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Responding to a related pair of measurements is often expressed as a single discrimination ratio. Authors
have used various discrimination ratios; yet, little information exists to guide their choice. A second use
of ratios is to correct for the influence of a nuisance variable on the measurement of interest. I examine
4 discrimination ratios using simulated data sets. Three ratios, of the form a/(a + b), b/(a + b), and
(a — b)/(a + b), introduced distortions to their raw data. The fourth ratio, (b — a)/b largely avoided such
distortions and was the most sensitive at detecting statistical differences. Effect size statistics were also
often improved with a correction ratio. Gustatory sensory preconditioning experiments involved mea-
surement of rats’ sucrose and saline consumption; these flavors served as either a target flavor or a control
flavor and were counterbalanced across rats. However, sensory preconditioning was often masked by a
bias for sucrose over saline. Sucrose and saline consumption scores were multiplied by the ratio of the
overall consumption to the consumption of that flavor alone, which corrected the bias. The general utility

of discrimination and correction ratios for data treatment is discussed.
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I examine the use of two methods for treating data to maximize
statistical sensitivity: transforming data into a discrimination ratio,
and treating data with a ratio that corrects for the influence of an
unwanted variable. It is generally useful to apply a transformation
to data (e.g., Howell, 2002). This may be to better meet assump-
tions for parametric analysis (e.g., log transformation of negatively
skewed latency data; see, e.g., Miller, Laborda, Polack, & Miguez,
2015). A different motive is to improve statistical sensitivity.
Discrimination ratios (e.g., a/(a + b), Kamin, 1969), see below for
full description) offer two important benefits: In addition to sim-
plifying analysis by converting a pair of raw numbers (e.g., in-
strumental response rates during conditioned stimulus and baseline
measurements) into a single ratio, the discrimination ratio can
reduce subject-by-subject variability because of its accommoda-
tion of baseline (b) response rates. It is this second feature of the
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discrimination ratio that offers improved statistical sensitivity.
Rather little is known about discrimination ratios’ properties. To
this end, I describe analyses that use synthetic data to characterize
the effects of discrimination ratios on data and especially on their
statistical sensitivity. In the second section of this report I describe
empirical data whose effect of interest is masked by the influence
of the specific stimuli used. In these sensory preconditioning
experiments, rats’ preference for a control flavor over one with
aversive properties was, in many experiments, masked by an
overriding preference for sucrose over saline. Sucrose and saline
were counterbalanced to serve as either the control or the aversive
flavor. I describe a simple method for correcting for the intrinsic
sucrose-saline bias seen in such experiments and examine its
effects on statistical sensitivity.

Data Treatment

For analyses of both discrimination ratios and the correction
ratio, standard parametric analyses were used for null-hypothesis
testing. Tests evaluated two-tailed hypotheses and o = .050.
Partial eta squared (nﬁ) was used to represent main effect and
interaction effect sizes. Standardized 90% confidence intervals
(CIs) for m} were computed using the methods described by Kelley
(2007) and used his MBESS package for R (Version 3.3.2. [Com-
puter software], Vienna, Austria). Bayesian analyses supplemented
the interpretation of a key results (JASP (Version 0.8 Beta 5)
[Computer software]. Amsterdam, The Netherlands). The Bayes
factor (BF) specifies the ratio of the probabilities between a target
model (BF10) and an appropriate comparison, such as the null
model (BFO1). The magnitude of the ratio is taken to reflect the
likelihood of the support for the target model, which may be
instructive in interpreting data. Jeffreys (1961, as cited in, Rouder,
Speckman, Sun, Morey, & Iverson, 2009) maintained that BFs
greater than 3 may be considered “some evidence” for one hy-
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pothesis over its alternative hypothesis, with BFs of 10 or more or
30 or more as, respectively, “strong” and “very strong” evidence.

Four Discrimination Ratios

Kamin (1969) used the discrimination ratio, a/(a + b), in
conditioned suppression experiments. When a is nonnegative and
b is greater than zero, the ratio will vary between 0 and 1.0 with 0.5
corresponding to a and b having equivalent values. In a condi-
tioned suppression experiment, a represents the instrumental re-
sponse rate (e.g., Bonardi & Jennings, 2009; Robinson, Whitt,
Horsley, & Jones, 2010) or lick rate (e.g., Pezze, Marshall, &
Cassaday, 2016) during a conditioned stimulus for shock (condi-
tional stimulus [CS] rate); and b represents a baseline response rate
(e.g., the instrumental or lick rate immediately before the presen-
tation of the conditioned stimulus; Pre-CS rate). Here, similar CS
and Pre-CS rates will yield ratios that approximate 0.5. They will
approach zero as responding to the conditioned stimulus becomes
suppressed, for example during the acquisition of the conditioned
response. Another purpose is to simplify the performance of birds
in an appetitive discrimination (e.g., George & Pearce, 1999). Here
a and b might be the response rates of, respectively, food rein-
forced and nonreinforced stimuli. Successful discrimination is
reflected in a’s values exceeding b’s and in discrimination ratios
rising from chance (0.5) to approach 1.0 (see also, Harris, Shand,
Carroll, & Westbrook, 2004; Montuori & Honey, 2016).

Other ratios are possible that capture the discrimination between
a pair of a and b values and I will describe three that have been
used in experimental psychology. Redhead has reported data from
an appetitive discrimination with pigeons in which a and b refer,
respectively, food-reinforced and nonreinforced conditioned stim-
uli (Redhead & Curtis, 2013; Redhead & Pearce, 1998). They used
the ratio b/(a + b) to capture each bird’s discrimination. Birds’

Kamin

Pre-CS rate .

