kraitchman 2004). Magnetic particles

composed of either a magnetite (Fe3O4) or maghemite (γ-Fe2O3) core (Berman et al.,

2011, Gupta and Gupta 2005) surrounded by a biocompatible polymer such as silica

and dextran have been used for the labelling and identification of cell populations

(Kunzmann et al., 2011). FDA-approved iron-based particles such as Endorem (also

referred to as Feridex) and Resovist have been used as MRI contrast agents in

recent years (Berman et al., 2011, Jasmin et al., 2011), however since these

products are no longer clinically used there is a need for validated products offering

low toxicity, biocompatibility, and chemical stability in physiological conditions

(Hofmann-Amtenbrink et al., 2010, Mahmoudi et al., 2011).

While the literature on MPs has largely focused on developing particle design,

synthesis and characterization (McBride et al., 2013), recent studies have also

investigated MPs for cell-based applications beyond MRI imaging, as their applied

magnetic fields have been used to develop new approaches to enhance transfection

(Pickard et al., 2011), induce hyperthermia (Kobayashi 2011), force in vitro

aggregation (Fayol et al., 2013), enable regenerative therapies (El Haj et al., 2012)

and activate cell receptor signalling on the cell membrane (Henstock et al., 2014).

Their small size and magnetic properties, coupled with versatile surface coatings

(Gupta and Gupta 2005) open a range of new approaches which could see MPs
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enhance existing and future regenerative cell therapies. Such cell-based approaches

require the targeted delivery of functional populations such as mesenchymal stem

cells (MSCs), which have become a resource of prime importance for their skeletal

regeneration ability (Caplan 2007, Quarto et al., 2001), but also for their properties of

immune modulation (Le Blanc et al., 2003), anti-inflammation (Uccelli 2008) or

trophic secretion (Caplan and Dennis 2006). MSC-based therapies for tissue repair

require auxiliary approaches which enable in vivo tracking, delivery and targeting, in

order to monitor and improve the retention of functional cells at the intervention site

(Wimpenny et al., 2012).

In this study, the suitability of MPs presenting a silica surface with negatively

charged silanol groups was investigated for use in human mesenchymal stem cells

as a labelling, imaging and manipulation agent. The labelling dynamics and cellular

response were analyzed with a particular emphasis on markers of cell health, identity

and functional potential of the target population, as well as their suitability for cell

tracking purposes in an articular model. Observations presented here can help refine

novel applications of MP labelling and evaluate the resulting health considerations of

future MP-assisted stem cell therapies.

2. Materials and Methods

All reagents were purchased from Life Technologies unless otherwise stated.

2.1. Human Mesenchymal Stem Cell Cultures: A human bone marrow derived

mesenchymal stem cell line (hMSCs) (Okamoto et al., 2002, France et al., 2014)

was cultured and expanded under standard cell culturing conditions (37.5°C, 5%

CO2) in standard culture medium consisting of Dulbecco's Modified Eagle's Medium



5

(DMEM) supplemented with 10% (v/v) Fetal Bovine Serum (FBS), 1% (v/v) non-

essential amino acids, 1 mM L-Glutamine, 1mM Pyruvate and 1%

Penicillin/streptomycin. Cells were passaged using Trypsin/EDTA. For some

experiments, hMSCs stably transfected to constitutively express GFP (gMSCs)

following an established protocol (Peister et al., 2004) were used under standard cell

culturing conditions in standard culture medium to enable fluorescence microscopy.

Primary human mesenchymal stem cells (pMSCs) were isolated from human bone

marrow aspirate (Lonza, UK). In brief, the bone marrow aspirate was seeded in

fibronectin coated flasks at a mononuclear cell density of 1.5x103 cell/cm2 and

cultured for one week (37°C, 5% CO2) in pMSC isolation medium containing low

glucose DMEM (Lonza Biowhittaker, UK) supplemented with 10 % FBS (Lonza

Biowhittaker), 1 % L-Glutamine (Sigma-Aldrich, UK) and 1 % Penicillin/Streptomycin

(Sigma-Aldrich). A 50% medium change with fresh pMSC isolation medium was

performed after one week, followed by a switch one week later to hMSC proliferation

media (high glucose DMEM supplemented with 10 % FBS, 1 % L-Glutamine and 1

% Penicillin/Streptomycin). pMSCs were identified as those which had adhered to

the tissue culture vessel after 14 days in culture.

2.2. Cell Labelling With Magnetic Particles (MPs): hMSCs and pMSCs were labelled

with 1000 nm particles composed of a maghemite core with a solid unmodified silica

surface as previously described (Markides et al., 2013), using standard (SiMAG) or

fluorescently tagged (ScreenMAG-Silanol) particles as specified (Chemicell,

Germany). In brief, adherent cell populations were incubated with MPs (1-10 μg/mL) 

in medium for 24 h, using serum-containing or serum-free medium (MRI
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experiments) as specified (for cell labelling experiments, standard medium

containing 10% FBS was used unless otherwise stated). The next day, cells were

thoroughly washed with phosphate buffered saline (PBS) in order to remove excess

particles that may have settled on the surface of the cell layer or flask.

To measure particle uptake by flow cytometry, cells were seeded at 7.5 x103 cell/mL

and ScreenMAG-labelled for 24 h. Cells were then harvested, centrifugated at 200 g

for 5 min, and re-suspended in 200 µL PBS prior to analysis on a Guava EasyCyte

8HT Flow Cytometer Channel FL2 with InCyte 2.5 Software (Millipore, USA)

comparing labelled and unlabelled populations to evaluate percentage uptake based

on fluorescent intensity. Analysis was performed using WEASEL (WEHI, Australia)

using unlabelled cells as controls to evaluate increased fluorescence. The standard

particle concentration used in the study is 10 µg/mL unless otherwise stated, which

was shown to correspond to an intracellular iron load of 20 pg/cell (Markides et al.,

2013).

