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ABSTRACT 

This study explores a new method to maximise the visible-light driven photocatalytic 

performance of organic-inorganic hybrid polyoxometalates (POMs). Experimental and 

theoretical investigations of a family of phosphonate substituted POMs shows that modification 

of grafted organic moieties can be used to tune the electronic structure and photo-activity of the 

metal oxide component. Unlike fully inorganic polyoxotungstates, these organic-inorganic 

hybrid species are responsive to visible-light and function as photocatalysts ( > 420 nm) in the 

decomposition of a model environmental pollutant. The degree of photo-activation is shown to 

be dependent on the nature of the inductive effect exerted by the covalently-grafted substituent 

groups. This study emphasises the untapped potential that lies in an orbital engineering approach 

to hybrid-POM design and helps to underpin the next generation of bespoke, robust and cost-

effective molecular metal oxide photo-active materials and catalysts. 

 

INTRODUCTION 

The effective use of solar energy to drive commercially important and/or challenging reactions 

and processes has long been a key target in chemical research, with potential applications 

ranging from selective organic transformations1-3 to the widespread, sustainable generation of 

carbon-neutral ‘solar fuels’.4,5 Whilst much of this effort has traditionally involved the use of 

heterogeneous, solid-state semiconducting materials such as titanium and tungsten oxides,6-8 

molecular photocatalysts have become increasingly attractive due to their versatility, 

homogeneity and tuneable properties.9-12 Here, we show how a modular design approach to the 
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generation of molecular photocatalysts allows for the tuning and optimisation of photocatalytic 

performance under visible-light. 

Polyoxometalates (POMs) are a promising group of photo-active, nanoscale metal-oxide 

clusters composed of early transition metals in their highest oxidation states (i.e. VV, MoVI, WVI). 

POMs display a variety of appealing properties, including a wide range of potential structures 

and compositions, excellent stability and tuneable solubility in a range of solvents.13,14 In 

particular, their ability to undergo reversible, often proton-coupled, multi-electron redox 

processes has generated considerable interest in their application as novel electron-transfer 

catalysts and redox mediators.15,16 POMs also exhibit rich photochemistry that can be accessed 

through excitation of the O  M ligand-to-metal charge transfer (LMCT) band.17,18 This results 

in the formation of a short-lived charge-separated state at the terminal M=O positions on the 

metal-oxide shell, comprising mono-reduction of the POM core and a highly reactive oxo-

centred radical cation, capable of participating in a variety of oxidation and hydrogen-transfer 

reactions.19-21 This photo-activity is, however, restricted by the energy of the LMCT band which 

usually falls well within the UV-region of the spectrum (typically at wavelengths of 300-330 

nm).18 

Significantly, POMs can be modified to form meta-stable lacunary derivatives, in which one or 

more metal centres are hydrolytically removed to generate reactive, multi-dentate vacancies in 

the metal-oxide shell.22,23 This provides almost limitless opportunity for the design, synthesis and 

post-synthetic modification of functional POM-based materials,24-27 and a growing body of work 

has shown how this can be used to graft organic or organometallic moieties directly onto the 

POM core to form organic-inorganic hybrid systems.28-32 Modification with chromophores 

possessing absorption bands in the visible range of the spectrum allows the generation of visible-
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light sensitive hybrid-POMs that can exhibit intra-molecular charge transfer from the photo-

active antennae to the inorganic POM core.33-35 POM photochemistry can therefore be grouped 

into two branches: (i) excitation of the POM LMCT band to yield the oxo radical, and (ii) photo-

driven intramolecular ‘exo’-charge transfer from covalently grafted chromophores. Each photo-

induced charge transfer process proceeds via contrasting mechanisms and can thus be expected 

to show very different reactivities. Whilst the latter has proven effective in applications which 

rely on charge accumulation on, and/or electron transfer from the POM (such as hydrogen 

evolution),36-39 it circumvents formation of the highly oxidizing oxo-radical on the metal-oxide 

shell (which generally remains accessible only under UV irradiation). Existing hybridization 

approaches to photo-activation therefore preclude the use of POMs as powerful visible light 

driven photo-oxidation catalysts and new approaches to the direct photosensitization of the POM 

core are therefore an attractive ongoing goal.  