Ennaceur

Pre-CS rate

Figure 1.

performance began at around 0.5 and progressed toward O as
responding became focused on the food-reinforced trials, repre-
sented by a. A third ratio was used by Ennaceur and Delacour
(1988) to summarize discrimination of rats’ exploration of novel
(a) and familiar (b) junk objects in recognition memory experi-
ments. Their ratio has the form (¢ — b)/(a + b). Rats’ biased their
exploration toward the novel object, represented by a, giving
positive Ennaceur ratios (i.e., 1 = ratio >0). Notice that the three
ratios’ share their denominator but differ in their numerator. The
fourth ratio that I will consider has a different denominator and the
form: (b — a)/b. This ratio was used by Pfautz, Donegan, and
Wagner (1978; see also Hoffman, Selekman, & Fleshler, 1966) in
Pavlovian shock conditioning experiments with rats and rabbits. a
and b refer, respectively, to the response rates (lever pressing or
heart rate) during the conditioned stimulus and to the baseline rate.
Pfautz ratios are zero when a is equivalent to b (e.g., before
conditioning has taken place) and approach one as responding is
suppressed during the conditioned stimulus. All four of these ratios
have the advantage over a simple ratio (e.g., a/b) that they will be
bound within a fixed range of values. The properties of these four
ratios were characterized by systematically generating data sets
and comparing them to one another. These simulations were in-
tended to help to understand potential distortions that each ratio
produces from the primary data and to assess potential differences
in their statistical sensitivity.

Surface Plots of the Four Discrimination Ratios

The top left surface plot of Figure 1 displays the relationship
between a (e.g., CS) and b (Pre-CS) rates and Kamin ratios using
hypothetical data. The Matlab code and figure are included in the
supplemental materials. The Matlab figure allows rotation of the
surface plots and specification of the axis values to facilitate

Redhead
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Surface plot showing the relationships between varied conditional stimulus (CS) rates and Pre-CS

rates and four different discrimination ratios. Each surface plot depicts the ratios that are computed by the
systematic variation of CS rates and Pre-CS rates varied between 1 and 10 in one-unit intervals.
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inspection. The ordinate indicates the Kamin ratios that are derived
when Pre-CS and CS rates are each varied between 0 and 10 in
one-step intervals. The rear left panel of the surface plot indicates
data derived when CS rates do not exceed Pre-CS rates, as in a
conditioned suppression experiment (e.g., Bonardi & Jennings,
2009; Robinson et al., 2010); the rear right panel of the surface plot
indicates data derived when a rates do exceed b rates (cf., George
& Pearce, 1999). Kamin ratios will approach 0 as CS rates ap-
proach zero and 1.0 as Pre-CS rates approach 0. Despite the
one-step intervals between each CS and Pre-CS response rate
being linear, their relationship to the Kamin ratio is nonlinear. In
particular, the relationship bows as the Pre-CS and CS rates reach
parity (i.e., where the Kamin ratio equals = 0.5).

The top right, and lower pair of surface plots in Figure 1
demonstrate the relationship between a and b rates using, the
Redhead (Redhead & Curtis, 2013; Redhead & Pearce, 1998),
Ennaceur (e.g., Ennaceur & Delacour, 1988), and Pfautz (Pfautz et
al., 1978) ratios. The Ennaceur ratio produces an identically
shaped plot to the Kamin ratio, albeit with a different range of ratio
values. The Redhead ratio produces a plot having the mirror image
of the Kamin ratio plot and has the same range of values. The
Ennaceur ratio will yield ratios approaching minus one in condi-
tioned suppression experiment where Pre-CS ratios (b) exceed CS
ratio (a; e.g., Robinson, Sanderson, Aggleton, & Jenkins, 2009).
At parity the rates will give a ratio of zero and when the a rate
exceeds the b rate Ennaceur ratios approach positive one (e.g.,
Ennaceur & Delacour, 1988; Whitt, Haselgrove, & Robinson,
2012; Whitt & Robinson, 2013). The Redhead ratio will be zero
with a and b rate parity and will mirror the Kamin ratio both in
typical conditioned suppression ratio experiments (i.e., ratios ap-
proach one rather than zero during suppression) and in appetitive
discrimination experiments (i.e., ratios approach zero rather than
one on master of the discrimination; e.g., Redhead & Curtis, 2013;
Redhead & Pearce, 1998). The Pfautz ratio’s surface plot is dif-
ferent from those of the other three ratios. Although the ratio’s
surface plot becomes nonlinear when Pre-CS rates are low and CS
rates are high (i.e., the bottom right region of the surface plot’s
box), elsewhere it retains much more of the linearity of the CS and
Pre-CS rates (note that this linearity is more evidence in Figure 3,
which is discussed below).

Comparison of Effect Sizes From Kamin
and Pfautz Ratios

The previous examination of the Kamin, Ennaceur, and Red-
head ratios indicated that, although the specific values of the ratios
differed, they behaved similarly in their representation of CS and
Pre-CS rates. In particular, the ratios’ surface plots and the effect
sizes of their one-sample-z statistics were similar. Because of that
similarity, the current analysis considers only one of those three
(the Kamin ratio), and compares it to the Pfautz ratio, whose
characteristics are different.

Simulations methods. R (Version 3.3.2. [Computer soft-
ware], Vienna, Austria) was used to generate 500 normally dis-
tributed data points that varied around a mean of 1 and had a SD
of 0.1. These were to serve as the a values in a population of 500
Kamin ratios. The code is included in the supplemental materials.
The a distribution generation was initiated using the “seed” num-
ber 1. Simulations using the same seed produced the same distri-

bution, allowing identical simulations to be created when needed.
A second and third distribution was created using the same process
and the same seed number but the SDs were increased to 0.2 and
to 0.3. The process for the generation of a trio of a distributions
with means of 1 was repeated for distributions with means of 8, 15,
22, 29, 36, and 43; thus, being equally spaced and symmetrical
with respect to the midpoint, 22. These steps created a series of 18
a-distributions with three different standard distributions, six dif-
ferent means and the same seed value, 1. The process was repeated
with new seeds taken from the natural integer series: 2, 3, 4. ... To
prevent the subsequent generation of unusual ratios (i.e., >1
and <0), normal distributions that generated negative values were
not used. Eight seeds were used in total and these processes
yielded 144 sets of normally distributed data (i.e., eight seeds X
six means X 3 SDs).