2.3. Fluorescence Imaging of Particle Uptake: Particle uptake was further evaluated

visually using an array of fluorescent cell dyes and fluorescent microscopy to

evaluate internalisation in relation to cell structure. hMSCs cultured on glass

coverslips were labelled with particles and fixed at room temperature for 15 min in

4% (v/v) PFA (VWR, UK). After permeabilisation with 0.1% Triton x-100 for 5 min

following two PBS washes, cells were stained for actin filaments using a 1:41

working solution of 6.6 µM Alexa Fluor® 488 phalloidin in methanol. Slides were

incubated in a dark covered container at room temperature for 20 min, and then

washed twice with PBS prior to mounting using Vectashield mounting medium
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(Vector Laboratories, USA). Imaging was performed using a Leica TCS SP2

confocal laser scanning microscope (CLSM) (Leica Microsystems, Germany).

2.4. Prussian blue staining: hMSC cells were grown in monolayer and labelled with

10 µg/mL MPs for 24 h prior to fixing with 4% PFA for 15 min. Immediately prior to

addition to cells, 20% aqueous solution of hydrochloric acid and 10% aqueous

solution of potassium ferrocyanide were mixed in equal parts. This staining solution

was applied to the fixed monolayer for 5 min and washed three times with PBS.

Images were acquired using an Eclipse TS100 inverted microscope (Nikon, Japan).

2.5. Transmission Electron Microscopy (TEM): To confirm the cellular location of the

particles, samples were fixed in 3% glutaraldehyde in 0.1 M cacodylate buffer

overnight and post-fixed in 1% aqueous osmium tetroxide for 30 min. The samples

were then dehydrated in a graded ethanol series and infiltrated with Transmit resin

(TAAB, UK) allowed to polymerise overnight at 70°C. Semi-thin sections were cut

(0.5 μm) using a Reichert-Jung ultramicrotome and stained with 2% toluidine blue. 

Ultra-thin sections were cut (70–90 nm) using the same equipment and collected on

copper grids. Grids were then contrasted using 50% methanolic uranyl acetate and

Reynolds lead citrate (Robards and Wilson 1993). Imaging was performed on a FEI

Tecnai 12 Biotwin TEM (FEI, USA) with up to 120kV and x300k magnification.

2.6. Particle Labelling measurement: Flow cytometry was used to measure the level

of particle labelling over time. For mitotic arrest, mitomycin C (Sigma Aldrich, UK)

treatment was used to halt cell division, using a final concentration of 10 µg/mL for a
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2.5 h incubation at 37°C (Nieto et al., 2007). Cells were then washed twice with PBS

and harvested for use. Mitotically arrested and control cells were cultured over a 7

day period with cells fixed in 4% PFA for analysis on days 1, 5 and 7. To investigate

particle transfer between co-cultured populations, GFP-expressing MSCs (gMSCs)

labelled with MPs were cultured with unlabelled hMSCs. Both populations were

mitotically arrested prior to co-culture with samples fixed in 4% PFA each day over 7

days, before flow cytometry quantification of particle presence and GFP status.

2.7. Cell Surface Marker Analysis: hMSCs and pMSCs were assessed for

expression of multipotent markers (Dominici et al., 2006) performed 24 h after MP

labelling (with SiMAG and ScreenMAG respectively), and 14 days after initial

labelling with repeated passaging and re-labelling every 3 days to maintain a high

MP level throughout. Cells were harvested with trypsin/EDTA and pelleted by

centrifugation for 5 min at 200 g, before washing in PBS. Cell pellets were then

resuspended in 100 µL PBS supplemented with 5 µL of antibodies against CD29

(Abcam, UK), CD105, CD34 and CD73 (AbdSerotec, UK), CD90 and SSEA4

(eBiosciences, USA) for 30 min at room temperature, before two PBS washes and

flow cytometry analysis.

2.8. Cell Viability Assays: The resazurin metabolic assay was performed to

determine metabolic changes, using a working solution consisting of 10% (v/v)

Presto Blue stock solution prepared according to the manufacturer’s instructions.

After 45 min of incubation, the fluorescent signal 100 µL samples was measured at
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535 nm excitation and 615 nm emission in triplicate using an Infinite 200 PRO plate

reader and i-control software (Tecan, Switzerland).

Impact on membrane integrity was assessed using a LIVE/DEAD® Alexa Fluor® 488

fixable viability dye. Cells were harvested with trypsin/EDTA and pelleted by

centrifugation for 5 min at 200 g, washed twice with PBS twice, and resuspended in

100 µL amine reactive dye working solution consisting of 1% (v/v) amine reactive

DMSO stock in PBS. Following 15 min incubation at room temperature, cells were

rinsed twice with PBS and resuspended in 200 µL PBS prior to measurement on a

Guava EasyCyte 8HT Flow Cytometer. Unlabelled cells were used as viable controls

and DMSO or paraformaldehyde fixative treatments provided toxicity controls.

2.9. Single Cell Gel Electrophoresis (Comet) Assay: Potential damage to the DNA

was assessed with the alkaline comet assay (Seedhouse et al., 2006). hMSC were

grown in monolayer and either left unlabelled, labelled with 10 µg/mL or 100 µg/mL

SiMAG for 24 hours. Following trypsinisation, cells were washed with PBS once and

resuspended in low melting point agarose (Trevigen, UK) at 105 cells/mL.

CometAssay alkaline control cells were used as a positive control for DNA damage

(Trevigen). Cell containing agarose was immediately spread on comet slides

(Trevigen) and left to harden before complete immersion in cell lysis buffer

(Trevigen). Lysis was performed overnight at 4°C in the dark. Following this, lysis

buffer was removed and slides immersed in a UV protected electrophoresis tank

containing TBE running buffer and allowed to sit for 60 min. Voltage was set at 25V

per CM distance between electrodes and running time at 40 min. Following running,

slides were removed from the buffer and washed three times in dH2O before dipping
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in ethanol for 1 min and drying overnight. Dry comet slides were stained with 75 µL

of 0.2% SYBR Green in TBE buffer per agarose droplet. Samples were immediately

imaged under a rhodamine filter with an Olympus BX40 microscope. Comet tails

were analyzed using Comet Assay III image analysis software (Perceptive

Instruments, UK). Fifty comet images were obtained from each of the duplicate gel

spots and each experimental condition was repeated three times; therefore, 600

images were scored in total for each treatment. The Tail Moment was used in all

analysis.