Recently, we reported that hybridization of a Wells-Dawson-type POM with 

organophosphonate moieties could be used to directly photo-activate the POM, as demonstrated 

in the visible-light driven oxidative decomposition of a model environmental pollutant.40 

Analysis of the resulting organic-inorganic hybrid cluster: K6[P2W17O61(P(=O)C6H5CO2H)2] (1) 

(Figure 1), suggested that grafting of the organophosphonate groups onto the POM was an 

effective means to alter both the electrochemical properties and photochemical reactivity of the 

POM core. We postulated that the charge density on the metal-oxide shell is lowered as a result 

of the hybridization, modulating the energies of the frontier orbitals associated with the key 

photo-excitation and 1st reduction processes. Here, we explore the nature of this phenomena by 

modifying the electronic character of appended ligand groups demonstrate how this 

hybridization strategy allows the visible light photo-activity of POMs to be both accessed and,  
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Figure 1. Structural representation of phosphonate-substituted POM clusters 1-4, showing the 

structure of the polyoxometalate core (left) and the different substituent groups appended to the 

phosphonate moieties in each complex (right). Colour code: {WO6} polyhedra = blue; {PO4} 

polyhedra = pink, O = red, P = pink. 

 

uniquely, show that it can be systematically tuned, providing a new path towards the application 

of metal-oxide clusters in next generation solar-fuel and photochemical technologies. 

 

EXPERIMENTAL SECTION 

Synthesis and Materials 

All reagents were obtained from commercial sources and were used without further purification. 

The precursors 4-carboxyphenyl phosphonic acid,41 K6[P2W18O62]·14H2O and 

K10[P2W17O61]·20H2O were prepared by reported methods.42 
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K6[P2W17O61(POC6H4COOH)2]·6C4H9NO (1) was synthesized according to our previously 

reported protocol.40 

 

 

K5H[P2W17O61(POC6H5)2]·4C4H9NO (2) was synthesized following the method reported for 

compound 1: K10[P2W17O61]·20H2O (984 mg, 0.2 mmol), phenyl phosphonic acid (63.3 mg, 

0.4 mmol) and KCl (126 mg, 1.7 mmol) were suspended in N,N’-dimethylacetamide (30 mL) 

and 12 M HCl (100 µL) was then added. The reaction mixture was then heated at 90˚C for 24 

hours and after cooling to room temperature, the reaction mixture was filtered to give a green 

solution. Subsequent centrifugation with diethylether, ethanol and diethylether gave 2 as a green 

powder. Yield: 880 mg (90 % based on W). 

Single crystals of 2 could be grown by dissolution of 100 mg powder in acetonitrile:water 

solution (6:1 v/v, 10 mL), followed by slow evaporation of the resultant solution at room 

temperature to yield single crystals of compound 2 after ca. 2 weeks (yield = 14.3 mg, 14 %). 

Crystallographic data for compound 2: C36H85K10N3O147P8W34; Mr = 9801.4 g mol-1; triclinic; 

space group P-1; Z = 2; a = 16.741(1) Å; b = 24.568(2) Å; c = 25.667(2) Å;  = 115.585(1)°;  = 

100.543(1)°;  = 101.934(1)°; V = 8864.7(12) Å3. 

1H NMR (DMSO-d6, 400 MHz):  / ppm = 7.48 (m, 4H), 7.53 (d, 2H), 7.99 (dd, 4H). 31P NMR 

(DMSO-d6, 400 MHz):  / ppm = 14.84, -11.34, -12.96. IR (KBr, cm-1): 1612 (s, νC=C), 1400 (m, 

νC=C), 1194 (s, νW=O), 1045 (s, νW=O), 962 (s, νW=O), 912 (s, νW=O), 816 (s, νW=O) cm-1. Elemental 

analysis: calcd. (%) for C28H47K5N4O67P4W17: K 3.94, H 0.96, C 6.79, N 1.13; found K 4.14, H 

0.93, C 6.52, N 1.19.  
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K6[P2W17O61(POC6H4OCH3)2]·4C4H9NO (3) was synthesized following the method reported 

for compound 1: K10[P2W17O61]·20H2O (1094.5 mg, 0.22 mmol), 4-methoxyphenyl phosphonic 

acid (83.8 mg, 0.44 mmol) and KCl (149 mg, 2 mmol) were suspended in N,N’-

dimethylacetamide (30 mL) and 12 M HCl (100 µL) was then added. The reaction mixture was 

then heated at 90˚C for 24 hours and after cooling to room temperature, the reaction mixture was 

filtered to give a green solution. Subsequent centrifugation with diethylether, ethanol and 

diethylether gave 3 as an orange powder. Yield: 829.1 mg (76 % based on W). 