The process for generation of Kamin ratios was repeated for the
Pfautz ratios. The same seeds were used to permit meaningful
comparison of the ratios that were generated.

Next all data were used to compute Kamin and Pfautz ratios
with a fixed b value of 22, that is, the midpoint on the a series.
Except for ratios based on a distributions with a mean of 22,
one-sample ¢, and associated, statistics were calculated for the
ratios, with the Kamin ratios being compared with i = 0.5 and the
Pfautz ratio being compared with . = 0.0. The statistics were used
to examine possible variation in the level of sensitivity to detect
differences from p across the profile of ratios.

Simulation results. Two seeds in the natural integer se-
quence, 1-10, yielded a-distributions that were discarded because
their seed created one or more negative values. This left eight
a-distributions that contained no negative values. An example of
Kamin-ratio data based on a-distributions having a SD of .3 is
given in Figure 2. As the mean values increased across the series
(ie., 1, 8, 15, 22, 29, 36, and 43) the ratios increased, a pattern that
may be likened to the extinction of conditioned suppression (e.g.,
Ward-Robinson & Hall, 1999). Notice that the Kamin ratios in-
crease nonlinearly and cluster in the region where a becomes
equivalent to b, just as Figure 1 depicts. Or, as an alternative view,
the pairs of mean a rates 1 and 43, 8 and 36, and 15 and 29 are
equivalently distant from the b rate, 22, but their ratios are not
equidistant. A third feature is that the lower the mean value of the
distribution, the greater the variability of the Kamin ratios. The

1.0

Kamin
1al(a+b)

Ratio

00 02 04 06 08

Figure 2. Discrimination ratios for simulated data sets computed by
Kamin’s method. Computer generated data with SDs of 0.3 and means of
either: 1, 8, 15, 22, 29, 36, or 43 (ns = 500) were used to compute
discrimination ratios of the form a/(a +b). Here, a (the conditional stim-
ulus [CS] rate) corresponds to the generated data and b (the Pre-CS rate)
was 22 for all ratios.
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Figure 2 data correspond to the Kamin surface-plot in Figure 1. In
particular, the Figure 2 data correspond to the ratios on the back
surfaces of the surface plot (most of the left side and a smaller
portion of the right side nearest the corner). The code for the
generating the ratios is available in the supplemental materials.

Example data from all four ratios are presented in Figure 3.
Example code is given in the supplemental materials. The ratio
data are from simulations with the SD of .3 and, from right to left,
indicate ratios that might be found during extinction of conditioned
suppression (e.g., Ward-Robinson & Hall, 1999). All data in
Figure 3 were computed based on distributions having the same
random seed number. The Ennaceur ratio produced a similar
distribution of ratios as the Kamin ratio, albeit with values on a
different scale; that is: (a) The linear a-rates produced nonlinear
ratios; and (b) There was greater variability in ratios associated
with lower a-rates. The Redhead and Pfautz ratio declined in value
as the a values increased. The Redhead ratio produced a similar
nonlinear profile as the Kamin and Ennaceur ratios and, likewise,
had greater variability in ratios associated with lower a-rates. As
was seen in Figure 1, the Pfautz ratio differs from the other three
ratios in that the linear sequence in the a rates is retained in its
ratios. Another difference is that the variability is similar across
ratios computed from data with all levels of a rate. This description
of the data was supported by linear-regression analysis: The Pfautz
data in Figure 3 were perfectly described as linear trends, R* =
1.000; the remaining three ratios’ data were more accurately de-
scribed as cubic trends, 0.996 < R? < 0.999, than linear, 0.910 <
R? = 0.990, or quadratic trends, 0.993 =< R* = 0.996.

Table 1 gives further information about the properties of the
four types of ratio. Its upper panel simply gives the ratios for
each of the a rates (CS rate) with a b rate (Pre-CS rate) of 22.
The ratio thus approximates the simulated data in Figure 3.

Comparison is made of the seven ratios of each type to its
value. Mu is taken as the ratio value where CS and Pre-CS rates
are both 22. Comparison is made using one-sample ¢ tests and
associated p and effect sizes are given. The average of the seven
ratios differs across the four ratios but the absolute difference
between the mean ratio and  is the same for the Kamin and
Redhead ratios. The Kamin, Redhead, and Ennaceur ratios
share ¢, p, and effect size statistics. The Pfautz ratio stands alone
in this comparison: With the rates used here, the ratios are more
sensitive in that the one-sample ¢ was better able to detect a
difference from .

