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Abstract—Classical Poggio-Miller-Chan-Harrington-Wu-Tsai
(PMCHWT) formulations for modeling radiation and scattering
from penetrable objects suffer from ill-conditioning when the
frequency is low or when the mesh density is high. The most
effective techniques to solve these problems, unfortunately, either
require the explicit detection of the so-called global loops of the
structure, or suffer from numerical cancellation at extremely low-
frequency. In this contribution, a novel regularization method
for the PMCHWT equation is proposed, which is based on the
quasi-Helmholtz projectors. This method not only solves both the
low frequency and the dense mesh ill-conditioning problems of
the PMCHWT, but it is immune from low-frequency numerical
cancellations and it does not require the detection of global loops.
This is obtained by projecting the range space of the PMCHWT
operator onto a dual basis, by rescaling the resulting quasi-
Helmholtz components, by replicating the strategy in the dual
space, and finally by combining the primal and the dual equations
in a Calderón like fashion. Implementation-related treatments
and details alternate the theoretical developments in order to
maximize impact and practical applicability of the approach.
Finally, numerical results corroborate the theory and show the
effectiveness of the new schemes in real case scenarios.

Index Terms—Computational Electromagnetics, Integral
Equations, PMCHWT, Quasi-Helmholtz Projectors, Calderon
Preconditioning.

I. INTRODUCTION

BOUNDARY integral equation (BIE) methods provide

an efficient way to solve scattering problems involving

piecewise homogeneous media [1], [2]. In electromagnetic

modeling, two of the most commonly used BIEs are the

Electric Field Integral Equation (EFIE) for perfect conduc-

tors [3]–[7] and the Poggio-Miller-Chan-Harrington-Wu-Tsai

(PMCHWT) integral equation for dielectrics [8]–[10]. Both

equations suffer from ill-conditioning and current cancellation

problems when applied to low-frequency scenarios, and from

ill-conditioning when applied to densely discretized geome-

tries [11]–[18].
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The EFIE’s low frequency ill conditioning problem (low-

frequency breakdown) can be solved by performing a loop-

star decomposition and rescaling the components of both the

basis and the testing functions [19]–[23]. Loop-star decom-

positions, however, cannot solve the EFIE’s ill condition-

ing problem associated with densely discretized geometries

(mesh refinement breakdown). Both breakdowns can instead

be solved by Calderón or by hierarchical preconditioning

(see [12], [24] and references therein). Some drawbacks,

however, are associated with these techniques in their standard

incarnations. Hierarchical bases require the detection of global

topological loops for non simply connected geometries, an

operation which is computationally cumbersome. Moreover,

standard Calderón methods, when they are not combined

with quasi-Helmholtz decompositions, suffer from numeri-

cal cancellations in the solution current [12]. At the same

time, standard quasi-Helmholtz decompositions such as loop-

star/tree lead to ill-conditioning when combined with Calderón

preconditioning [25]–[27]. Recently [12], to solve this, quasi-

Helmholtz projectors have been introduced that can be used to

obtain a LF stable, well-conditioned, cancellation and global-

loops detection free, integral equation for scattering problems

involving perfect conductors.

The origin of PMCHWT equation’s conditioning and can-

cellation problems is similar to that of the EFIE’s [13], [14]. In

fact, on simply connected smooth geometries, the PMCHWT

operator can be regarded as a compact perturbation of a

linear combination of EFIE operators. As a consequence,

loop-star decompositions can be employed to solve the low

frequency breakdown of the PMCHWT equation [13], [28]–

[31]. For multiply connected geometries, the picture becomes

more complicated. In contrast to the EFIE operator, the MFIE

operator featuring in the PMCHWT equation does differentiate

between local and global loop currents. This translates in the

fact that the EFIE rescaling method fails to solve the low

frequency breakdown of the PMCHWT equation when applied

to multiply connected geometries. This problem has been

recently analyzed and addressed by a hierarchical scheme [18]

that still requires, however, the expensive detection of global

loops. Summarizing, currently there is not a formulation

available for penetrable objects which is numerically stable

and well conditioned till extremely low frequencies, immune

from mesh related breakdowns and that does not require the

detection of global loops. This lamentable gap will be filled

by this work.