Single crystals of 3 could be grown by dissolution of 100 mg powder in acetonitrile:water 

solution (6:1 v/v,10 mL), followed by slow evaporation of the resultant solution at room 

temperature to yield single crystals of compound 3 after ca. 2 weeks (yield = 20.1 mg, 20 %). 

Crystallographic data for compound 3: C18H28.5K6N1.5O68.5P4W17; Mr = 4845.85 g mol-1; triclinic; 

space group P-1; Z = 2; a = 13.829(1) Å; b = 15.550(1) Å; c = 23.417(2) Å; a = 100.864(1)°; b = 

95.540(1)°; c = 113.092(1)°; V = 4467.2(6) Å3.  

1H NMR (DMSO-d6, 400 MHz):  / ppm = 3.83 (s, 6H), 7.02 (dd, 4H), 7.91 (dd, 4H). 31P NMR 

(DMSO-d6, 400 MHz):  / ppm = 15.85, -11.37, -12.99. IR (KBr, cm-1): 1599 (s, νC=C), 1193 (s, 

νW=O), 962 (s, νW=O), 914 (s, νW=O), 816 (s, νW=O) cm-1. Elemental analysis: calcd. (%) for 

C20H39.5K6N1.5O72.5P4W17：K 4.74, H 0.81, C 4.86, N 0.42; found K 4.55, H 0.82, C 4.92, N 

0.49. 

 

 

K5H[P2W17O61(POH)2]·5C4H9NO (4) was synthesized following the method reported for 

compound 1: K10[P2W17O61]·20H2O (982.9 mg, 0.2 mmol), phosphonic acid (32.8 mg, 
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0.4 mmol) and KCl (298.2 mg, 4 mmol) were suspended in N,N’-dimethylacetamide (30 mL) 

and 12 M HCl (100 µL) was then added. The reaction mixture was then heated at 90˚C for 24 

hours and after cooling to room temperature, the reaction mixture was filtered to give a green 

solution. Subsequent centrifugation with diethylether, ethanol and diethylether gave 4 as a green 

powder. Yield: 809.8 mg (83 % based on W). 

Note that in the case of 4, it did not prove possible to recrystallize the powdered material to yield 

single crystals of sufficient quality for X-ray crystallographic analysis. 

31P NMR (DMSO-d6, 400 MHz):  / ppm = 4.54, -11.28, -12.91. IR (KBr, cm-1): 1196 (s, νW=O), 

1092 (s, νW=O), 972 (s, νW=O), 916 (s, νW=O), 816 (s, νW=O) cm-1. Elemental analysis: calcd. (%) 

for C20H48K5N5O68P4W17： K 4.0, H 0.99, C 4.91, N 1.43; found K 4.25, H 0.99, C 4.73, N 1.43. 

 

Single Crystal X-Ray Diffraction Measurements 

SC-XRD measurements were performed on a Bruker SMART Apex II CCD diffractometer with 

Mo-Kα radiation (λ = 0.71073 Å). In each case, a suitable single crystal was removed from the 

mother liquor and mounted in Paratone® oil on a glass fibre and measured at 100 K under a 

stream of dry N2. Structures were solved by direct methods and refined by a full-matrix least-

squares technique on F2 using SHELLXTL.43 

For compound 2, the PLATON SQUEEZE protocol was used to account for unassigned 

electron density in the crystal lattice associated with disordered solvent molecules which could 

not be modeled as discrete atomic positions.44 Approximately 33.3 % of the unit cell volume 

comprises a large region of disordered solvent that could not be modeled as discrete atomic sites. 

SQUEEZE estimated a total count of 848.5 electrons per unit cell which were assigned to 2.5 K 

cations, 9 water and 1.5 DMA molecules per cluster unit. 
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For compound 3, approximately 30.0 % of the unit cell volume comprises a large region of 

disordered solvent that could not be modeled as discrete atomic sites. SQUEEZE estimated a 

total count of 344.5 electrons per unit cell which were assigned to 4 K cations, 0.5 water and 1.5 

DMA molecules per cluster. 

 

Computational Details 

The geometries of compounds 1-4 were optimized using density functional theory (DFT) with 

the BP86 functional45,46 and LANL2DZ basis set / pseudopotential.47 Solvation effects were 

accounted for using the polarizable continuum model (PCM), with standard van der Waals’ radii 

for all atoms from Q-Chem, except W, for which a VDW radius of 2.1 Angstrom wa employed. 

Energetics were further refined using the SRSC basis set / pseudopotential.48 Time-dependent 

DFT (TDDFT) calculations were performed with the same functional, basis set and solvation 

parameters. All calculations were performed with the Q-Chem software.49 

 

Analytical Methods 

Full details of all experimental methods and additional characterization can be found in the 

accompanying supplementary information. 