Analysis of effect sizes from kamin and pfautz ratios. The
Kamin and Pfautz ratios that were generated above were eval-
uated by reference to their respective ws (i.e., 0.5 for the Kamin
ratio and O for the Pfautz ratio) using one-sample ¢ tests whose
effect size statistics are summarized in Figure 4. Raw data and
statistical analysis are supplied in the supplemental materials.
The simulated data had small SDs and large ns (n = 500), which
produced large effect sizes. The data show that effect sizes
were, unsurprisingly, larger from ratios based on smaller SDs.
Ratios that were based on CS rates that were proximal to the
Pre-CS rate, 22, (i.e., from distributions with average a rates of
15 or 29) were lower than ratios based on a rates further from
22, especially in combination with larger SDs. This is especially
clear in the ratios whose CS rates averaged 1 and 43, with rates
of 8 and 36 being in-between the two extremes. Most significant
was the variation in the effect sizes of the Kamin and Pfautz
ratios. The top row summarizes data that correspond to condi-
tioned suppression, that is, where the mean CS rates (15, 8, and
1) are lower than the Pre-CS rate. Here, the Pfautz ratio ap-
peared to produce superior effect sizes to the Kamin ratio. The
reverse appeared to be the case in elevated ratios, those sum-
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e 1 © b/(a + b)
o ] ~ Q ]
o o
o o
- ] -1 e
- Ennaceur - .
1 (a-b)/(a+Db) s o]
.9 " 29 —— 15 Gy
'.(-u' g R 15 et g g 22 -
m s D o 20 omitwe
9] ©71 Pfautz S
: (b -a)b
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Figure 3. Discrimination ratios for simulated data sets computed by four different methods. Computed
generated data with SDs of 0.3 and means of either: 1, 8, 15, 22, 29, 36, or 43 (ns + 500) were used to compute
discrimination ratios of the form a/(a + b), b/(a + b), (a — b)/(a + b), and (b — a)/b. Here, a (the conditional
stimulus [CS] rate corresponds to the generated data and b (the Pre-CS rate) was 22 for all ratios.
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Table 1
One-Sample t-Statistics for Four Different Methods for Discrimination Ratio Computation With
Varied CS (B) Rates and a Fixed Pre-CS (a) Rate

Kamin Redhead Ennaceur (a — b)/ Pfautz
alla + b) al(a + b) (a + b) b — a)b

CS rate Ratio n Ratio n Ratio n Ratio "
1 .0435 .5000 9565 .5000 9130 .0000 21.0000 .0000
8 2667 .5000 7333 .5000 4667 .0000 1.7500 .0000
15 4054 .5000 .5946 .5000 1892 .0000 4667 .0000
22 .5000 .5000 .5000 .5000 .0000 .0000 .0000 .0000
29 .5686 .5000 4314 .5000 —.1373 .0000 —.2414 .0000
36 .6207 .5000 3793 .5000 —.2414 .0000 —.3889 .0000
43 .6615 .5000 3385 .5000 —.3231 .0000 —.4884 .0000
Effect size (n?) = .0847 — .0847 — .0847 — 1569 —
#(6) = 7450 — 7450 — 7450 — 1.0565 —
p= 4844 — 4844 — 4844 — 3314 —
Mean ratio = 4381 — 5619 — 1239 — 3.1569 —
[Mean ratio — pl = .0619 — .0619 — 1239 — 3.1569 —

Note. CS = conditional stimulus. Four different discrimination ratios computed for seven CS rates with a fixed
Pre-CS rate, 22. In the formula, a and b, respectively, refer to the CS and Pre-CS rates. The ratio value when
the CS rate is equivalent to the Pre-CS rate () is presented to the right of each ratio. The lower portion of the
table depicts the results of a one-sample #-test for each of the four types of ratio with the associated effect size
and p statistics. The mean of each set of ratios and the absolute difference between each mean and p are
presented below this.

marized in the lower row with mean CS rates are higher than the mean-CS-rate variable recoded more crudely as being suppressed
Pre-CS rate, 22. or elevated (i.e., either above or below the Pre-CS rate of 22).
To simplify and focus the main features of the simulated ratio These simplified data are summarized in Figure 5. The effect sizes
data, they were recoded with the SD variable omitted and with the from Kamin ratios were higher when they were based on elevated
Mean CS rate: 15 Mean CS rate: 8 Mean CS rate: 1
& 1.000 0.1 1.000 0.1 1.000 0.1
= o—° , o.zo;n/u 0.2:*/_: 3
N
g oo — 0 09994 0.3 0.999 03
-
Qo099 / 03 0.998 0.998
@
£
w 0.997 0.997 0.997
Kamin Pfautz Kamin Pfautz Kamin Pfautz
Ratio Ratio Ratio
Mean CS rate: 29 Mean CS rate: 36 Mean CS rate: 43
0.1
;:a- 1.000 01 1.000 % 02 1.000 f=————p
o 0999 02 0.999 0.999 o 0.1
N e 0.2
(%) o
o 0998 D\ﬂ 0.3 0.998 0.998 B
@
E
W 97 0.997 0.997
[ o——— | [ —— L ——
Kamin Pfautz Kamin Pfautz Kamin Pfautz
Ratio Ratio Ratio
Proximal Distal
To Pre-CS To Pre-CS

Figure 4. Mean effect sizes for one-sample fs that compare simulated discrimination ratios to . ratios.
Computer generated data with SDs of 0.1, 0.2, and 0.3 and means of either:1, 8, 15, 22, 29, 36, or 43 (ns = 500)
were used to compute discrimination Kamin [a/(a + b)] and Pfautz [(b — a)/b] ratios. Here a (the conditional
stimulus [CS] rate) corresponds to the generated data and b (the Pre-CS rate) was 22 for all ratios. Each of the
36 ratios was compared with w, which was the .5 for the Kamin ratios and O for the Pfautz ratio, using
one-sample 7 tests. The six graphs’ ordinates summarize effect-size statistics (n3) to give indication of the
sensitivity of each method under the varied conditions. The effect sizes are generally high because of the
relatively large sample sizes. Error bars depicting 90% confidence intervals are obscured by the figure symbols.
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Figure 5. A representation of the data summarized in Figure 4 that is
pooled over the 3 SDs and the six varied conditional stimulus [CS]-rates.
Mean effect sizes for one-sample fs that compare simulated discrimination
ratios to w ratios are presented. Computed generated data with SDs of 0.1,
0.2, and 0.3 and means of either: 1, 8, 15, 22, 29, 36, or 43 (ns = 500) were
used to compute discrimination Kamin [a/(a + b)] and Pfautz [(b — a)/b]
ratios. Data are pooled over the SDs and are coded as either above (i.e., 22,
29, and 43) the Pre-CS rate (22) or below the Pre-CS rate (i.e., 1, 8, and
15). Here, a (the CS rate) corresponds to the generated data and b (the
Pre-CS rate) was 22 for all ratios. Each of the 36 ratios was compared with
W, which was the .5 for the Kamin ratios and 0 for the Pfautz ratio, using
one-sample ¢ tests. The graphs ordinate summarizes effect-size statistics
(mp) to give indication of the sensitivity of each method under the varied
conditions. The effect sizes are generally high because of the relatively
large sample sizes. Error bars represent 90% confidence intervals.