The contribution of this paper is three-fold: (i) a new
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regularization strategy for the PMCHWT based on the quasi-

Helmholtz projectors. This scheme fixes the deterioration of

the system condition number and the loss of accuracy due to

cancellation of the current components resulting from the low-

frequency breakdown. As opposed to what is the case when

using other quasi-Helmholtz decomposition based techniques,

it does not require the explicit construction of the global loops

in the boundary element space used to approximate the cur-

rent. The application of the quasi-Helmholtz Projector to the

PMCHWT turned out to be far from trivial. In fact, unlike the

EFIE case [12], where the quasi-Helmholtz components of the

testing space are rescaled, the range space of the PMCHWT

operator is first projected onto a dual basis, and then the quasi-

Helmholtz components of this projected current are rescaled.

This new regularization strategy transforms the PMCHWT

in an equation with the correct frequency scaling, even for

multiply connected geometries. (ii) The extension of the new

rescaling to the dual space, where suitable dual elements and

dual projectors are adopted. (iii) A suitable combination of

(i) and (ii) to obtain a Calderón -like PMCHWT equation

which, to the frequency benefits of the formulation obtained

in (i), adds the fact of being immune from mesh-refinement

ill-conditioning. Very preliminary results were included in the

conference proceedings [32].

This paper is organized as follows. Section II fixes the

notation and introduces some background material. Section III

presents a brief analysis of the standard PMCHWT condi-

tioning and numerical cancelation problems. In Section IV,

the novel frequency rescaling method is introduced. Sec-

tion V extends this rescaling method to the dual space.

This dual formulation is used in Section VI to construct a

Calderón preconditioner that solves the PMCHWT equation’s

mesh refinement breakdown. In Section VII, a number of

implementation-related details are discussed to facilitate the

practical applicability of the new schemes presented here.

Numerical results are presented in Section VII. Finally, our

conclusions are summarized in Section IX.

II. NOTATION AND BACKGROUND

Consider a dielectric body Ω characterized by a permittivity

ǫ′ and a permeability µ′, which is embedded in a medium

characterized by material parameters ǫ, µ. Scattering by Ω
can be modeled using the PMCHWT equation

(

Tk + Tk′/ηr − (Kk +Kk′)
Kk +Kk′ Tk + ηrTk′

)(

M(r)
J(r)

)

= −
(

ηkn̂r ×Hi(r)

n̂r ×Ei(r)

)

(1)

where the integral operators Tk and Kk are defined as

(TkJ) (r) = (Ts,kJ) (r) + (Th,kJ) (r) (2)

(Ts,kJ) (r) = −jkn̂r ×
∫

Γ

e−jkR

4πR
J(r′)ds′ (3)

(Th,kJ) (r) =
1

jk
n̂r × p.v.

∫

Γ

∇e−jkR

4πR
∇′ · J(r′)ds′(4)

(KkJ) (r) = −n̂r × p.v.

∫

Γ

∇× e−jkR

4πR
J(r′)ds′. (5)

c+n c−nr+n r−n

v+n

v−n

en

Fig. 1: Conventions used in the definition of RWG, Loop, and

Star functions.

Furthermore, Γ is the boundary of Ω, n̂r is its outward normal

at point r, k = ω
√
µǫ, ηk =

√

µ/ǫ and ηr = ηk/η
′
k. The quan-

tities with primes (k′, η′) are defined similarly with material

parameters ǫ′ and µ′. In (1), J(r) and M(r) are the equivalent

electric and magnetic current densities on Γ, from which the

scattered electromagnetic fields can be computed when an

incident electromagnetic wave Ei(r),Hi(r) impinges on Ω.

In order to construct a numerical solution to (1), the surface

Γ is triangulated by a mesh of average mesh size h. Moreover,

on the mesh, the unknown currents M(r) and J(r) are most

commonly expanded in Rao-Wilton-Glisson (RWG) functions

f i(r) [5] normalized such that the integrated flux through their

defining edges equals 1

M(r) =
N
∑

i=1

mif i(r) (6)

J(r) =

N
∑

i=1

jif i(r), (7)

and (1) is tested with the rotated RWG functions n̂r ×f i(r),
i = 1, 2, ..., N . The following matrix equation is obtained:

(

Qjm Qjj

Qmm Qmj

)(

m

j

)

= −
(

ηkh
i

ei

)

, (8)

with Qjm = (Tk +Tk′/ηr), Qjj = −(Kk +Kk′), Qmm =
(Kk +Kk′), Qmj = (Tk + ηrTk′), and where