2.10. Mesenchymal Differentiation: For differentiation assays, hMSCs were

incubated for a period of 21 days in the relevant differentiation media. For osteogenic

assays cells were seeded at 5 x 103 cells/cm2 in well plates (Sigma-Aldrich, UK). The

medium was then changed (considered as day 0) every 3 days for 21 days with

either control medium or osteogenic induction DMEM supplemented with 100 nM

dexamethasone, 0.05 mM L-ascorbic acid-2-phosphate and 10 mM β-

Glycerophosphate. For adipogenic assays cells were seeded at 1 x 104 cells/cm2 in

well plates (Sigma-Aldrich, UK). The medium was then changed (considered as day

0) every 3 days for 21 days with either control medium or adipogenic induction high

glucose (4500 mg/L) DMEM supplemented with 1 μM dexamethasone, 500 μM 

isobutylmethylxanthine, 10 μg/mL insulin, and 1 μM rosiglitazone. For chondrogenic 

assays cells were seeded at 37.5 x 104 cells/cm2 in flasks for labelling duration. Cells

were then detached and 200 µL of 1.25 x 106 cells/mL cell suspensions added to 96

well v-bottom plates (Nalge Nunc International, USA) and spun at 450g for 10 min.

Following 24 h attachment duration, medium was then changed every day for 21

days with either control medium or chondrogenic induction high glucose (4500 mg/L)
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DMEM supplemented with 2 mM L-glutamine, 0.1µM dexamethasone, 50 μg/mL 

ascorbic acid phosphate, 1 mM Na-pyruvate, 40 μg/mL Proline, 10 ng/mL TGF-β and 

1x ITS Liquid Media Supplement (Sigma-Aldrich, UK).

2.11. Differentiation Assays: Lipid containing cells were identified using Oil Red O

(Sheng et al., 2007). Cells were washed with PBS and fixed at room temperature for

15 min in 4% (v/v) paraformaldehyde (PFA). Cells were then washed twice with

dH2O and incubated Oil Red O working solution added (180 mg/L Oil Red O in 60%

isopropanol/40% dH2O) for 30 min at ambient temperature. Samples were then

washed and imaged before extraction of the incorporated stain with isopropanol to

measure absorption at 510 nm on an Infinite 200 PRO plate reader and i-control

software (Tecan, Switzerland).

Mineralised nodules were identified using Von Kossa staining (Wang et al., 2006).

Cells were washed with PBS and fixed at room temperature for 15 min in 4% PFA.

Cells were then washed three times with dH2O and incubated with 1% silver nitrate

in dH2O (Sigma-Aldrich, UK) under a UV lamp for 15 min. Samples were washed

three times with dH2O, incubated for 5 min with 2.5% sodium thiosulfate solution

(Sigma-Aldrich, UK), washed again with dH2O and imaged using an Eclipse TS100

inverted microscope (Nikon, Japan).

Sulfated glycosaminoglycans detected with the dye 1,9-dimethylmethylene blue

(DMMB) were used as an indicator of chondrogenesis. Chondrogenic micromasses

were freeze-thawed three times to partially disaggregate them followed by papain

digestion (sodium phosphate (0.1 M), cysteine hydrochloride (5 mM), EDTA (5 mM)

and papain (45.12 µM) in dH2O, pH adjusted to 6.5) overnight at 60°C. Aliquots of
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digested sample were stained with DMMB dye solution (0.03 M sodium formate,

0.046 mM DMMB, 85.5 mM ethanol and 53 mM formic acid in dH2O) left for 10

minutes at room temperature and read for absorbance at 540 nm on an Infinite 200

PRO plate reader and i-control software (Tecan, Switzerland). Aliquots of digested

sample were also taken for DNA content analysis with CyQUANT® to allow for

normalization. CyQUANT® GR dye/cell-lysis buffer was added to samples and

incubated for 5 min at room temperature. Samples were analyzed on an Infinite 200

PRO plate reader and i-control software (Tecan, Switzerland).

2.12. Directed migration assays: For the vertical migration model, hMSCs were

labelled with concentrations ranging from 2.5µg/mL to 100 µg/mL alongside

unlabelled control cells for 24 hours. Cells were the harvested and resuspended to a

concentration of 1 x 105 cells/mL. 20 µL drops were deposited, in quadruplicate, on

the inside of a multiwell plate lid which was carefully placed to form hanging drops

suspended above humidified wells. A magnetic array constructed from 10mm x 3mm

neodymium magnets (2800 gauss) (Magnet Expert, UK) was placed above each

well, and after 24 h the proportion of cells attached to the under surface of the lid

was evaluated after toluidine blue staining (0.1% for 10 minutes) and imaging using

a 41 Megapixel PureView Zeiss Camera (Nokia, Finland). Quantitative 2D image

density analysis was performed using ImageJ (NIH, USA).

For the transmigration assay, SiMAG-labelled pMSCs (0, 1, and 10 10 μg/mL) were 

seeded at a concentration of 104 cells / collagen transwell insert (Corning, UK) and

allowed to attach for 24 h. Plates were either placed on a magnetic array mimicking

a standard 24-well plate layout or cultured without a magnetic field for 24 hours. The
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collagen layer was then gently removed and the transwell completely washed three

times with PBS. Migrated cells located on the underside of the transwell were fixed

(using 4% formalin for 1 hour), stained with DAPI and imaged with a fluorescent

microscope. Five independent areas of the well were imaged (top, bottom, left right

and centre) and averaged for each sample.

2.13. MRI imaging: To establish the ex vivo knee model, chondrocytes were isolated

from porcine articular knee cartilage (Staffordshire Meat Packers, Stoke-on-Trent,

UK) two hours post slaughtering based on a technique adapted from (Hayman et al.,

2006). Cartilage was carefully removed from the upper condyles of the knee, finely

diced, weighed and rinsed in PBS and 2 % Penicillin/Streptomycin. After overnight

incubation in chondrocyte isolation media consisting of DMEM/HAM’S F12 (Lonza

Biowhittaker, UK), 2 % Penicillin/Streptomycin, 50 µg/mL sterilised ascorbate

(Sigma-Aldrich, UK), 1 mg/mL clostridial collagenase (Sigma-Aldrich, UK) and 0.1

mg/mL DNAse (Sigma-Aldrich, UK), the digested cartilage suspension was filtered

through 100 µm cell strainer and centrifuged at 600G for 10 min. Chondrocytes were

seeded at 2x104 cells/cm2 and cultured in chondrocytes proliferation media

(DMEM/HAM’S F12 supplemented with 10 % FBS, 1 % L-Glutamine and 1 %

Penicillin/Streptomycin).