CS rates than on suppressed CS rates. By contrast, the Pfautz
ratios’ effect sizes appeared unaffected by their side of the Pre-CS.
This description of the data was supported by ANOVA (analysis of
variance), which did not detect a main effect of the Kamin versus
Pfautz ratios, F(1, 284) = 1.6; p > .196; n3 < .007, 90% CI [.000,
.029]. However, the ANOVA detected a main effect of suppression
versus elevation, F(1, 284) = 9.5; p < .003; ng > .031, 90% CI
[.007, .072], and a Kamin/Pfautz X Suppression/Elevation inter-
action, F(1, 284) = 10.8; p < .002; 3 > .036, 90% CI [.009,
.078]. The source of this interaction was investigated with simple
main effects analyses, using the common-error term. The effect
size difference in elevated Kamin and Pfautz ratios was unreliable,
F(1,284) = 2.0; p > .161; 13 < .006, 90% CI [.000, .031], but the
corresponding difference for suppressed ratios was reliable, F(1,
284) = 10.5; p < .002; m3 > .035, 90% CI [.008, .076]. Elevated
Kamin ratios were reliably higher than suppressed Kamin ratios,
F(1, 284) = 20.3; p < .001; m3 > .066, 90% CI [.026, .116], but
no such elevation/suppression difference was detected for Pfautz
ratios, F < 1;p > .89; ng <.001, 90% CI [.000, .005]. A Bayesian
ANOVA was performed with models corresponding to the previ-
ous ANOVAs variables and matched its findings. The model based
on the Kamin/Pfautz X Suppression/Elevation interaction was
strongly favored over the combined Kamin/Pfautz and Suppres-
sion/Elevation models, BF10 > 23.7. These analyses are included
in the supplemental materials.

This analysis indicated that the Pfautz ratio behaved similarly to
suppressed and to elevated CS rates: Effect size statistics associ-
ated with one-sample s were indistinguishable by inferential test-
ing. By contrast the Kamin ratio produced greater effect size

statistics with elevated data than with suppressed data. It is notable
that the absolute differences in the effect sizes are trivially small
and might lead one to conclude that all of the ratios produce
excellent effect sizes. However, the synthetic data used here have
large sample sizes and this will boost effect size statistics to points
beyond those typically seen in empirically obtained data. Further-
more, because m? will not exceed 1 the absolute differences in
these synthetic data are likely to be compressed. Thus, the absolute
difference in the effect size statistics in empirical data is likely to
be greater than that seen here.

Discussion

The Kamin (1969), Redhead (Redhead & Curtis, 2013; Redhead
& Pearce, 1998), and Ennaceur (e.g., Ennaceur & Delacour, 1988)
ratios produced similar distortions on the simulated conditioned
suppression data. Ratios based on low CS rate (a) had greater
variability than CS rates that were similar to the Pre-CS rate (b).
Furthermore, the space between the ratios corresponding to neigh-
boring CS rates was uneven: Rather than corresponding to the
equal steps between each CS rate, they were relatively compressed
as the CS rate approximated the Pre-CS rate. The Pfautz ratio
(Pfautz et al., 1978) suffered neither of those complications: Ratios
for different CS rates did not differ in their variability and the
interval between each set of ratios retained the linearity of the
original CS rates.

The Kamin and Pfautz ratios differed in their sensitivity as
measured by effect size statistics based on one-sample ¢ tests that
compared each CS-rate’s population of ratios to the value of the
ratio when the @ and b rates were equal. In particular, the Kamin
ratio suffered a marked loss in effect size when the a-rate was far
lower than the b-rate, the situation in conditioned suppression
experiments. The implication of this is that we should not use
Kamin’s ratio for conditioned suppression experiments, or any
other procedure in which the aim is to detect effects when a < b.
Instead, we should favor Pfautz’ ratio. The Kamin ratio has been
favored in conditioned suppression experiments for the last five
decades and these new findings indicate that effect sizes may have
been underestimated.

The Kamin ratio produced better effect sizes when the CS rate
(a) exceeded the Pre-CS rate (b). This arrangement is often seen in
experiments where the a-rate rises during mastery of a discrimi-
nation and the b-rate may either decline or remain an estimate of
a constant baseline rate (e.g., George & Pearce, 1999; Harris et al.,
2004; Montuori & Honey, 2016). The implication of these simu-
lations is that the Kamin ratio is a suitably sensitive treatment for
such data. Although there was no inferential statistical support for
the observation, the mean value for the Kamin ratio when a > b
was the largest of the four ratios. The Pfautz ratio’s effect sizes
were indistinguishable when applied to data of either form (i.e.,
either a < b or a > b). The natural conclusion from these
observations is that the Pfautz ratio should be used by default: It
does not distort its input data and produces robust effect sizes that
are equal for both a < b or a > b data.

I emphasize that these conclusions are based on very large sets
of synthetic data that may detect ratio differences in effect size that
would be rendered marginal in real experimental data with smaller
ns. Nevertheless, researchers are encouraged to report effect sizes,
not only for their own individual experiment, but to allow aggre-
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gated effect sizes to be computed that are based on many similar
experiments (e.g., Cumming, 2011; Lakens, 2013). Thus, even
small differences in the effect sizes from particular ratios may
ultimately become important.