[Tk]ij =
(

n̂r × f i, Tkf j

)

(9)

[Kk]ij =
(

n̂r × f i,Kkf j

)

(10)
[

hi
]

j
= (n̂r × f i, n̂r ×Hi) (11)

[

ei
]

j
= (n̂r × f i, n̂r ×Ei) . (12)

It is well known [19]–[23] that the RWG basis admits a

quasi-Helmholtz decomposition in terms of Loop and Star

basis functions, i.e. the RWG coefficient vector can be de-

composed as

j = Λl+Hh+Σs (13)

where the matrices Λ, Σ, and H are the RWG to Loop,

Star, and discrete harmonic function coefficient matrices,

respectively. The Loop basis functions are solenoidal (their
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divergence is zero) and are associated to an internal node of

the mesh. Their associated transformation matrix is defined as:

Λi,j =







1 if node j equals v+i
−1 if node j equals v−i
0 otherwise

(14)

where the symbols used are defined in Fig. 1. The Star

basis functions are associated to the cells of the mesh. Their

associated transformation matrix is defined as:

Σi,j =







1 if the cell j equals c+i
−1 if the cell j equals c−i
0 otherwise.

(15)

Finally, H is the so-called global loop to RWG transformation

matrix. Global loops are the discretized counterparts of the

harmonic space of the Helmholtz decomposition. For the sake

of brevity, we will omit a complete description of this family of

functions and the interested reader is referred to [19] and [33].

Here it is just important to recall that the column dimension

of H is 2Nhandles, where Nhandles is the number of handles

of Γ.

III. A BRIEF ANALYSIS OF PMCHWT CONDITIONING

PROBLEMS AND NUMERICAL CANCELLATIONS FOR

MULTIPLY CONNECTED GEOMETRIES

To properly justify the need for the new formulations that

will follow in the next sections, we will now briefly analyze the

pathologic behavior of the PMCHWT as pertains frequency,

discretization, and numerical stability. This section is included

for completeness, but will be very synthetic for the sake

of conciseness. The reader interested in more details could

refer to the more extended analysis in [18] done under the

prospective of hierarchical bases.

1) Ill-Conditioning in Frequency: The following frequency

scaling for the EFIE and MFIE operators holds [12], [28], [34]

(x, T y) =

{

O(ω) if ∇ · x = 0 and/or ∇ · y = 0

O(ω−1) otherwise
(16)

(x,Ky) =











O(1) if x and y are both global loops

O(1) if ∇ · x 6= 0 and/or ∇ · y 6= 0

O(ω2) otherwise

.(17)

Note that (17) is not optimal since more stringent bounds can

be derived if the global loops are separated into poloidal and

toroidal loops [35]. This, however, is not a limitation for the

analysis that follows and thus this distinction is omitted here

for the sake of simplicity.

After defining the Loop-Star transformation matrix

A = (Λ,H,Σ) , (18)

the following frequency scaling is obtained for the transformed

PMCHWT operator
(

AT

AT

)(

Qjm Qjj

Qmm Qmj

)(

A

A

)

= O

















ω ω ω ω2 ω2 1
ω ω ω ω2 1 1
ω ω ω−1 1 1 1
ω2 ω2 1 ω ω ω
ω2 1 1 ω ω ω
1 1 1 ω ω ω−1

















(19)

From this, the fact that the condition number of the PMCHWT

will grow for decreasing frequencies follows directly from a

simple application of the Gershgorin disk theorem [36].

2) Ill-Conditioning in Discretization: When applied to sim-

ply connected geometries, the behavior of the PMCHWT

condition number as a function of the average mesh size h
follows directly from the behavior of the EFIE operator T . In

fact, the PMCHWT operator can be written as
(

Tk + Tk′/ηr − (Kk +Kk′)
Kk +Kk′ Tk + ηrTk′

)

=

(

Tk + Tk′/ηr 0
0 Tk + ηrTk′

)

(20)

+

(

0 − (Kk +Kk′)
Kk +Kk′ 0

)

where the latter is a compact operator (on simply connected

smooth geometries) since it is off-diagonal with compact

blocks. Otherwise said, the PMCHWT is a compact pertur-

bation of a block operator containing T on the diagonal

blocks. The overall h-related behavior will, as a consequence,

be the one of the EFIE operator T . In other words, a h−2

conditioning growth for h → 0 is expected. For multiply

connected geometries, the same conclusion holds. It must

however be noted that the MFIE operator K behaves as an

identity on the finite-dimensional harmonic space.