 

 

RESULTS AND DISCUSSION 

 

Computational Screening of the Initial Concept 

Qualitative in silico screening was used to efficiently explore our initial concept of tuning the 

electronic properties of the POM via modification of ligand effects. Preliminary calculations  
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Figure 2. Calculated energy levels of the frontier orbitals in compounds 1-3, shown against those 

calculated for the analogous parent compound {P2W18} as a comparison. Note that the HOMO 

level used to demonstrate the energy of the effective HOMO-LUMO gap is not always the 

HOMO state and instead has been chosen as the highest energy level which contains an 

appreciable degree of POM-centred orbital character (HOMOPOM, highlighted in blue) and 

specifically, those with electron density on the p-orbitals of the terminal oxo-groups (see main 

text for additional detail). 

 

using a density functional theory (DFT) approach (geometry optimisation with 

BP86/LANL2DZ46,47,50 and energy refinement with BP86/SRSC)46,48,50 were applied to screen 

two simulated hybrid complexes against the previously reported carboxylate functionalized 

cluster, 1, and the parent oxoanion [P2W18O62]6- ({P2W18}). These complexes; 

[P2W17O61(P(=O)C6H5)2]6- (2) and [P2W17O61(P(=O)C6H4OCH3)2]6- (3) were selected as a 
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convenient means to explore the effect that the electron withdrawing/donating character of 

different para-substituents on the phenyl group might have on the metal-oxide core. This allowed 

questions about the nature of the activation effect to be assessed, most crucially by addressing 

whether the appended organic groups can be tailored to modulate the properties of the POM 

itself or whether such activation arises as a general property of complexation with any 

organophosphonate species. As a representative comparison to the simulated hybrid species, 

{P2W18} was selected over the ‘true’ lacunary parent species, [P2W17O61]10- {P2W17}, as the 

“simplified molecular charge density” (q/m, where q = cluster charge and m = number of 

addenda metal centres)51 of {P2W18} is more directly comparable to that of the equivalently 

charged hybrid POMs. 

Preliminary DFT calculations are presented in Figure 2 (tabulated fully in the SI) and reveal a 

clear substituent effect on moving from a group with strong electron withdrawing character, as in 

1, to that with commensurate electron donating character, as in 3. As expected, the HOMO-

LUMO energy gap (HLgap) and LUMO energy of compound 2 are found to be intermediate 

between 1 and 3. In each case, the hybrid complexes show stabilized LUMO and destabilized 

HOMO energies with respect to {P2W18}, owing to the combination of inductive and resonance 

effects arising from complexation with the ligand groups. 

These calculations also show that the frontier energy levels in all three hybrid complexes have 

significantly mixed orbital character between the ligand and POM core, where the highest energy 

occupied states are generally ligand-centered. As a result, the HLgap energies reported in Figure 2 

do not represent the ‘true’ (i.e. HOMO to LUMO) transition energy but rather the transition 

between the highest energy HOMO state containing an appreciable degree of POM-centered 

orbital character (HOMOPOM, which is found at the HOMO, HOMO-2 and HOMO-3 levels in 
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the case of compounds 1-3, respectively). (details are given in the SI). The transition energies 

were calculated using time-dependent density functional theory (TDDFT), which indicated that 

several closely spaced transitions contribute to the convoluted broad LMCT band observed in the 

experimental absorption spectra.  Localized π  π* transitions have an oscillator strength two to 

three orders of magnitude larger than the POM-centered O  W LMCT transitions, and thus we 

can differentiate between organic-centered and POM-centered transitions based on the oscillator 

strength.52 This is significant because, as discussed above, the optical transition of interest is 

the exclusively POM-centered O  W LMCT band (corresponding to charge transfer from the 

2p orbitals on the terminal oxo-groups to the vacant 5d orbitals on the addenda W atoms). Based 

on our previous findings,40 intramolecular charge transfer from the ligand groups to the POM 

core is not expected to occur in these compounds.  

These results therefore strongly suggest that ligand character can be used to directly modify the 

frontier orbital energies of the hybrid POM complex and thus alter its electrochemical and 

photochemical reactivity. As a result, the calculated trend in LUMO energies could subsequently 

be validated experimentally (see below) and has clear implications in the targeted molecular 

design of the next generation of (photo)catalytically active POMs. 