Skewed data sets could benefit from the distorting influence of
some of these ratios. Consider lick-suppression, latency data (e.g.,
Miller et al., 2015; Pezze et al., 2016) that will often be negatively
skewed: They will be relatively diffuse at long latencies and
compressed at short latencies, as they approach the floor of zero
seconds. This pattern of compression and expansion is the com-
plement of the distortions appreciable in Figure 3 seen for the
Kamin, Redhead, and Ennaceur ratios. Thus, depending upon the
level of responding at which key effects are to be detected, these
ratios could outperform the Pfautz ratio with negatively skewed
data.

A Correction Ratio to Eliminate the Influence of a
Nuisance Variable on Effect Size

The motive for applying the discrimination ratios above is to
reduce data variability to better support statistical analysis. The
discrimination ratios achieve this by compensating for subject-by-
subject variation in one variable (e.g., Pre-CS rate) to allow more
sensitive data analysis of the target variable (e.g., CS rate). I now
describe a second ratio-based technique to reduce variance to
improve data sensitivity. Rather than operate at subject-by-subject
variability, this method applies a correction ratio to offset distor-
tions produced by nuisance variables. I exemplify this with an
example from a gustatory sensory preconditioning procedure in
which the nuisance variable is based on intrinsic differences in
rats’ consumption of two flavored solutions. This interferes with
detection of differences in consumption based on the experimental
treatment. The correction ratio technique is quite general and
broader applications will be considered.

An Application of the Correction Ratio to
Sensory Preconditioning

Rescorla and Cunningham (1978) reported within-subject sen-
sory preconditioning data with rats. Their procedure involved rats
first receiving a pair of compound flavors on separate trials (e.g.,
sucrose-acid and saline-quinine). To reveal learning about the
co-occurrence of each pair of flavors, one flavor (e.g., acid) was
paired with illness to create an aversion to it. Rescorla and Cun-
ningham reported a marked reduction in consumption of the flavor
whose partner was illness-paired (i.e., sucrose in this example).
The experiment was counterbalanced such that for half of the rats,
sucrose was made aversive and saline was the control flavor and
for the remaining rats saline was aversive and sucrose was the
control flavor. Although successful in demonstrating sensory pre-
conditioning, there was a pronounced overall preference for su-
crose over saline during testing. This preference may have acted
against Rescorla and Cunningham detecting sensory precondition-
ing (see also Ward-Robinson, Symonds, & Hall, 1998).

Unpublished data from a similar sensory preconditioning pro-
cedure are presented in Table 2. Uncorrected fluid consumption
data, measured in grams, are displayed in the left side of the upper
panel with summary statistics below. Data in columns headed
‘A+’ refer to the flavor whose consumption is expected to be low

because its partner had been paired with illness. Data headed ‘B—’
refer to the control flavor whose consumption should be higher
than A+’s. The procedure reliably biased rats’ consumption to-
ward B— (19.2 g) relative to A+ (8.2 g), #(16) = 3.1, p < .007,
Ms > 379, 90% CI [.01, .46]; that is, sensory preconditioning was
obtained. However, this difference was obtained despite a twofold
bias in the consumption of S (18.4 g) over N (9.1 g), #(16) = 2.4,
p < .027, 3 > 273, 90% CI [.12, .59].

This unwanted flavor bias was corrected by multiplying each
uncorrected sucrose score by the ratio of the overall mean con-
sumption and the uncorrected sucrose score, irrespective of its role
as A+ or B—. Thus, the rat in the first row’s uncorrected sucrose
score of 2 g reduced to 1.5 g to accommodate the fact that sucrose
consumption was generally high. The correction is arrived at
because (13.71/18.35) * 2 g ~ 0.75 " 2 g ~ 1.5 g. The same
process applied to that rat’s saline score increased it from 23 to
34.8 g to reflect saline’s generally low consumption. The correc-
tion is (13.71/9.06) * 23 g ~ 1.51 * 23 g ~ 34.8 g. The application
of these two correction ratios to all the original, uncorrected data
produced a complete set of corrected data in which the overall
consumption of sucrose is matched with that of saline. The cor-
rection treatment also exaggerated discrimination, which is re-
flected in the means A+ (7.5 g) and B— (19.9 g), and greater
effect-size #(16) = 3.9, p < .002, 3 > 492, 90% CI [.42, .77].

An additional 10 flavor, sensory preconditioning tests were
subjected to this correction treatment and the effects on effect size
and sample requirement examined. Some data came from unpub-
lished observations; others came from published data (Ward-
Robinson, Coutureau, Good, Honey, Killcross, & Oswald, 2001;
Ward-Robinson, Coutureau, Honey, & Killcross, 2005; Ward-
Robinson et. al., 1998; Ward-Robinson, Wilton, Muir, Honey,
Vann, & Aggleton, 2002). Figure 6 summarizes changes in the
effect sizes and in the sample requirements of these experiments
when data were in their original, uncorrected form and in their
corrected form. The raw data are available in the supplemental
materials. Although the effect size statistics were quite variable
there was an apparent increase when the correction method was
applied, #(10) = 4.1, p < .003, m3 > .625, 90% CI [.21, .76].

The sucrose preference that is represented in Table 2 was not
universal in the full set of 11 observations: In some tests there was
a marked preference for sucrose over saline; in other tests it was
negligible (i.e., in cases where consumption of sucrose and saline
was well matched). The sucrose/saline bias across the 11 tests is
summarized in Figure 7 and the raw data are given in the supple-
mental materials. The Kamin and Pfautz methods were each used
to express the bias for sucrose over saline on the abscissa. They,
respectively, used the ratios S/(S + N) and (S — N)/S where S
refers to the overall sucrose consumption, irrespective in its role as
A+ or B—, and N refers to the corresponding data for saline. The
effect sizes of the sensory preconditioning effect (i.e., the differ-
ence in consumption between A+ and B—) were approximated
with 'ﬂ% for each experiment in its uncorrected (U) and corrected
(C) forms. The change resulting from the correction was captured
using the Kamin and Pfautz methods using the ratios C/(C + U)
and (U — C)/U, respectively. It is apparent that in experiments
with little evidence of a preference the benefit of the correction
ratio on sensory preconditioning’s effect size was absent. Further-
more, the benefit of using the correction ratio increased the more
extreme the flavor bias became. Pearson’s Product Moment Cor-
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Table 2
Raw and Transformed Consumption of Two Flavored Solutions
A+ A+ B-— B—