3) Numerical Cancellations in the Solutions: The low

frequency studies on the MFIE operator [34], [35], [37] have

shown that the condition number of the equation is not the only

factor that should be considered in evaluating the numerical

stability of a method. In fact, at very low frequency, numerical

cancellations could occur in the solution current vector for

both ill-conditioned and well-conditioned operators. We will

now show that numerical cancellations occur also for the

PMCHWT and that the new formulation that will follow

will need to be able to address this issue together with the

conditioning problems analyzed previously.

For a plane wave excitation, the excitation vector of the

PMCHWT scales as [18]

AThi = (O(ω),O(ω),O(1))
T

(21)

AT ei = (O(ω),O(ω),O(1))
T

(22)

This, after a Sherman-Morrison analysis [18] leads to the

following scaling for the solution current

m = A (O(1),O(ω),O(ω))
T

(23)

j = A (O(1),O(ω),O(ω))
T

(24)
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When computing the charge density and the scattered field, the

star part of these currents is multiplied with ω−1. However, for

low frequencies, this component (which scales as O(ω)) falls

below machine precision and undergoes numerical cancella-

tion. This results in a wrong radiated field. This phenomenon

is the PMCHWT counterpart of what it is known to occur for

MFIEs and both preconditioned and unpreconditioned EFIEs

[12], [37].

IV. ON THE USE OF QUASI-HELMHOLTZ PROJECTORS:

THE FREQUENCY REGULARIZED EQUATION

All the PMCHWT equation problems, delineated in the

previous section, have a counterpart for the EFIE. For this

equation, a solution was proposed in [12] obtained by intro-

ducing the quasi-Helmholtz projectors. For the RWG basis

functions, the projectors are defined as

PΣ = Σ
(

ΣTΣ
)+

ΣT and PΛH = I−PΣ (25)

where + denotes the pseudoinverse matrix. For the EFIE,

both the low-frequency ill-conditioning and the numerical

cancellations can be solved by rescaling the operator as follows

[12]

Tkj = −ei =⇒
(

MTTkM
)

y = −MT ei (26)

where

y = M−1j (27)

M =
1

√

k/k0
PΛH + i

√

k/k0P
Σ, (28)

M−1 =
√

k/k0P
ΛH +

1

i
√

k/k0
PΣ, (29)

and where k0 is a constant introduced to make the equation

dimensionally consistent. In the numerical results section,

k0 will be chosen equal to 1 per meter, in order to obtain

consistency with [12]. Other choices are equally valid and will

not influence the conclusions of this paper.

Given (26) and the structure of the PMCHWT operator,

containing the EFIE operator on the diagonal blocks, the first

intuitive choice to solve the problems of the PMCHWT would

be to adopt the operator M in a block-wise manner, i.e.

proposing the following Helmholtz decomposed operator
(

MT

MT

)(

Qjm Qjj

Qmm Qmj

)(

M

M

)

(30)

Such an immediate and intuitive choice, however, would lead

to a catastrophic consequences as pertains the low frequency

behavior. In fact the frequency analysis in this case would read
(

AT

AT

)

(

29
)

(

A

A

)

= O

















1 1 ω ω ω 1
1 1 ω ω ω−1 1
ω ω 1 1 1 ω
ω ω 1 1 1 ω
ω ω−1 1 1 1 ω
1 1 ω ω ω 1

















. (31)

The above expression shows that an order ω−1 term in the

off-diagonal blocks (corresponding to the interaction of the

harmonic subspaces, associated to the matrix H, of the electric

and magnetic currents) would results in an unstable condition

number at low frequency. Otherwise said, the strategy working

for the EFIE will not work for the PMCHWT when multiply

connected geometries are involved, and therefore a different

approach is required. This will be investigated in the remaining

part of this section.

The reason why the frequency behavior of (31) is unstable

is that the regularization employed here is tailored to the

diagonal blocks of the PMCHWT operator (the T operators),

but fails to regularize the K operators in the off-diagonal

blocks. More specifically, after regularization, the scaling

of the harmonic components of the off-diagonal blocks is

inversely proportional to ω. In order to develop a regularization

strategy for the complete PMCHWT operator, rather than only

for its diagonal blocks, it is necessary to leverage on the dual

elements. Define
(

J ′(r)
M ′(r)

)

=

(

Tk + Tk′/ηr − (Kk +Kk′)
Kk +Kk′ Tk + ηrTk′

)(

M(r)
J(r)

)

.