 

Synthesis and Characterization of Hybrid Polyoxometalates 

Following theoretical validation of the hypothesis that ligand substituent effects could be 

translated to the electronic structure of molecular metal oxides, we proceeded with the synthesis 

of hybrid POM complexes 2 and 3. Both compounds were synthesized in good yield following 

the previously reported approach in the analogous synthesis of compound 1.40 Condensation of 

either 4-methoxyphenylphosphonic acid or phenylphosphonic acid with the lacunary precursor 
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K10[P2W17O61].20H2O in N,N’-dimethylacetamide (DMA) yielded an orange or pale green 

powder, respectively, which was subsequently recrystallized via dissolution in 6:1 

acetonitrile/water solution and slow evaporation of the resulting liquor over a period of ca. 2 

weeks. 

Single crystal X-ray diffraction studies revealed that both compounds crystallize in the triclinic 

crystal system with space group P-1. All three hybrid-POM clusters effectively share the same 

structural motif, where two organophosphonate ligands occupy the lacunary site in the vacant 

cap position of the oxoanion. These are orientated such that the organic components protrude 

from the metal oxide core in opposing directions whilst the terminal P=O positions are aligned to 

form a bis-phosphonate moiety which associates with a K+ ion in the crystal structures of both 2 

and 3. The composition of 2 and 3 was confirmed by elemental analyses, FTIR, ESI-MS, 1H and 

31P NMR (full details can be found in the experimental section and accompanying SI). 

 

Spectroscopic and Electrochemical Analysis 

Based on the qualitative DFT calculations above, it can be expected that both the electrochemical 

and the optical properties of the hybridized clusters should be altered (through tuning of the 

LUMO energy and the magnitude of the HLgap, respectively). In practice, we have previously 

found that it is difficult to correlate the simulated characteristics of the POMs with their 

measured absorption spectra. This is likely due to the complex optical behavior of these species, 

as evidenced by the very broad UV absorption bands which correspond to the characteristic O  

W LMCT transitions (see discussion above). Here, whilst the spectrum of compounds 1-3 show 

unique features in the UV region below 350 nm (Figure S10), the absorption tail of these hybrids 

extending into the visible region of the spectra is found to be broadly similar, both to each other 
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and to the parent {P2W18} anion. It is therefore difficult to ascribe any significance to ligand-

mediated effects in such experiments. One minor exception is the notable red-shift observed 

above ca. 370 nm in the methoxy-functionalized hybrid, 3, which may arise from overlapping, 

lower energy ligandligand transitions (note the anomalously high energy, ligand methoxy-

centered HOMO state in Figures 2 and S7). 

Whilst the absorption characteristics of these hybrid POM species are therefore not expected to 

be particularly diagnostic of their effectiveness as photocatalysts (other than to say that all 

hybrids show moderate absorption in the high-energy region of the visible spectrum), our 

previous work suggests that their electrochemical properties can provide an effective measure of 

their overall performance as photocatalysts. Note that whilst the electrochemical effects of 

grafting organic groups onto the structure of polyoxometalates is relatively well-established 

(leading to positive redox shifts of up to 500 mV over their parent compounds),53,54 this is 

generally limited to a broad comparison between the anchoring main group elements present (i.e. 

P or Si) rather than the nature of the organic component itself. This report is therefore the first 

example, of which we are aware, where a systematic study has been performed on the effects that 

the electronic character of the ligand alone can exert directly over the metal-oxide core. 

Cyclic voltammetry (CV) was performed on compounds 2 and 3 in dry DMF under a positive 

pressure of N2 and the results were compared to those previously reported for 1. In both cases, 

three quasi-reversible redox couples, each corresponding to one-electron WVI/WV processes, 

were observed in the potential range of 0.5 to -1.3 V, which agrees well with that observed for 1 

(Figure 3a, Table 1 and SI). Comparison of the E1/2 values observed for the first redox couple in 

each case, however, provides clear evidence for a ligand-mediated effect whereby values 

of -254 mV, -268 mV and -285 mV (vs. SCE) were identified for compounds 1, 2 and 3,  
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Figure 3. Electrochemical characterization of compounds 1-4 showing: a) Cyclic voltammogram 

of compound 3 (as representative of compounds 1-4), with the scan direction and native potential 

highlighted and; b) Differential pulsed voltammograms of compounds 1-4, highlighting the first 

reduction wave of each species. Note that current has been plotted on an arbitrary scale to aid 

comparison. 