Uncorrected Corrected Uncorrected Corrected
Flavor data data Flavor data data
Sucrose 2g 15¢g Saline 23 ¢g 348 ¢
Sucrose 7¢g 52¢g Saline 2¢ 333 ¢
Sucrose I1g 82¢g Saline 17¢g 257 ¢
Sucrose 12¢g 90¢g Saline 2¢ 333 ¢
Sucrose 14 ¢ 105¢g Saline l4 ¢ 212 ¢g
Sucrose l4¢g 105¢g Saline 15¢g 227 ¢
Sucrose 25¢g 187 ¢ Saline 2g 30¢g
Sucrose 25¢g 18.7¢g Saline 9¢g 136¢g
Saline S5¢g 76¢g Sucrose 19¢g 142¢g
Saline Og Og Sucrose 9¢g 142¢g
Saline 16 g 242 ¢ Sucrose 19¢g 142¢g
Saline 3g 45¢ Sucrose 21g 157 ¢
Saline Og Og Sucrose 22¢g 164 ¢
Saline 5S¢ 76¢ Sucrose 2¢ 164 ¢
Saline lg 15¢g Sucrose 22¢g 164 ¢
Saline Og Og Sucrose 29¢g 21.7¢g
Saline Og Og Sucrose 29¢g 217 g
Mean uncorrected sucrose consumption: 184 ¢ Mean corrected sucrose consumption: 13.7¢g
Mean uncorrected saline consumption: 9.1g Mean corrected saline consumption: 13.7¢
Mean uncorrected overall consumption: 13.7¢ Mean corrected overall consumption: 13.7¢g
Sucrose correction ratio: 13.7/18.4 = .7 Sucrose correction ratio: 13.7/13.7 = 1
Saline correction ratio: 13.79.1 = 1.5 Saline correction ratio: 13.7/13.7 = 1

Note. Data from a sensory preconditioning experiment with seventeen rats using flavored stimuli as the conditioned stimulus (A+) and control stimulus
(B—). The flavors serving as A+ and B-were sucrose and saline with roles being counterbalanced across subjects. The top panel displays fluid-consumption
data in grams in original, uncorrected form and in corrected form. The bottom left panel gives summary data for uncorrected consumption, which is
expressed both by role (A+ vs. B—) and by flavor (sucrose versus saline). The bottom left panel also depicts calculation a correction-treatment ratio for
the two flavors in which the average overall consumption is divided by the consumption of one or other of sucrose or saline. The corrected data is derived
from the product of each uncorrected datum and the correction ratio for that flavor. The bottom right panel shows summary data, corresponding to that of

the bottom left panel but for corrected data.

relation Coefficients, supported that description of the relationship
for both the Kamin method, #(10) = +.91, p < .001, and for the
Pfautz method, »(10) = +.81, p < .001.

Discussion

In general, the correction ratio offset the unwanted bias in flavor
preference and improved the sensory preconditioning effect-size.
The sensory preconditioning experiments varied in the extent of
the flavor bias: In some there was a marked preference for sucrose
over saline but in others there was none. The improvement in
effect size was commensurate with the magnitude of the flavor
bias: In experiments with large flavor biases, the correction ratio
gave a correspondingly large improvement in the sensory precon-
ditioning effect size; when there was no marked flavor bias, the
ratio had no appreciably influence on the sensory preconditioning
effect size.

The correction ratio also resolves a problem affecting the deci-
sion to use stimuli from the same or from different modalities in
discrimination tasks. One could assist discrimination by selecting
stimuli from different modalities (e.g., a tone and a light in an
appetitive discrimination with rats). However, such perceptually
distinct stimuli often elicit different patterns of unconditioned
response that differ in modifying the measured response (e.g.,
Jacobs & LoLordo, 1977) and may encourage selection in intra-
modal stimuli (e.g., a tone and a clicker). One solution is, thus, to

facilitate discrimination by the selection of stimuli from different
modalities before offsetting unwanted variation with the correction
ratio.

The sensory preconditioning examples summarize here were
taken from within-subjects experiments in which fluid consump-
tion was measured. Of course, this correction ratio could be
applied elsewhere to different experimental procedures with alter-
native stimuli and measurement variables. For example, George
and Pearce (1999) reported an experiment that suffered from an
unwanted difference in the discriminability of two types of coun-
terbalanced stimuli. In other regards, their experiment was quite
different from the sensory preconditioning experiments: It used a
between-subjects design, an autoshaping procedure with pigeons
and a Kamin discrimination-ratio dependent variable, which was
based on peck rates during reinforced and nonreinforced keylight
stimuli. Two groups of pigeons received either an intradimensional
shift or an extradimensional shift. The dimensions were colors and
orientations, which were combined as keylight stimuli. For some
of the intradimensional shift pigeons color was relevant to rein-
forcement and orientation was irrelevant; for the remainder, ori-
entation was relevant and color irrelevant to reinforcement. The
same counterbalancing arrangement was applied to the extradi-
mensional shift pigeons to permit meaningful comparison of the
performance across intra-/extradimensional shifts. George and
Pearce’s intradimensional pigeons out-performed the extradimen-
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Figure 6. Mean effect sizes (1?3) for 11 sensory preconditioning experi-
ments using sucrose or saline as test flavors. Data are in their original form
(“Uncorrected”) or when subject to the correction treatment (“Corrected”).
The third column summarizes values of the corrected minus the uncor-
rected effect size statistics. Error bars represent 90% confidence intervals.

sional pigeons but that effect was masked by the tendency in the
two subgroups within each main group to learn more quickly if
their relevant dimension was color, rather than orientation (see
also, Mackintosh & Little, 1969; Urcuioli & Zentall, 1986).