The currents M(r) and J(r) are expanded in RWG basis

functions, as in the previous sections. The auxiliary currents

M ′(r) and J ′(r) are expanded in Buffa-Christiansen (BC)

dual basis functions gi(r), defined on the dual mesh by a

barycentric refinement [38]

M ′(r) =

N
∑

i=1

m′
igi(r) (32)

J ′(r) =

N
∑

i=1

j′igi(r) (33)

By testing (32) with the rotated RWG functions n̂r × f i(r),
the following equation is obtained

(

j′

m′

)

=

(

G−1

G−1

)(

Qjm Qjj

Qmm Qmj

)(

m

j

)

(34)

where the Gram matrix G is defined as

Gij =
(

n̂r × f i, gj

)

. (35)

Next, define the auxiliary unknowns

y = M−1j (36)

x = M−1m (37)

y′ = M−1j′ (38)

x′ = M−1m′ (39)

where

M = i
√

k/k0P
Λ +

1
√

k/k0
PΣH , (40)

M−1 =
1

i
√

k/k0
PΛ +

√

k/k0P
ΣH , (41)

with

PΛ = Λ
(

ΛTΛ
)+

ΛT and PΣH = I− PΛ. (42)

With this, we find that
(

y′

x′

)

=

(

M−1G−1

M−1G−1

)

·
(

Qjm Qjj

Qmm Qmj

)(

M

M

)(

x

y

)

(43)
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In the right hand side of (43), the range of the PMCHWT

operator is first projected onto the dual space (spanned by

BC functions), and then rescaled in frequency. This is fun-

damentally different from the EFIE rescaling (26), where the

frequency rescaling is performed in the testing space rather

than the range space. Finally, the same rescaling is performed

on the right hand side of the PMCHWT equation, leading to

the new quasi-Helmholtz projected PMCHWT equation (qHP-

PMCHWT) which we propose here
(

Q′
jm Q′

jj

Q′
mm Q′

mj

)(

x

y

)

= −
(

ηkM
−1G−1hi

M−1G−1ei

)

(44)

where

Q′
αβ = M−1G−1QαβM with α = m, j and β = m, j

(45)

The beneficial properties of the new equation (44) with

respect to (43) can again be appreciated by a frequency

analysis. To this purpose, it should be preliminarily noted that

ATGA =





� 0 0
� � 0
� � �



 (46)

ATMA = O





ω−1/2

ω−1/2

ω1/2



 (47)

and ATMA = O





ω1/2

ω−1/2

ω−1/2



 (48)

where � denotes a nonzero block with O(1) frequency scaling.

With this, we find the following frequency scaling for the qHP-

PMCHWT operator
(

A−1

A−1

)(

Q′
jm Q′

jj

Q′
mm Q′

mj

)(

A

A

)

= O

















1 1 ω ω ω 1
ω ω ω2 ω2 1 ω
ω ω 1 1 1 ω
ω ω 1 1 1 ω
ω2 1 ω ω ω ω2

1 1 ω ω ω 1

















(49)

It is clear that the condition number of this matrix remains

constant in the low frequency limit, so that the new qHP-

PMCHWT is immune from the low-frequency ill-conditioning.

It is now possible to verify the absence of numerical cancel-

lations. For a plane wave excitation, we find that

A−1M−1G−1hi =
(

O(ω1/2),O(ω3/2),O(ω1/2)
)T

(50)

A−1M−1G−1ei =
(

O(ω1/2),O(ω3/2),O(ω1/2)
)T

(51)

which leads to a solution current scaling as

x = A
(

O(ω1/2),O(ω3/2),O(ω1/2)
)T

(52)

y = A
(

O(ω1/2),O(ω3/2),O(ω1/2)
)T

(53)

Now the Σ component has the same frequency scaling as the

Λ component. As a result, no numerical cancellations occur

between these two terms. The H component, on the other

hand, does get cancelled at extremely low frequency. This is

in itself not a problem, because its contribution to the scattered

field is also O(ω) relative to the contribution of the Λ com-

ponent. Moreover, this cancellation is physical. The previous

derivation assumed a plane wave excitation, which does not

excite global loop current in the static limit. Other types of

incident field discributions (e.g. current loops around holes or

handles), where AThi and AT ei scale as (O(ω),O(1),O(1))
instead of (O(ω),O(ω),O(1)), would lead to ATx and ATy

scaling as
(

O(ω1/2),O(ω1/2),O(ω1/2)
)

.