The in vitro MRI visibility threshold of SiMAG-labelled cells populations (0, 1, 5, 10

and 100 μg/mL) was investigated at varying cell densities (5x105, 105 and 104) in 2

mg/mL rat tail type I collagen gel (BD Biosciences, UK). Samples were then imaged

using a 2.3T Brucker animal scanner (NTU, Nottingham, UK) with MSME sequences
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using 1000 ms repetition time, 10.25 ms echo time with 8 echoes, and a matrix size

of 256x192 with spatial resolution of 0.469x0.625 mm.

Ex vivo imaging was carried out using a cadaveric porcine knee model of articular

cartilage damage to assess the visibility threshold of MP-labelled cells in a clinically

relevant model of autologous chondrocyte implantation (ACI) to treat cartilage

damage (Chiang et al., 2005). Pig legs were processed to remove all surrounding

tissue using a surgical scalpel. Once the knee had been isolated, the patella tendon

was sliced and the patella pulled back to reveal the articulating ends of the femur

and tibia. The knee was then bent to fully expose the upper condyles, and cartilage

flaps were created (1.5 cm x 0.5 cm x 1.5 cm) across the upper condyles of the

knee. Two defects were created on each condyle (left and right) at least 0.5 cm

apart. MP-labelled cells were suspended in a collagen type 1 gel solution (4.5

mg/mL) and injected within the defect while the knee was in the bent upright position,

taking care to ensure no bubbles or leakage occurred. After the gels had set (1 hr,

37oC) the leg was straightened, the patella replaced and securely bandaged to

prevent excess movement, before storage at -20oC until imaging at the MARIARC

centre (Liverpool University) using a Siemens Symphony 1.5 T scanner. One day

prior to MR imaging samples were defrosted, placed within a circularly polarised

extremity coil, and Double Echo Steady State (DESS) sequences were applied in

agreement with MRI scanning conditions implemented in the imaging and diagnosis

of human knee pathologies.

2.14. Statistical Analysis: Statistical analysis was in the form of ANOVA performed

using GraphPad PRISM (GraphPad Software, USA). Tukey’s post hoc analysis was
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performed to determine the significance between subgroups of the analysed

population. Significance shown as *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.

3. Results

3.1. Cytocompatibility study

To evaluate the capacity of MSCs to take up MPs, monolayer cultures were

incubated overnight with various concentrations of particles. Particle uptake in

hMSCs following a 24 h incubation period with MPs was analyzed by fluorescence

microscopy and flow cytometry (Figure 1).

Incubation with increasing doses of MPs led to a proportional increase in the

fluorescence signal measured for hMSCs (Figure 1A). Time-lapse microscopy

(Supplementary File 1) and fluorescence microscopy (Figure 1B) confirmed particle

uptake while cells retained morphology post-labelling. Prussian blue staining allowed

visualisation of the iron containing particles present within cells (Figure 1C). TEM

imaging confirmed the presence of MPs within the cytoplasm, and highlighted their

localisation to vesicles found to congregate around the nucleus (Figure 1D). The

efficiency of MP uptake was compared under different serum concentrations using

flow cytometry, which demonstrated a dose-dependent negative effect of serum on

cell labelling (Figure 1E).

Following uptake, particle retention was analyzed over time in culture (Figure 2). In

dividing hMSCs, MPs were found to be progressively diluted, until day 7 when they
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were not detected (Figure 2A). In mitotically arrested cells however, particles were

retained more efficiently and showed a significant retention compared to untreated

cells at day 7, suggesting the MP load might be divided between daughter cells.

Observation of labelled cells showed the occasional presence of some isolated

particles within cell projections (Figure 2B).

To investigate the fate of particles over time, a co-culture experiment was set up to

examine whether MPs may be transferred between labelled and unlabelled hMSC

populations (Figure 2C). GFP-expressing MSCs (gMSCs) labelled with MPs were

mixed with control unlabelled hMSCs, and over 7 days in co-culture cells were

analyzed by flow cytometry to evaluate the proportion of MP-containing cells within

each MSC population. While a decrease in the percentage of MP-containing gMSCs

was seen over time, there was no detectable appearance of MP-containing cells in

the unlabelled hMSC population over 7 days.

The effect of MP exposure on cell identity was analyzed through surface marker

analysis and cell integrity assays (Figure 3). Using markers associated to MSCs,

comparable positive expression of CD90, CD105, CD73, SSEA4 and CD29, with

negative expression of CD34, was confirmed between labelled and unlabelled

control populations 24 h post labelling (Figure 3A). Cultures exposed to serial MP

labelling every three days for 14 days to maintain maximum dose similarly

demonstrated retained marker expression, confirming that exposure to MPs did not

elicit a significant change in marker identity (Supplementary File 2).

The effect of MP exposure was further investigated through metabolic assays of

MSCs labelled with increasing doses of SiMAG MPs using a resazurin based dye

Presto Blue. Data gathered demonstrated a slight increase in metabolic activity at
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low particle doses and a decreased metabolic activity associated with very high

doses 24 h post labelling (Figure 3B). This increased metabolic activity at low MP

doses appeared to be lost 48 h post labelling (data not shown). Cell membrane

integrity assessed using flow cytometry indicated no effect of MP labelling could be

detected 24 h (Figure 3C) post labelling for either pMSCs cells or hMSCs.

Since MPs were found to accumulate close to the nucleus, their possible effect on

cellular DNA was examined using the comet assay which provides a sensitive

measure of DNA damage throughout the population (Figure 3D). No statistically

significant increase in DNA damage was observed at 10-100 μg/mL when compared 

to unlabelled MSC controls (p>0.05).

