
 

A refined method to study gene dosage 

changes in-vitro using CRISPR/Cas9 

 

Running title: Changing gene dosage with CRISPR 

Authors: Teresa P. Raposo1, 2,*, Henry O. Ebili1, 2, 3, Mohammad Ilyas1, 2 

1. Division of Cancer and Stem Cells, Faculty of Medicine and Health Sciences, University 

of Nottingham, United Kingdom 

2. Nottingham Molecular Pathology Node, University of Nottingham, United Kingdom 

3. Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Ago-

Iwoye, Nigeria 

*Correspondence: 

Dr Teresa Pereira Raposo, Division of Cancer and Stem Cell, Faculty of Medicine and 

Health Sciences, University of Nottingham. msztp2@nottingham.ac.uk, +44(0)115 82 31395. 

  

mailto:Mohammad.ilyas@nottingham.ac.uk


 

Abstract  

Aims: Gene dosage can have a major impact on cell biology although, hitherto, is has been 

difficult to study using in-vitro models. We sought to refine and accelerate the development of 

“gene dosage” models through using CRISPR/Cas9 (a gene-editing technology) for sequential 

knockout of gene alleles.  

Methods: Our method involved (i) using Cas9 nuclease mRNA rather than expression plasmids, 

(ii) using a fluorescently labelled FAM-6 tracr complexed with guide RNA and (iii) using High 

Resolution Melting (HRM) analysis to screen for mutations. HCT116 cells, wild-type for TP53, 

were transfected with different molarities of FAM-6 tracr labelled and guide RNA targeting 

different exons of TP53 and selected by Fluorescence Associated Cell Sorting (FACS). Single-

cell colonies were then isolated, expanded and tested for mutation in the targeted region by 

PCR/HRM.   

Results: Out of 32 clones tested, 12 have shown aberrant melting by HRM, giving a targetting 

efficiency of 37.5%. One clone was sequenced and a heterozygous mutation found  - in this case 

comprising a single base deletion in exon 3. mRNA sequencing confirmed the mutation was 

expressed and western blotting for p53 showed the presence of both wild type and truncated 

protein bands. Changes in expression of MDM-2 isoforms suggested a functional effect of the 

induced TP53 mutation.  

Conclusions: We have developed an in-vitro model to study TP53 gene dosage effects. The 

protocol is efficient and applicable to any gene. Importantly, we have used Cas9 mRNA and 

labelled tracr/guideRNA to isolate likely-mutated cells and HRM for rapid mutation detection.  

  



 

Introduction 

CRISPR (clustered, regularly interspaced, short palindromic repeat) and Cas (CRISPR-

associated) proteins are present in bacteria and archea species. In combination, they form a system 

which recognizes and cleaves foreign nucleic acid derived from phages and plasmids. This system  

functions as  an adaptive immune response to prevent an invading virus from inserting  its genome 

into the host bacterial genome[1]. In one of the most transformative technical developments in 

recent years, this system has been adapted to allow editing of mammalian genes. 

Although there are now many different strategies[2,3], the most commonly used system for 

gene editing is the CRISPR/Cas9 system. This depends on the helicase and endonuclease activity 

of wild-type Cas9 protein to create mutations at specific target sites by  cleaving  double stranded 

DNA. This is followed by one of two forms of repair (i) non-homologous end joining (NHEJ) 

repair – a error prone process which is characterized by frequent insertion or deletion of 

nucleotides resulting in frameshift mutations and early stop codons[4] or (ii) homology directed 

repair (HDR) in which an exogenous DNA template is used to induce misense mutations[5].  

Cas9 can be directed to cleave any gene of interest in eukaryotic cells by introducing a 

synthetic guide RNA (sgRNA) sequence. The sgRNA has two components including a CRISPR 

RNA (crRNA) which contains sequences complementary to (and thereby identifying) the target 

gene and adjacent short sequences called Proto-spacer Adjacent Motif (PAM)[6]. The second 

component is a sequence called trans-acting CRISPR RNA (tracr-RNA) which is essential for 

activating the Cas9 protein. By pooling different guide RNA/Cas9 complexes, a multiplex editing 

of target loci can be achieved[7]. The sgRNA and Cas9 can be packaged into a plasmid and gene 

editing can begin by transfecting the construct into cells. The successfully transfected cells need 

to be identified and this can be done with a fluorescently tagged Cas9 protein. These cells are then 

grown as single cell colonies and then they need to be tested for the induction of mutation. This is 

most commonly done using PCR followed by enzymatic cleavage of heteroduplexes which 



 

naturally form when mutant and wild type gene sequences are co-amplified. Once a clone has been 

identified to contain the required mutation, its cells can then be used to target the other allele[8].  