Although the qHP-PMCHWT in (44) is immune from low-

frequency problems and from numerical cancellations, it still

suffers from discretization related ill-conditioning. This will

be solved via a Calderon strategy. Before and in order to do

this, however, it is necessary to extend, by duality, the qHP-

PMCHWT in the dual space. This will be the focus of next

section.

V. THE FORMULATION IN THE DUAL SPACE

A good strategy to obtain dual discretization is to proceed

to the systematic replacement of RWG functions, with BC

functions and of standard quasi-Helmholtz projectors with dual

ones. Otherwise said, the dual formulation is obtained via the

replacements

f i ⇔ gi (54)

G ⇔ G = −GT (55)

M ⇔ M. (56)

This results in the following dual qHP-PMCHWT
(

Q′
jm Q′

jj

Q′
mm Q′

mj

)(

x

y

)

= −
(

ηkM
−1G−1hi

M−1G−1ei

)

(57)

where

Q′
αβ = M−1G−1QαβM with α = m, j and β = m, j

(58)

where Qjm = (Tk + Tk′/ηr), Qjj = −(Kk +Kk′), Qmm =
(Kk +Kk′), Qmj = (Tk + ηrTk′), and where

[Tk]ij =
(

n̂r × gi, Tkgj

)

(59)

[Kk]ij =
(

n̂r × gi,Kkgj

)

(60)
[

hi
]

j
= (n̂r × gi, n̂r ×Hi) (61)

[

ei
]

j
= (n̂r × gi, n̂r ×Ei) . (62)

Similarly to the primal case (analyzed in the previous section),

the dual equation has a stable frequency behavior. This can

be directly inferred by the quasi-Helmholtz decomposition

analysis below
(

A−1

A−1

)(

Q′
jm Q′

jj

Q′
mm Q′

mj

)(

A

A

)

= O

















1 ω ω ω 1 1
ω2 ω ω ω 1 ω2

ω 1 1 1 ω ω
ω 1 1 1 ω ω
ω 1 ω2 ω2 ω ω
1 ω ω ω 1 1

















. (63)
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The existence of the dual formulation, will allow to build up

a Calderon preconditioned qHP-PMCHWT equation which,

in addition to the immunity to low frequency and numerical

cancellation problems of the new equation presented in Sec-

tion IV, will have the additional feature of being immune from

the discretization related ill-conditioning.

VI. THE FREQUENCY AND REFINEMENT REGULARIZED

EQUATION

After stabilizing in frequency the PMCHWT in the standard

and dual mesh, a Calderón strategy will deliver an equation

that will be stable also for increasing discretization densities.

A Calderón strategy requires the preconditioning of the primal

operator with the dual one. In our specific case the new

Calderón qHP-PMCHWT equation we propose reads

(

Q′
jm Q′

jj

Q′
mm Q′

mj

)(

Q′
jm Q′

jj

Q′
mm Q′

mj

)(

x

y

)

=

−
(

Q′
jm Q′

jj

Q′
mm Q′

mj

)(

ηkM
−1G−1hi

M−1G−1ei

)

. (64)

We will now proceed to study the properties of this new

equation. the frequency stability and the absence of numerical

cancellation in the solution current directly follow from the

fact that both properties holds for the formulations in (44)

and in (57).

In order to study the behavior of the operator of the new

equation for increasing discretization density (h → 0), it is

useful to explicitly compute the blocks in the matrix product

in (64) and perform some simplifications. This provides

Q′
jmQ′

jm +Q′
jjQ

′
mm = M−1G−1QjmMM−1G−1QjmM

+M−1G−1QjjMM−1G−1QmmM =

M−1
(

G−1QjmG−1Qjm +G−1QjjG
−1Qmm

)

M (65)

for the block (1, 1),

Q′
jmQ′

jj +Q′
jjQ

′
mj = M−1G−1QjmMM−1G−1QjjM

+M−1G−1QjjMM−1G−1QmjM =

M−1
(

G−1QjmG−1Qjj +G−1QjjG
−1Qmj

)