 

respectively. Differential pulsed voltammetry (DPV) experiments also confirm that the first 

reduction wave of each hybrid is shifted towards increasingly negative potentials on moving 

from 1 to 3 (Figure 3b). This trend correlates strongly with our hypothesis that the LUMO of the 

metal-oxide core should be destabilized upon increasing the electron-donating character of the 

para-substituent group and shows, unambiguously, that the nature of the appended ligand group 

can thus be used as a synthetic tool to tune the physical properties of the POM core. 
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Table 1. Observed halfwave redox potentials (E1/2)a and peak cathodic potentials (Epc) for the 

first reduction of compounds 1-4 (as obtained by differential pulsed voltammetry). All potentials 

reported vs. SCE. 

 E1/2 (1st) / V Epc (1st) / V E1/2 (2nd) / V E1/2 (3rd) / V 

1 -0.25 -0.24 -0.63 -1.09 

2 -0.26 -0.26 -0.62 -1.08 

3 -0.28 -0.27 -0.64 -1.12 

4 -0.21 -0.20 -0.58 -0.94 

aE1/2 = (Epc + Epa) / 2. (Epa = peak anodic potential) 

 

 

Modified Substituent Effects in a Phosphonic-acid Substituted POM 

As an extension of this study, we turned our attention to the exploration of a fourth compound, 

K6[P2W17O61(P(=O)H)2] (4), where the organophosphonate moiety has been replaced by purely 

inorganic phosphonic acid groups. In this case, the ligand group is expected to exert an electron 

withdrawing/inductive effect on the POM core but minimal resonance effects in the absence of 

an aromatic component, allowing us to develop a clearer idea of the electronic factors most 

important to the control of the POM’s photocatalytic properties. 

Compound 4 was synthesized using the same method as described for 2 and 3 above and, 

whilst it was not possible to isolate single crystals suitable for structural analysis, 4 was 

unambiguously characterized by elemental analysis, ESI-MS, 1H and 31P NMR. This analysis 

reveals that 4 can be considered an all-inorganic structural analogue of the hybrid clusters 1-3. 
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The UV-vis absorption characteristics of 4 are broadly in-line with that reported for 

compounds 1-3 and {P2W18} as discussed above (see SI) and indicate that 4 is also able to absorb 

light in the high energy region of the visible spectrum ( < 450 nm). Cyclic voltammetry of 4 

performed in dry DMF under an atmosphere of N2 showed three quasi-reversible redox waves in 

the potential range of 0.5 to -1.3 V, indicating the same electrochemical behavior as discussed 

above for compounds 1-3 (Figure 3 and S14). In the case of compound 4 however, a substantial 

positive shift in the potential of the first redox couple was observed, with an E1/2 value of -212 

mV vs. SCE (in comparison to a value of -254 mV in 1, for instance). As before, DPV analysis 

supports that the first reduction of 4 occurs at more positive potentials than the same processes in 

compounds 1-3 (Figure 3b). This is particularly significant given that previous results suggest 

that the increasingly negative potentials observed on moving from compound 1 to 3 in the results 

reported above are expected to adversely impact the photocatalytic properties of these hybrid 

POM species. 

Supporting DFT calculations of the frontier energy levels in 4 confirm that the LUMO 

stabilizing inductive effect of the ligand group is retained by the phosphonic acid moieties, 

however the HOMO destabilizing resonance effects are absent (Figure S4). As a result, whilst 

the LUMO level is stabilized relative to {P2W18} and is found at a similar energy to that of 

compound 1, the HOMO energy in 4 is also much lower lying than that of the hybrid complexes 

(1, 2, and 3) and is more comparable to that found in {P2W18}. In addition, the orbital character 

observed in compound 4, whist still mixed between the phosphonate and POM, is much more 

strongly localized on the metal-oxide shell than is the case for compounds 1-3 (see Fig S5-8), 

which show significant contribution from the ligand groups in the HOMO-n levels. Whilst the 

HLgap in 4 is theoretically larger than that observed in compounds 1-3, experimentally this is 
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shown to have a negligible effect on the absorption ‘tail’ of the cluster into the visible region of 

the spectrum (between 400 – 450 nm). Taken together, these results indicate that 4 should be a 

promising compound for further study in photocatalytic experiments. 

 

Solution Stability and Hydrolysis Behavior 

Prior to a comparison of the photocatalytic properties of 1-4, it was important to address long-

standing questions about the stability of organophosphonate POMs in solution (particularly in 

relation to the ease with which the P-O bonds in these systems may be hydrolyzed in the 

presence of water).55 The stability of compounds 1-4 was studied using comprehensive 31P NMR 

analysis, the results of which are presented in the SI. In the case of compounds 1-3, and in 

agreement with our previous findings,56 31P NMR spectra show no decomposition after 24 hours 

in both DMSO-d6 and D2O, indicating good stability in both solvents.  