Despite these differences from the sensory preconditioning pro-
cedure examined above, the correction ratio may be applied in the
same way to George and Pearce’s (1999) data. For example, by the
fifth session that George and Pearce present in their Figure 2, intra-
and extradimensional ratios are, respectively, 0.984 and 0.933 in
pigeons whose relevant dimension was color and 0.822 and 0.690
in pigeons whose relevant dimension was orientation. The bias in
discrimination between color and orientation can be offset in the
same way as for sensory preconditioning by the multiplication of
each discrimination ratio by the appropriate correction ratio. The
denominator for color correction ratio will be the average color
discrimination ratio (i.e., (0.983 + 0.933)/2 = 0.958). The denom-
inator for the orientation correction ratio will be the average
orientation discrimination ratio (i.e., (0.822 + 0.690)/2 = 0.811).
Both ratios’ numerator will be the overall average (i.e., (0.983 +
0.933 + 0.822 + 0.690)/4 = 0.857). This produces a pair of
correction ratios for color-relevant discrimination ratios, 0.894
(i.e., 0.857/0.958) and orientation-relevant ratios 1.134 (i.e.,
0.857/0.811) for multiplication with the corresponding, original
discrimination ratio. Notice that birds’ superior performance on the
color discrimination will be reduced because the correction ratio
is <1 and that their inferior performance on the orientation dis-
crimination will be boosted because its ratio is >1. This process
could be repeated to create session-specific correction ratios,
which would best accommodate variation in the color-orientation
bias as the discrimination changes with training.

The correction ratio may also be expanded to include more than
a pair of stimuli. For example, a sensory preconditioning test could
include some third comparison flavor (e.g., umami), that would be
counterbalanced across treatments with sucrose and saline. A third
correction ratio with the denominator based on the mean uncor-
rected umami consumption, irrespective of stimulus role, would be

used to correct the umami consumption data. The three flavors
would have their own correction ratio with the overall average
consumption as the numerator and the average consumption of that
particular flavor as the denominator.

Where multiple nuisance variables (e.g., overall differences in
performance in different operant chambers; unwanted sex differ-
ences, etc.) affect the primary measurement, multiple correction
ratios can be employed. For example, if George and Pearce had
found that discrimination ratios varied across their eight Skinner
boxes, they could compute correction ratios for each of the eight
boxes and apply them appropriately to each bird’s data. This could
be done in addition the correction for color-orientation bias. In this
case the box and color-orientation biases would be corrected in
equal measure. Of course, the influence of the two variables is
unlikely to be equal and it may be preferable to weight each set of
correction ratios before their application to the original data.

It is important to note that the correction ratio will not always
improve effect size. In the sensory preconditioning examples the
correction ratio selectively improved effect sizes when there was a
sucrose-saline bias; when there was no bias, the correction ratio
produced no effect-size improvement. However, there was no
circumstance in which the sensory preconditioning data produced
a smaller effect size after application of the correction ratio.
However, there are circumstances in which this will happen. For
example, the data in Table 1 summarize an improvement in effect
size when the correction ratio is applied to sensory preconditioning
data that are affected by a sucrose preference, relative to saline
(M3 = .379 increases to 3 = .493). Furthermore, if, for example,
the consumption of B (saline) for the first rat of 23g is replaced
with the value of 100 g, the effect size decreases from n; = .280
to m; = .266. These two observations demonstrate that the correc-
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Figure 7. Relationship between the level of the bias in sucrose/saline
consumption (abscissa) and the effect of the correction ratio on the sensory
preconditioning effect size (ordinate) in the 11 experiments. The Kamin
method was used for data represented by circular symbols: Flavor bias was
captured using the ratio S/(S + N), where S and N, respectively, refer to
sucrose and saline consumption. The change in effect size of correction
ratio took the form, C/(C + U), where C and U stand, respectively, for the
effect sizes of the corrected and uncorrected data. The cross symbols
represent the same data but transformed with the Pfautz methods; that is,
for flavor using (S - N)/S and for effect size change with (U — C)/C.
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tion ratio acts only where there is a systematic bias and will not
provide an arbitrary improvement to effect size.

General Discussion

I examined two different ways of improving effect sizes in
experimental data. One led us to examine the influence of discrim-
ination ratios on effect size; the other used a correction ratio to
offset the influence of a nuisance variable that may otherwise
diminish effect size. The findings suggest that the Pfautz ratio
(Pfautz et al., 1978) is preferred over the Kamin ratio (1969),
which is similar to the Redhead (Redhead & Curtis, 2013; Redhead
& Pearce, 1998) and Ennaceur (e.g., Ennaceur & Delacour, 1988)
ratios. The correction ratio was seen to help effect size only when
the nuisance variable had appreciable effect. We also saw that the
application of correction ratios was general and fully expandable
being applicable to variables with multiple levels and to
(weighted) combinations of variables (such as differences in dis-
crimination across stimulus dimension and Skinner box).

The focus on effect size is only one side of the benefits of the
sensible application of ratios to experimental data. An alternative,
but inextricably related, consideration is for the N requirements to
reach a particular effect size. From a statistical point of view,
larger Ns are always favored, but increasing N has unwanted
impact on time and on resources costs. Such concerns are espe-
cially acute in animal research where professional (e.g., American
Psychological Association, 2012; The British Psychological Soci-
ety, 2012), and legal (e.g., European Union, 2010; Home Office,
2013) responsibilities act to reduce the number of animals used in
experimental work. Thus, the methods described here may con-
tribute to meaningful reductions in animal requirement in experi-
mentation in addition to improvements in effect size sensitivity.
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