M (66)

for the block (1, 2),

Q′
mmQ′

jm+Q′
mjQ

′
mm = M−1G−1QmmMM−1G−1QjmM

+M−1G−1QmjMM−1G−1QmmM =

M−1
(

G−1QmmG−1Qjm +G−1QmjG
−1Qmm

)

M (67)

for the block (2, 1), and

Q′
mmQ′

jj +Q′
mjQ

′
mj = M−1G−1QmmMM−1G−1QjjM

+M−1G−1QmjMM−1G−1QmjM =

M−1
(

G−1QmmG−1Qjj +G−1QmjG
−1Qmj

)

M (68)

for the block (2, 2). After performing the simplifications, all

the four blocks in (65)-(68) are in the form M−1XM where

X is the corresponding block of the standard Calderón -

preconditioned PMCHWT matrix (see [13]). Since the original

Calderón PMCHWT equation does not suffer from refinement

ill-conditioning problems, the same behavior is transferred to

the new equation we present here. In fact, matrices M and

M−1 are linear combinations of projectors. As such, their

spectrum is piecewise flat and it does not introduce a variation

as a function of the mesh parameter h.

From the above discussion, one might be tempted to use

M and M−1 as right and left preconditioners for the CP-

PMCHWT equation, respectively, and to eliminate the inner

rescaling (MM−1). This inner rescaling is however required

in order to perform a number of cancellations, as will be

elucidated in the next section.

VII. IMPLEMENTATION RELATED DETAILS

This section focuses on the practical details to implements,

in a numerically stable way till arbitrary low frequencies,

the new frequency and frequency-refinement stable integral

equations in (44) and (64). The three required building blocks

for both equations are the stable discretizations of the electric

operator, of the magnetic operator and of the right-hand-sides.

These three elements will be detailed below.

The projected primal electric terms must be implemented

using the following decomposition

M−1G−1TM = −i(PΛG−1TsP
ΛH − PΣHG−1ThP

Σ)

+ k(PΛG−1TsP
Σ + PΣHG−1TsP

ΛH)

+ ik2PΣHG−1TsP
Σ (69)

where the matrix relationships ThP
ΛH = 0 and PΛG−1Th =

0 have been used.

The projected primal magnetic terms must be implemented

using the following decomposition

M−1G−1KM = − i

k
PΛG−1KeP

ΛH + (PΛG−1K0P
Σ

PΛG−1KeP
Σ + PΣHG−1K0P

ΛH

+ PΣHG−1KeP
ΛH) + ik(PΣHG−1KeP

Σ

+ PΣHG−1K0P
Σ)

(70)

where K0 is the discretized static MFIE operator matrix and

Ke = K−K0. The matrix relationship PΛG−1K0P
ΛH = 0

has been used. This matrix relationship, when finite precision

integration rules are used, is only approximately satisfied.

This is why the above splitting between static and dynamic

contributions of the magnetic operator is necessary. The ex-

plicit cancellation of PΛG−1K0P
ΛH in such a decomposition,

in fact, ensure the numerical stability of our scheme up to

arbitrarily low frequences.

The projected dual electric terms must be implemented

using the following decomposition

M−1G−1TM = −i(PΣG−1TsP
ΣH −PΛHG−1ThP

Λ)

+ k(PΣG−1TsP
Λ +PΛHG−1TsP

ΣH)

+ ik2PΛHG−1TsP
Λ (71)

where the matrix relationships ThP
ΣH = 0 and PΣG−1Th =

0 have been used.
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The projected dual magnetic terms must be implemented

using the following decomposition

M−1G−1KM = − i

k
PΣG−1KeP

ΣH + (PΣG−1K0P
Λ

+PΣG−1KeP
Λ +PΛHG−1K0P

ΣH

+PΛHG−1KeP
ΣH) + ik(PΛHG−1KeP

Λ

+PΛHG−1K0P
Λ)

(72)

where K0 is the discretized static MFIE operator matrix and

Ke = K − K0. The matrix relationship PΣG−1K0P
ΣH = 0

has been used.

As it is customary in schemes that must stabilize the ex-

tremely low-frequency regime, also the right-hand-side of the

equations must be handled with care. In practice, in the right

hand side of both (44) and (64), the following decomposition

must be implemented

(

M−1G−1hi

M−1G−1ei

)

=

[

P
Λ

i
√
k
G−1 0

0 P
Λ

i
√
k
G−1

]

[

h

e

]

+

[
√
kPΣHG−1 0

0
√
kPΣHG−1

] [

hex

eex

]

(73)

where hex and eex represent the right hand side vectors

computed using the extracted kernel method, i.e. where the

exponential of the Green’s function is replaced by (eikk̂·r̂−1)
as standardly done in low-frequency stable methods [12], [21].