In the case of compound 4 however, a more complicated behaviour emerges in the presence of 

water/D2O. Whilst the 31P NMR of 4 measured in DMSO-d6 shows the same behaviour as 

described above for 1-3, identical measurements performed after 24 hours in D2O show the 

formation of new peaks in the regions of the spectrum corresponding to both the ligand and 

POM-templating phosphorous nuclei (Figure S19). Both observations show that the phosphonate 

groups on 4 are being gradually hydrolyzed, producing free phosphonic acid and leading to the 

conversion of the lacunary {P2W17} cluster into the more thermodynamically stable {P2W18} 

species (possibly aided by the liberation of acidic protons from free phosphonic acid). 31P NMR 

measurement of the same solution after 1 week confirms this, showing total loss of the signals 

originating from 4. Interestingly, the same NMR experiments performed in mixed solvent (10% 

H2O by volume in DMSO-d6) show no decomposition, indicating that the hydrolytic 
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decomposition of 4 is equilibrium controlled and the rate dependent on the quantity of water 

present. Complementary ESI-MS analysis was also used to characterize the speciation of 4 in 

response to purely organic, aqueous and mixed (50:50 v/v acetonitrile:water) solvent systems 

(see SI for full details) and these results are in good agreement with the NMR analysis provided 

above, where a combined ion count analysis57 is used to show the solvent dependent speciation 

of 4 corresponding to its stepwise hydrolysis in the presence of H2O. 

These results therefore have significant implications for the use of organophosphonate 

functionalized POMs in real-world applications, such as photochemical reactions. Contrary to 

previous studies of related phosphonate-substituted POM species, all four compounds reported 

here show good stability in organic media and notably only the most labile species, 4, shows 

time-dependent hydrolytic decomposition in the presence of high water content (> 10 % by 

volume). 

 

Photocatalytic Properties 

Given the results described above, we were interested to explore the comparative effectiveness of 

compounds 2-4 as photocatalysts in relation to our previously reported studies on compounds 1 

and {P2W18}. Recently, both we and others have employed soluble organic dyes as useful model 

pollutant compounds for the benchmarking of a variety of POM species as homogeneous 

catalysts.58-61 N,N’-dimethylformamide (DMF) solutions of indigo dye (20 M) – a common 

textile industry waste product – and the appropriate POM catalyst (4 M) were irradiated under 

white-light using a Xe-lamp equipped with either a 390 or 420 nm cut-off filter. Subsequent UV-

vis analysis was then employed at timed intervals to follow the decomposition of indigo by 

tracking its characteristic absorption signal at 613 nm. The results of these experiments are 
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presented in Figures 4 and S23. Taken as a representative example, the pseudo-first order rate 

constants extracted from the data measured at  > 420 nm show that each species is capable of 

the catalytic decomposition of the dye substrate, whereby the reaction rate follows the order: 4  > 

1  > 2  > 3  > {P2W18} and is comparable to that observed for molecular cerium vanadium oxide 

clusters.58 These observations are replicated in the measurements performed at  > 390 nm, 

where the trend holds, and the stronger absorption of the POM O  W LMCT band at lower 

wavelengths leads to faster rates of indigo oxidation for all five of the POM species (Table 2). 

Operating under the reasonable assumption that 2 and 3 are directly comparable with 

compound 1, the stability of the hybrid organophosphonate substituted POMs under turnover 

conditions has been previously confirmed.40 In the case of the demonstrably more labile  

 

Figure 4. Pseudo-first order plot of the time-dependent photo-oxidation of indigo (Ind) in the 

presence of POM catalysts 1-4 (measured in DMF with irradiation at  > 420). A blank reaction 

is also performed in the absence of catalyst. 
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Table 2. Pseudo-first order rate constants for the photocatalytic decomposition of indigo dye. 

 kobs (> 390 nm) / s-1 kobs (> 420 nm) / s-1 

1 1.1 x 10-3 7.3 x 10-5 

2 8.1 x 10-4 5.0 x 10-5 

3 6.7 x 10-4 3.8 x 10-5 

4 1.4 x 10-3 1.2 x 10-4 

Blank 1.8 x 10-5 1.8 x 10-5 

{P2W17} 1.0 x 10-4 1.1 x 10-5 

{P2W18} 3.4 x 10-4 3.0 x 10-5 

 

inorganic species, 4, we performed both catalyst recycling and 31P NMR experiments to assess 

its stability during the course of the indigo oxidation reaction (see SI for details). Recycling 

experiments confirm that 4 retains its full catalytic performance over three consecutive reaction 

cycles whilst 31P NMR measurements confirm the stability of 4 after decolouration of a more 

concentrated reaction solution (1 mM 4, 10 mM indigo,  > 390 nm, t = 24 h). This shows that, 

in the absence of significant water content, 4 remains stable over multiple photocatalytic 

oxidation reactions.  