3.2. Application of MSC labelling for regenerative medicine

After establishing the cytocompatibility of particle labelling, the efficiency of the

differentiation response obtained under various culture conditions was evaluated in

MSCs. hMSCs, either unlabelled or labelled with SiMAG, were treated with

osteogenic, adipogenic and chondrogenic media for 7 and 14 days to measure their

response with and without MP exposure (Figure 4). After 21 days in culture with

relevant differentiation media, histology staining (Fig. 4A-C) showed successful

responses as detected through mineral deposition (Von Kossa staining for the

osteogenic condition), lipid accumulation (Oil Red O staining for the adipogenic

condition) and glycosaminoglycan (GAG) production (Alcian blue staining for the

chondrogenic condition). Subsequent quantitative assays revealed no significant

difference between unlabelled and MP-labelled cell populations for the osteogenic

alkaline phosphatase activity and Alizarin Red O assays (Fig. 4D-E), or for the
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adipogenic Oil Red O staining (Figure 4F). Quantitation of GAG formation in

response to the chondrogenic treatment (Figure 4G) showed no detrimental effect of

MP labelling, which produced a slight detectable increase in signal compared to

unlabelled controls. These data demonstrate no reduction in differentiation capacity

following particle labelling.

The iron core present in SiMAG particles makes them susceptible to magnetic

forces, a feature potentially beneficial for novel tissue engineering approaches. In

order to test whether MSC labelling with SiMAG could provide added control over the

behaviour of the cells, a migration assay was run to measure the cellular response in

vitro (Figure 5). When exposed to a permanent magnet located above the samples

for 24 hours (Figure 5A), labelled cells displayed a significant higher vertical

migration towards the magnet when compared to unlabelled samples, which failed to

migrate and adhere. When observing cells recruited to the lid in response to magnet

exposure, cells labelled with higher MP concentrations appeared to aggregate over a

smaller more defined area at the centre of the lid, rather than spread over a larger

surface area as seen at the lower dose (2.5 μg/mL), possibly due to a stronger cell 

response at the point of highest field strength, but this 3D aggregation could not be

accurately quantified using this 2D adherence assay.

To confirm the magnet-assisted migration response of cells labelled using particle

concentrations previously shown to maintain cellular integrity, a further experimental

model was used where MSCs were seeded onto a porous collagen scaffold and

exposed to a magnetic field (Figure 5B). Cells labelled with 10 μg/mL MPs showed a 

significantly enhanced migratory capacity compared to unlabelled cells (p<0.001).
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SiMAG particles can also act as potential contrast agent which could allow post-

delivery of cellular therapies for applications such as cartilage repair. In such

approaches, an exogenously-expanded cell population would be delivered to a

discrete site, where it needs to be retained in order to promote local tissue repair (El

Haj et al., 2014). The ability to image and monitor the implanted cells would allow

monitoring of the therapy over time (Markides et al., 2013). In order to identify the

variables for cell tracking after labelling, the MRI visibility thresholds required in

terms of particle concentration and cell number were established first in vitro and

then in a pre-clinical large animal model of cell injection (Figure 6). When monitored

in vitro (Figure 6A), SiMAG-labelled MSCs and chondrocytes were clearly detectable

by MRI with significant dose-dependent contrast when using doses in the range of

104 to 0.5x106 cells. T2
eff (Figure 6B) was seen to decrease with increasing cell

numbers and particle concentrations corresponding to an increasing Fe content. A

minimum visibility threshold of 5 μg/mL used with 5x105 labelled cells was identified

in vitro. The detectability of MSC and chondrocyte cell populations after SiMAG

labelling was found to be comparable in this model.

To further evaluate imaging capability in vivo, labelled cell populations were re-

suspended in a collagen type I gel, a substrate widely used in cartilage tissue

engineering (Deponti et al., 2013), injected into a porcine knee model (Chiang et al.,

2005), and MR-imaged using specific T2 weighted sequences (Figure 6C). In this

clinically relevant model, the effect of particle concentration on the MRI detection

was analyzed by implanting varying cell doses (104, 105 and 5x106) of SiMAG-

labelled cells to determine the visibility threshold, using 2 particle concentrations (5

µg/mL and 10 µg/mL). A combination of 105 cells labelled with 10 μg/mL was found 

to provide suitable contrast to enable graft detection by MRI within the host tissue.
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4. Discussion

4.1. Efficient unassisted labelling of hMSCs:

Magnetic particles offer interesting properties for a multitude of biological and

biomedical applications. Superparamagnetic iron oxide nanoparticles already

demonstrate clinical efficacy and safety for MRI imaging (Colombo et al., 2012) are

now being investigated for more advanced theranostic applications for cell tracking

and manipulation (Hu et al., 2014, Corot et al., 2006). MRI agents are developed to

be bio-inert in order to minimise interaction with the cells within the body.

Conversely, cell labelling agents must interact with the cell of interest to enable

labelling without impacting upon its normal function. Thus, characterization of cell-

MP interactions needs to be thoroughly assessed for advanced applications in cell-

based therapies. In this study, we evaluated the suitability of commercially available

1 µm silica coated particles as a non-toxic labelling agent for cell tracking and

manipulation towards both in vitro and in vivo applications.

24 h-incubation of MSCs with MPs was found to allow efficient labelling of the cell

population, with over 95 % of cells labelled at 10 µg/mL as measured by flow

cytometry. This is in line with previous publications describing near 100% cell

labelling using visual inspection following Prussian Blue staining or iron

measurements (Markides et al., 2013, Balakumaran et al., 2010, Kostura et al.,

2004, Liu et al., 2011, Pawelczyk et al., 2006). A dose of 10 µg/mL was selected as

standard labelling concentration for MSCs, which was comparable to other reports (7

µg/mL (Liu et al., 2011), 25 µg/mL (Kostura et al., 2004)).
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Cell labelling experiments demonstrated rapid uptake of MPs into MSCs, resulting in

efficient cell labelling without the need for an added chemical carrier. Previous

studies have suggested stem cell populations may benefit from assisted MP uptake

through cellular targeting (Lewin et al., 2000) or the use of transfection agents

including polyethylenimine, protamine sulfate and polylysine (Balakumaran et al.,