VIII. NUMERICAL RESULTS

A first set of tests have been done on a dielectric sphere

of unitary radius and dielectric constant ǫr = 3. Figure 2

shows the condition number of the new equation (64) as a

function of the frequency. The performance of the standard

PMCHWT, of a Loop-Star preconditioned PMCHWT and of

the formulation presented in this work are compared. It is clear

that the formulation proposed here is immune from the low-

frequency breakdown. Moreover, although both Loop-Star and

the new formulation reach a constant condition number at low-

frequencies, the constant condition number reached by the new

formulation (cond=1.8) is much lower than the value reached

by Loop-Star (cond=63890) as predicted by the theory.

The fact that the new formulation is also immune from

the mesh refinement breakdown is shown in Figure 3 where

the condition number is depicted against 1/h. It is clear that

differently from Loop-Star techniques the new formulation has

a constant condition number for increasing mesh densities.

To check both immunities also on a non-simply connected

geometry, this first set of tests has been repeated for a torus

of external radius equal to 1.5m, internal radius equal to 0.5m

and of dielectric constant ǫr = 3. For this case the fact that the

new equation is immune from the low frequency breakdown is

confirmed by Figure 4, while the mesh refinement breakdown

immunity is verified in Figure 5.

In order to show that the new scheme is also immune from

the low-frequency current cancellation problem, the Loop and

Star components of the current (plane wave exitation) at ex-

tremely low frequencies are benchmarked in Figures 6 and 7.

It is clear that the new formulation provides the exact current.
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Fig. 2: Sphere: Condition number w.r.t frequency.
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Fig. 3: Sphere: Condition Number of system matrix w.r.t.

discretization density at 1 MHz.

This is further verified in Figure 8 for which the correct far

field is obtained differently from what can be achieved by

a formulation that does not adopt an Helmholtz decomposed

current. The error in the non-Helmholtz decomposed scheme,

is due to the very low-frequency current cancellation analyzed

in Section III-3. The fact that the new scheme is immune from

this problem, which we have predicted theoretically, is clearly

confirmed in practice by this numerical test.

Finally, in order to show the accuracy of the new formula-

tion also with near field sources, the current and the far field

due to a dipole source are shown in Figures 9, 10, and 11.

To test the new formulation on a more complex geometry

we have used a model of a quadccopter frame structure which

has a non simply connected geometry comprising five global

loops (refer to Figure 12). The electric and magnetic current

for plane wave scattering at 10−40 Hz are shown in Figure 12.
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Fig. 4: Torus: Condition number w.r.t frequency.
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Fig. 5: Torus: Condition Number of system matrix w.r.t.

discretization density at 1 MHz.

The convergence behavior of our new formulation is shown in

Figure 13. The new formulation solved the problem in only 5

iterations which compared very favorably with other schemes.

IX. CONCLUSIONS

This work has presented a new integral equation formulation

applicable to scattering by penetrable media, based on the

PMCHWT equation. Differently from all previously proposed

approaches, this new formulation is concurrently immune from

ill-conditioning when the frequency is low or when the mesh

density is high; from numerical cancellations at very low-

frequencies; and from the necessity of detecting the global

loops of the structure. This result has been achieved by a

new projector-based strategy that proved effective for both

simply and non-simply connected geometries. All theoretical

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

10
2

Coefficient Index

M
a
g
n
it
u
d
e
 o

f 
C

o
e
ff

ic
ie

n
ts

 

 

Loop−Star PMCHWT
This work

Fig. 6: Torus: Loop Current Comparison at 10−40 Hz.
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Fig. 7: Torus: Star Current Comparison at 10−40 Hz.
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Fig. 8: Torus: Far Field at 10−40 Hz. (ǫr = 3).
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Fig. 9: Torus: Loop Current Comparison at 1 MHz for a dipole

source placed at its center and aligned along its axis.
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Fig. 10: Torus: Star Current Comparison at 1 MHz for a dipole

source placed at its center and aligned along its axis.

developments have been corroborated by numerical results that

showed the practical impact of the new approach.
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