These measurements highlight a clear trend which correlates remarkably strongly with the 

theoretical and electrochemical observations presented above. In the first instance, the systematic 

‘orbital engineering’ strategy we propose here is fully experimentally validated, where the rate of 

indigo oxidation is exactly as expected based on the strength of the electron-withdrawing 

character of the para-substituent (i.e. 1 (-COOH) > 2 (-H) > 3 (-OCH3)).   
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Figure 5. Plot showing the linear correlation between the first reduction E1/2 values of 1-4 (see 

Table 1) and the logarithm of the rate of indigo oxidation ( > 420 nm) (as taken from Figure 4, 

above). 

 

In the second instance, the superior photocatalytic properties of 4 can be explained in large part 

by its more positive first redox potential, arising as a result of the inductive stabilization of the 

LUMO level by complexation of the POM core with electron-withdrawing phosphonic acid 

moieties. Whilst the corresponding destabilization of the HOMO level via resonance effects is 

not observed due to the lack of aromaticity in 4, it is interesting to note that this is not found to 

be detrimental to its photocatalytic performance.   

In addition, it is revealing that the rate constants described above show a linear relationship 

with the E1/2 values of the first redox couple in each species (see Figures 5 and S24). This 

indicates that the electrochemical properties (specifically the LUMO energies) of these 
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phosphonate-substituted clusters are key determinants of catalytic performance. The relationship 

also indicates that steric factors (due to the reduced size of the ligand component) are not 

responsible for the improved performance of 4. That the redox properties can be readily tuned by 

the substitution of different ligand moieties on the metal-oxide shell indicates that this could be a 

powerful new strategy in the direct visible-light photo-activation of POM clusters and will be 

broadly applicable across a wide range of molecular metal oxide and ligand types, opening the 

door to the targeted molecular design of next-generation supramolecular and multi-functional 

POM-based photochemical constructs. 

 

Conclusions 

In summary, we have demonstrated a new strategy for the direct photo-activation of 

polyoxometalate clusters via their facile hybridization with a range of phosphonate-derived 

substituents. By altering the properties of the covalently-bound substituent groups, we show that 

an orbital engineering approach can be used to controllably modify the properties of the metal-

oxide cluster. This is shown to have significant implications for the photo-reactivity of the 

substituted clusters, effectively ‘activating’ the photo-oxidative response of the POM towards a 

model organic substrate under visible light irradiation. The degree of this activation is found to 

be entirely dependent on the inductive (i.e. electron-withdrawing) properties of the substituent 

groups that are appended to the metal-oxide core, where comparatively small modifications to 

the electronic properties of the POM core result in dramatic differences in their photocatalytic 

ability. For example, a relatively modest shift of 73 mV in the half-wave potential corresponding 

to the first redox waves in compounds 3 and 4 results in a tripling of the observed rate of indigo 
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decomposition under visible light irradiation ( > 420 nm), indicating there is significant further 

scope for development of this approach. 

Uniquely, this strategy allows the inherent photochemistry of the POM core to be addressed 

directly and facilitates the generation of catalytically active oxo-centred radicals on the metal-

oxide shell using irradiation with visible light. This differs significantly from previous 

approaches which rely on the use of secondary chromophore species to facilitate inter- or intra-

molecular charge-transfer to the POM core rather than the generation of a reactive charge-

separated state on it. This feature therefore potentially opens the door to a wide range of new 

visible-light driven oxidation and hydrogen-transfer reactivity in tungsten-based hybrid systems. 

Furthermore, we also note that functionalization with phosphonate moieties is shown to result in 

robust complexes which have been demonstrated to be stable in both organic and aqueous media 

and, crucially, during catalytic turnover conditions. We propose that this new orbital engineering 

strategy should therefore have significant implications for the design and optimization of a new 

class of visible-light driven hybrid-POM photocatalysts. Given the enormous future potential for 

additional ligand design, control of supramolecular interactions and cluster optimization, we 

believe this broadly applicable strategy should lead to significant advances in the generation of 

novel POM-based photo-active materials. 
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