One of the disadvantages of CRISPR/Cas9 gene editing is the possibility of inducing 

additional off-target genetic modifications i.e. mutation of a different gene. This could confound 

experimental work and would limit use of CRISPR/Cas9 for therapeutic purposes[9]. Off-target 

mutations could be reduced through limiting the time frame for the activity of Cas9 by transfecting 

Cas9 mRNA (or its ribonucleoprotein) into the target cells instead of  Cas9-expressing plasmid 

DNA. By electroporating Cas9 ribonucleoprotein directly, several groups have been able to 

efficiently induce RNA-guided engineered nucleases (RGENs) activity [10,11] and Kim and 

colleagues have sugessted that in principle, Cas9 protein can be replaced with Cas9 mRNA, which 

is easily transcribed but not integrated into the host genome[12]. Cas9-transcript could still be 

detected 96h post-transfection of Cas9-expressing plasmid DNA whereas it was absent for the 

same time point in the case of Cas9 mRNA transfections [13]. Liang and colleagues have also 

reported reduced rates of off-target mutations produced by using Cas9 mRNA and 

ribonucleoprotein versus Cas9-expressing plasmid DNA [14]. 

In this study, we sought to develop a protocol for gene dosage studies. We have employed 

Cas9 mRNA because (i) it is easier to transfect into the cells than plasmids, (ii) it is translated 

rapidly into Cas9 protein in the cytoplasm (thereby obviating the need for nucleofection) and (iii) 

it is rapidly degraded thereby reducing the duration of action of Cas9 and reducing the risks of 

both bi-allelic mutation and off-target gene editing. Additionally, a FAM-6 labelled tracr was 

complexed with guide-RNA and Cas9 mRNA to allow for flow-assisted cell sorting of sucessfully 

transfected cells. Finally, we used High Resolution Melting (HRM) to screen for mutations as it 

is quick and could be used for screening for mutations in both the first round and the second round 

of targetting. TP53 was chosen as a target gene to test the feasibility of Cas9 mRNA-based 

CRISPR as it is an important tumor suppressor gene[15].  



 

Materials and Methods 

Cell culture 

HCT116, a colorectal cancer cell line previously shown to be wild type for TP53[16] was 

obtained from the American Tissue Culture Collection (ATCC). It was cultured in high glucose 

DMEM (Gibco, 41965-062) supplemented with 10% foetal bovine serum, 2mM L-glutamine 

(Sigma Aldrich) and maintained in a humidified incubator at 37°C in a 5% CO2 atmosphere. Cells 

were regularly passaged at 70-80% confluency and experiments performed up to passage number 

20. 

Transfection 

Lipofectamine® messengerMAX (Invitrogen, LMRNA001) was employed as a transfection 

reagent. During the transfection cells were maintained in Opti-MEM I Reduced Serum Medium 

(Gibco, 31985062).  

Wild type Cas9 mRNA, capped and polyA-tailed, at a concentration of 500ng/µL was 

purchased from Sigma Aldrich (St Louis, MO, USA). Guide RNAs including crRNAs designed 

to target the first 3 exons of TP53 (Figure 1) as well as the FAM6-labelled and unlabelled tracr 

RNA oligos were kindly supplied by Dr Gulpreet Balrey (Merck, UK).  

Cells were seeded in 24-well plates at a density of 1.2х 105 cells/ well and left to adhere 

overnight in a humidified incubator at 37ºC, 5% CO2. Transfection was initiated at 70% 

confluence. The growth medium was changed from DMEM to Opti-MEM Reduced Serum 

Medium 1hour before transfection. Transfection was performed using a mixture of 500ng per well 

of Cas9 mRNA, 8, 16 or 24pmol of 3 different guide crRNA (Table1) which were designed to 

target three different exons of TP53. Equimolar quantities of crRNAs and tracrs (unlabelled tracrs 

were used as a negative control) were complexed for 5 minutes in 25L of Opti-MEM. Separately, 

1.5L of Lipofectamine MessengerMAX was complexed with 25L Opti-MEM for 5min. The 



 

diluted Cas9 mRNA, sgRNA (complexed crRNA and tracrRNA) were added to diluted 

lipofectamine messenger MAX, gently mixed and incubated for 10 min at room temperature, while 

protecting it from light. The mixture was added drop-wise to each well and each experiment was 

performed in triplicate. 

The cells were incubated in a humidified incubator at 37ºC, 5% CO2 and after 6 hours Opti-

MEM was replaced with complete DMEM, 10% FBS, 2mM L-glutamine and incubated for 72 

hours.  

