1 Garneau JE, Dupuis M-È, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010;468:67-71. doi:10.1038/nature09523 2 Long KB, Beatty GL. Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology 2013;2:e26860. doi:10.4161/onci.26860 3 Kelley ML, Strezoska Ž, He K, et al. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J Biotechnol 2016;233:74-83. doi:10.1016/j.jbiotec.2016.06.011 4 Sampson TR, Weiss DS. Exploiting CRISPR/Cas systems for biotechnology. Bioessays 2014;36:34-8. doi:10.1002/bies.201300135 5 Findlay GM, Boyle EA, Hause RJ, et al. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 2014;513:120-3. doi:10.1038/nature13695 6 Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21. doi:10.1126/science.1225829 7 Mali P, Yang L, Esvelt KM, et al. RNA-Guided Human Genome Engineering via Cas9. Science (80- ) 2013;339:823-6. doi:10.1126/science.1232033 8 Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013;8:2281-308. doi:10.1038/nprot.2013.143 9 Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013;31:827-32. doi:10.1038/nbt.2647 10 Yu X, Liang X, Xie H, et al. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett 2016;38:919-29. doi:10.1007/s10529-016 2064-9 11 Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 2014;33:73-80. doi:10.1038/nbt.3081 12 Kim S, Kim D, Cho SW, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014;24:1012-9. doi:10.1101/gr.171322.113 13 Kouranova E, Forbes K, Zhao G, et al. CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos. Hum Gene Ther 2016;27:464-75. doi:10.1089/hum.2016.009 14 Liang X, Potter J, Kumar S, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 2015;208:44-53. doi:10.1016/j.jbiotec.2015.04.024 15 Naccarati A, Polakova V, Pardini B, et al. Mutations and polymorphisms in TP53 gene--an overview on the role in colorectal cancer. Mutagenesis 2012;27:211-8. doi:10.1093/mutage/ger067 16 Liu Y, Bodmer WF. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Pnas 2006;103:976-81. doi:10.1073/pnas.0510146103 17 Fadhil W, Ibrahem S, Seth R, et al. Quick-multiplex-consensus (QMC)-PCR followed by high-resolution melting: a simple and robust method for mutation detection in formalin fixed paraffin-embedded tissue. J Clin Pathol 2010;63:134-40. doi:10.1136/jcp.2009.070508 18 Ebili HO, Hassall J, Asiri A, et al. QMC-PCRx: a novel method for rapid mutation detection. J Clin Pathol 2017;:jclinpath-2016-204264. doi:10.1136/jclinpath-2016-204264 19 Cho K-H, Baek S, Sung M-H. Wnt pathway mutations selected by optimal β-catenin signaling for tumorigenesis. 2006. doi:10.1016/j.febslet.2006.05.053 20 Poulogiannis G, Mcintyre RE, Dimitriadi M, et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Published Online First: 2010. doi:10.1073/pnas.1009941107 21 Vossen RHAM, Aten E, Roos A, et al. High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat 2009;30:860-6. doi:10.1002/humu.21019