2010, Kosture et al., 2004, England et al., 2013, Schafer et al., 2010, Jing et al.,

2008, Arbab et al., 2004). Interestingly, past reports have mentioned inefficient

uptake by rat MSCs (Jing et al., 2008), and undetectable uptake with human MSCs

(Kostura et al., 2004) when different particles were used alone. In contrast, our

results confirm highly efficient uptake of the SiMAG particles in the absence of any

additional facilitator, in line with observations carried out in other stem cell

populations (Chen et al., 2013). Particle surface modifications influence the

characteristics of size, charge, toxicity and degradability of the particle (Li et al.,

2013), and have previously been reported to influence particle-cell interactions

(Gupta and Gupta 2005, Zhao et al., 2011, Sakhtianchi et al., 2013). The SiMAG

particles used here are silanol-coated, presenting an activated Si-OH surface

arrangement. One of the main benefits from the silanol surface is a high colloidal

suspension stability even in high volume fractions, through pH changes and

electrolyte disturbances (Mulvaney et al., 2000), all of which are likely to occur to

some degree during application in a physiological environment. When silanol-coated

MPs come into contact with the membrane, their association with the phosphatidyl

choline rich regions of the membrane (Zhao et al., 2011) is thought to elicit a

membrane wrapping effect as other regions associate with the rigid curvature of the

silanol surface. The subsequent entry of the MPs is dependent upon the energy

released through the exothermic membrane wrapping effect and the energy required
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to bend the membrane around the MP completely. In this situation, the dense nature

of these MPs is considered to decrease the energy required for deformation of the

membrane, thus facilitating engulfment (Zhao et al., 2011), as suggested by the

report that larger MPs are more thermo-dynamically favourable for endocytosis

(Slowing et al., 2009). Surface properties of the particles may also influence their

interaction with natural proteins from serum (Wiogo et al., 2011). Data presented

here further demonstrate that the presence of serum diminishes SiMAG particle

labelling in a dose dependant manner, potentially due to diminished accessibility of

the surface silanol groups to the membrane, in line with previous reports supporting

cell loading in serum-free conditions (Wilhelm and Gazeau 2008).

The efficient uptake of the SiMAG particles allowed labelled stem cell populations to

be monitored both through their iron content and fluorescent analysis techniques.

Particles appeared to cross the extracellular membrane, possibly through membrane

wrapping and engulfment as previously described for silica particles (Zhao et al.,

2011), although the exact nature of this process requires further examination. Once

inside the cell, particles accumulated at a central location inside endosome-like

structures proximal to the nucleus, and no particle was observed inside the nuclear

space, likely due to their micron size and contrary to what has been reported for

particles below 70nm (Chen and von Mikecz 2005). Such intracellular particle

distribution has previously been observed in MSCs (Neuberger et al., 2005, Chang

et al., 2012) and other cell types (Wilhelm and Gazeau 2008, Robert et al., 2010,

Sun et al., 2012).

4.2. Cellular compatibility:
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Whilst previous studies have described the use of different particle types for cell

labelling, few have focused on the potential implications of MP labelling for MSC cell

health and function. Among these, most reports have investigated the

biocompatibility of smaller MPs used with an auxiliary labelling reagent

(Balakumaran et al., 2010, Arbab et al., 2004). Here, the suitability of SiMAG

labelling for human MSCs was carefully examined through a range of parameters

reflecting the integrity and cell health of labelled MSCs. Previously published studies

on MP cytocompatibility have largely relied on the assessment of cell morphology

combined to MTT/MTS assays, however these have demonstrated questionable

reliability for particle and nano-materials studies (Laaksonen et al., 2007). A

resazurin-based metabolic measurement was therefore selected here, and indicated

a slight increase in metabolic activity after particle labelling at low doses of particle

uptake. This mild effect, which has been mentioned in different experimental

conditions, could be linked to homeostatic mechanisms increasing lipid membrane

synthesis in the cell to compensate for extracellular membrane disturbance

associated with particle internalisation (McNeil and Steinhardt 1997, Kowalski et al.,

1972). Similarly, MSC surface marker expression analyzed before and after labelling

showed that both primary and established MSCs retained their cell identity (Dominici

et al., 2006). This matches observations reported for different models and labelling

conditions, which reported no significant change in MSCs (Balakumaran et al.,

2010), and similar stable marker expression in hematopoietic stem cell populations

(Arbab et al., 2004).

Although previous studies have suggested to good MP cytocompatibility for cell

cultures (Li et al., 2013, Budde and Frank 2009, Heymer et al., 2008), some

observations using small size MPs (60nm) have described changes in MSC
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migration, colony-formation efficiency and even differentiation after particle labelling

(Schafer et al., 2009). Similar MP concentrations have also been reported to cause

significant toxicity on neuronal and glial cells, while they did not appear to affect

other cell types such as cardiomyogenic and pancreatic cells (Laurent et al., 2012,

Mahmoudi et al., 2011). It is therefore important to evaluate the toxicity of each MP

labelling protocol to be used in the target cell model for the application considered.

MP-related toxicity may arise from the leaching of ions from metal core and the

biodegradation polymer coating, which could cause oxidative stress (Kim et al.,

2011) through the leaching of metal ions from the core, or the release of oxidants by

enzymatic degradation of the MPs (Mahmoudi et al., 2012). Although iron can be

metabolised in the human body (Henning et al., 2009, Bulte et al., 2009, Berry 2005,

Kim et al., 2010, Ju et al., 2006), high quantities of Fe can impair viability and normal

cell function (Li et al., 2013, He et al., 2007), underlining the need for a suitable

balance between high Fe incorporation and safe cell function. Particle concentration

ranging from 2.8- 400 μg/mL have been reportedly used for in vivo tracking.(Kim et

al., 2010, Jing et al., 2008, He et al., 2007, Kim et al., 2010, Farrell et al., 2009). The

particle concentration chosen for this study (10 μg/mL), which was selected within 

the lower end of this range, showed no significant effect on cell viability or on the

level of DNA damage in the MSC population as measured by the comet assay. This

was true even for higher concentrations (100 μg/mL), and is in line with other studies 

which have shown low toxicity of both Fe3O4 and Fe2O3 –based particles (Karlsson

et al., 2009).

In addition to preserving the health of labelled cell populations for future cell

therapies, maintaining their functionality is equally critical if they are to deliver a

therapeutic effect. Reports published to date provided mixed results for the impact of
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MPs on MSC differentiation. While a majority of studies reported no significant

change based on histological or molecular assays, some negative effects on

chondrogenesis have been observed (Kostura et al., 2004, Bulte et al., 2004). To

examine the suitability of SiMAG-labelled MSCs to fulfil a therapeutic role, we

examined their ability to differentiate into osteogenic, adipogenic and chondrogenic

lineages, and found it to be maintained when examined both qualitatively and

quantitatively. Bone nodules and lipid droplets were present in their respective

cultures, with no statistically significant difference between unlabelled and labelled

cell populations. Chondrogenic differentiation yielded micromass pellets

demonstrating positive staining of glycosaminoglycans (GAGs) for both control and

MP-labelled cultures. Closer examination revealed an increased in GAGs measured

in MP-labelled pellets compared with the unlabelled samples, which could be due to

more efficient centrifugal aggregation of the MP-labelled cells, as observed in our

culture, since this is an important experimental parameter for the establishment of

micromass cultures.

4.3. Control of target cell populations:

The possible dilution of the particle load by either exocytosis or cell division

represents an inherent limitation of MPs and MRI based tracking in cell-based

therapies, which could be of concern in long term animal studies. MSC labelling was

detected here during a 7-day period in the case of dividing cell populations, beyond

which the intracellular particle concentrations returned to control levels. This

however was not solely dependent upon cell division as previously observed with

smaller particles (Wilhelm and Gazeau 2008, Kim et al., 2012), since non-dividing
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populations also demonstrated particle loss albeit at a reduced rate. Arrested cells

still demonstrated around 30% labelling 7 days post labelling, suggesting the

occurrence of particle release or biodegradation in addition to mitotic dilution.

Particle loss has been described as size-dependent, with smaller particles reportedly

exocytosed at a faster rate than larger particles (Sakhtianchi et al., 2013).

Interestingly, this would fit with the observation of MP-labelled mouse MSCs

implanted subcutaneously showing halving of the MRI signal over 3 days, and over

one third of the initial signal detected by day 7 (Liu et al., 2011). Berman et al

suggested particle decrease to be an indicator of viable cells, as non-viable cells

may also retain the particles due to an inability to divide or actively exocytose

(Berman et al., 2011).

It is unclear whether magnetic labelling of MSCs may be associated with particle loss

in vivo, and whether this may lead to subsequent unspecific labelling through

secondary particle uptake by an unintended population. Results from our co-culture

model combining labelled and unlabelled MSCs showed that the gradual loss of

particles from a labelled cell population did not result in any significant uptake by

neighbouring unlabelled populations. This suggested that transfer of particles either

directly or indirectly through release into media is not occurring at a population level.

This absence of apparent secondary particle uptake may be due to the presence of

protein coronas on released particles obstructing the surface silanol groups from

associating with the membrane (Zhao et al., 2011, Foldbjerg et al., 2013), which

could decrease subsequent binding and cell internalisation. This may represent a

long term experimental and safety benefit ensuring limiting possible leakage of the

label from the target cells to unrelated cell populations in vivo. Particles released in

vivo may furthermore be phagocytosed by macrophages, a process typically more
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efficient for larger particles such as the ones used here than for smaller ones (Burtea

et al., 2008). This would further reduce the amount of released particles available for

secondary uptake and limit the putative unspecific labelling of surrounding tissues.

The use of MRI for cell-based therapies bares a dual purpose. Not only can it

precisely image the anatomical damage site and track implanted cells, but it can also

evaluate the extent of the repair process at the damage site (Beckmann et al., 2003,

Henderson et al., 2003). It is therefore important to analyze the extent to which

implanted cell populations could be detected within anatomical structures in a

realistic clinical model, such as the porcine knee model presented here, which offers

dimensions in line with that of human tissue. Implantation of SiMAG-labelled cells

generated significant contrast within this system and was clearly detected against

anatomical structures. The visibility threshold of SiMAG-labelled cells using a 1.5 T

scanner was found to be in agreement with the threshold established ex vivo (105

cells labelled with 5-10 μg/mL). These values are compatible with published studies 

varying from single cell detection with 11.7T scanning and micron sized particles

(Bulte and Kraitchman 2004, Li et al., 2009), to the detection of 1x106 cells labelled

with 12 μg/mL using a 3T machine (Chen et al., 2012). Results presented here thus

confirm that SiMAG-based MSC labelling can meet technical criteria outlined for use

in preclinical studies (Frank et al., 2004).

5. Conclusions

Beyond imaging, magnetic particles are widely exploited in separation techniques for

cell suspensions (Plouffe et al., 2015). In vitro experiments carried out in this study

confirm their use can be applied to the spatial control of cell populations. Contactless

magnetic control of cell movement can further enhance patterning and seeding
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procedures both for 2D culture and for 3D tissue engineered scaffolds (Robert et al.,

2010, Yanai et al., 2012). Although ex vivo models have not reported consistent

magnetically-driven migration (Schafer et al., 2010), possibly due to variations in the

particles and magnets used, such targeting approaches may open novel therapeutic

applications using permanent magnet, electromagnet or MR-assisted cell delivery (El

Haj et al., 2012, Robert et al., 2010, Vanecek et al., 2012, Riegler et al., 2010).

Emerging MSC therapies such as Prochymal currently involve the use of high cell

doses (in excess of 108 cells) (Hare et al., 2009), which may in the future be reduced

through improved cell delivery strategies such as magnetically-assisted cell

targeting, to reduce the dose needed. Careful prior assessments of the particle

uptake, retention profile and biological responses associated with such strategies will

be critical to ensure the safe development of enhanced targeting therapies. A recent

report introducing the in vivo labelling of stem cells prior to their harvest and

allogeneic use (Khurana et al., 2013) underlined the requirement to ascertain the

cellular innocuousness of MPs for the targeted population. The data presented in our

study supports the suitability of 1μm SiMAG superparamagnetic iron oxide particles 

as a possible cell tracking and cell manipulation agent for stem cell-based therapies.

Their large size and coating properties facilitating uptake, biocompatibility and

visibility for MRI make them favourable candidates for further in vivo preclinical

research into advanced tissue engineering approaches.
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Figure Legend:

Figure 1: MSCs labelled with fluorescently labelled MPs analyzed using both flow

cytometry and microscopy. (A) Flow cytometry analysis (left) and corresponding

quantification (right) showing increased labelling with increasing MP concentrations

(***p<0.001, ****p<0.0001, n=3). (B) Fluorescence imaging of hMSCs labelled with

10 g/mL particles, showing MPs (yellow), cell outline (Phalloidin, green) and nuclear

counterstain (Hoechst 33342, blue); bar: 25 m. (C) Prussian blue staining

highlighting internalised iron-rich MPs within the cell ; bar: 100 m. (D) TEM imaging

of MPs showing that internalised particles are contained within vesicles (arrowhead),

which merge into larger vacuoles (arrow) near the nucleus (asterisk). Bar: 5 m (top)

and 10 m (bottom). (E) Negative effect of serum concentration on the efficiency of

MP uptake measured at 24 h after labelling (*p< 0.05, **p<0.01, ****p<0.0001, n=3).

Figure 2: Kinetics of MSC particle retention after labelling with 10 g/mL particles.

(A) Flow cytometry analysis of MPs in labelled cells up to 7 days after labelling

showing gradual decrease in dividing cell populations (light grey), while particle

dilution is reduced by mitomycin C-mediated inhibition of cell division (dark grey)

(*p<0.05, ****p<0.0001, n=3). (B) Fluorescence microscopy of phalloidin staining

(green) with dapi counterstain (blue) showing rare particles (red) detected in cell

processes. (C) Distribution of MPs between a labelled (population 1, gMSCs) and

unlabelled (population 2, hMSCs) MSC population analyzed by flow cytometry over 7

days of co-culture, showing no evidence of secondary particle uptake. Statistical

analysis showing labelling of population 1 between days 0-4 & 6 compared to day 7
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but no statistically significant labelling present in population 2 on any of the days

(***p< 0.001, n=2).

Figure 3: Cell integrity assessment after particle uptake. (A) MSC marker identity

analysed by flow cytometry demonstrating no discernible change in hMSC marker

expression following particle labelling (red, 10 µg/mL) compared to unlabelled cells

(blue) and the isotype control (grey). (B) Metabolic activity assessed through a

resazurin analogue (Presto Blue®) at 24 hours demonstrating no significant negative

effect of particle uptake at therapeutic doses (up to 50 µg/mL), when compared to

unlabelled controls and DMSO-mediated toxicity (**p<0.01, ****p<0.0001, n=3). (C)

Cell membrane integrity assay showing stable membrane integrity 24 hours post

labelling with MPs (10 g/mL). Statistical significance calculated compared to

DMSO-treated or fixed cells (****p< 0.0001 n=3), no statistically significant difference

between treatment groups. (D) DNA integrity analyzed using the comet assay,

showing no statistically significant DNA damage in labelled cells at 10 g/mL and

100 g/mL. Statistical significance between induced damage (positive control) and

other conditions (****p<0.0001, n=680), no significant difference between unlabelled

and MP-labelled conditions.

Figure 4: MSC differentiation in the presence or absence of MPs. (A-C)

Differentiation potential under standard culture medium (left panel) or differentiation

treatment (right panel) of the hMSC populations towards osteogenic (A), adipogenic

(B) and chondrogenic (C) lineages, monitored by von Kossa, Oil Red O and Alcian

blue staining respectively. MP-labelled cell populations (10 µg/mL) were compared to

unlabelled populations with no detectable decrease in differentiation in vitro. (D-E)
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Quantitative assessment of osteogenic response performed at 7 days (alkaline

phosphatase activity) and 14 days (Alizarin Red S extraction) showing statistically

significant response to induction medium (grey bars) compared to untreated controls

(black bars). (F) Adipogenic induction was measured using Oil Red O extraction

demonstrating no statistically significant change in lipid accumulation at either

concentration. (G) Chondrogenic response assessed using the DMMB assay

normalised to DNA content showing increased GAGs in both unlabelled and labelled

populations compared to their standard medium treated equivalents (****p<0.0001,

n=5).

Figure 5: Migration of SiMAG-labelled MSCs in vitro. (A) Hanging drops prepared

with cells labelled with increasing MP concentrations were incubated in the presence

or absence of magnets placed on the upper side of the lid. After 24 hours, surface

areas covered by cells recruited to the surface of the lid (inserts) were imaged and

measured (****p<0.0001, n=4). (B) MSCs labelled with MPs (0, 1 and 10 μg/mL) over 

a 24 hour period within a collagen transwell system and exposed to a magnet for 24

hours. Migrated cells counted as the average of 5 fields of view on the underside of

each transwell (***p<0.001, n=3).

Figure 6: MRI tracking of SiMAG-labelled hMSCs and chondrocytes. (A-B)

Increasing MP concentrations (1, 5 and 10 μg/mL) and cell doses (105 cells, 5x105

cells) showing the MRI visibility threshold of labelled MSCs presented as a T2
eff map

(A) and corresponding T2
eff plot (B). (C) Coronal DESS image of labelled

chondrocytes implanted in a porcine knee joint (left condyle 105 cells, right condyle

5x105 cells) analyzed by MRI, using 5 µg/mL (upper panel) and 10 µg/mL (lower
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panel) MP concentrations, showing hypointense regions of signal voids (yellow

arrows). Red lines highlight the region of interest (ROI).

Supplementary Information:

Supplementary File 1: Time-lapse imaging of hMSC cells incubated in the presence

of SiMAG MPs (10 μg/mL), capturing 2 frames/min for 18 hours. 

Supplementary File 2: Long term marker expression in MSC cultures analyzed after

14 days of particle labelling. (A) Flow cytometry analysis of hMSCs (A) and pMSCs

(B) demonstrating maintenance of MSC surface marker profile following repeated

particle labelling (red, 10 µg/mL every three days) compared to unlabelled cells

(blue) and the isotype control (grey).