Guide 

RNA 

Genomic 

coordinates 

ID: 

NG_017013.2 

Length 

(bp) 

GC(%) Target* Sequence 5’-3’ 

sgRNA1 18311 - 18329 41 48.7 Exon 3 CUGCAUGGGCGGCAUGAACGUUUUAGAGCUAUGCUGUUUUG 

sgRNA2 17440 -  17458 41 46.3 Exon 1 GCACAUGACGGAGGUUGUGGUUUUAGAGCUAUGCUGUUUUG 

sgRNA3 17589 - 17608 41 41.4 Exon2 UCGGAUAAGAUGCUGAGGAGUUUUAGAGCUAUGCUGUUUUG 

FAM6-

tracr 

 69 42.0 N/A [FAM6]AAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAU

CAACUUGAAAAAGUGGCACCGAGUCGGUGCU 

Table 1 - Guide RNA sequences, respective genomic coordinates, target exonsreferring to transcript variants 5,6 and 7 of 

human TP53 and FAM-6 labelled tracr sequence. 

 

Flow cytometry and single cell colony formation 

At 72 hours post-transfection, cells were dissociated with 0.25% Trypsin-EDTA for 3-5 min 

at 37°C, resuspended in 10% FBS DMEM followed by three washes in PBS after a centrifugation 

step (1500rpm, 5 min). Fluorescence-activated cell sorting (FACS) was performed using a 

Beckman Coulter MoFlo XPD, on the FL1 channel, which was compatible with detection of the 

FAM-6 fluorophore (excitation at 496 nm, emission 516nm). Cells in which transfection was 

performed with sgRNA containing unlabelled tracr were used as a negative control of background 

fluorescence levels. The pools of cells transfected with 16pmol  sgRNA3, and 24 pmol sgRNA1 

and 2 were chosen for sorting, and were re-sorted to obtain a nearly 100% positive FAM-6 positive 

cell population. The final sorted cells were firstly grown to create a stock which was cryopreserved 

and also to collect conditioned media of each pool of sgRNA sorted cells, resuspended at a density 

https://www.ncbi.nlm.nih.gov/nucleotide/383209646?report=genbank&log$=nuclalign&blast_rank=1&RID=GR6DHPXY015


 

of approximately 10 cells/mL and 100uL was pipetted into each well of a 96-well plate. This 

equates to seeding 1 cell per well. Two 96-well plates for each sgRNA were seeded with 

approximately one cell per well to allow the isolation of single cell clones.  Each well was 

supplemented with 100 µL of conditioned media (48h) collected from the respective pool of sorted 

cells, to enhance the formation of single colonies. The single colonies that formed in a 96-well 

plate were then expanded successively into larger capacity plates (24-well plates, 6-well plates) 

and ultimately T25 flasks. At this point, each of the expanded clones was split for DNA extraction 

and cryopreservation in a solution of 10%DMSO, 90% fetal bovine serum.  

 

PCR for High-resolution melting analysis of single cell clones 

Genomic DNA was extracted from cell pellets of each clone using GenElute™ Mammalian 

Genomic DNA Miniprep Kit (Sigma Aldrich, G1N70) following the manufacturer 

recommendations. The eluted DNA was quantified using nanodrop 2000 (ThermoScientific) and 

diluted to 20ng/µL. 

Using primers flanking the regions targeted by the three sgRNAs (Figure 1). PCR was 

performed in triplicates for subsequent high-resolution melting analysis. Briefly, 40ng of genomic 

DNA template from each clone was added to a PCR mix containing 7.5 µL of 2x PCR master mix 

hotshot diamond (Clent Life Science, HS002), 1 µL  Eva Green dye and 250nM primer. The PCR 

reaction was performed in a final volume of 15µL on a PeqLab primus thermocycler set at 95°C 

for  5 min, followed by 40 cycles of 95°C for 20 sec, 60.5° for 20sec and 72°C for 20sec, followed 

by an extension step at 72°C for 5min, 95°C for 2min for heteroduplex formation and holding at 

4°C. The primer sequences used for the PCR are shown in Table 2 and their respective positions 

are illustrated on Figure 2. 

HRM was used to screen for mutations through detecting small mutation derived-shifts in 

the melting temperature of PCR products. HRM has been described as exceptionally sensitive 



 

when there are heterozygous mutations as these result in the formation of heteroduplexes which 

are very unstable [17,18]. PCR products were melted in triplicates by firstly transferring 10µL to 

a 96-well black hardshell plate (Bio-Rad laboratories, HSP9661) and overlaying with 20µL 

mineral oil (Sigma Aldrich, M5904). After a short centrifugation for 5 min at 2500 rpm, the 

melting was performed on a lightscanner (Idaho technologies, Biofire Defense) pre-heated to 

62°C. The range of melting temperatures varied with product sizes and sequences analysed, but 

was set to detect melting peaks from 95-70°C. Exposure was set to ‘Auto’ and data were captured 

at a ramp rate of 0.10C/sec. The acquired melting data were analysed with the LightScanner Call-

IT software version 2.0.0.1.331. Results were viewed as ‘Shifted melt curves’ and ‘Difference 

curves’ outputs. The criteria for selecting mutant clones were the quality of template DNA, the 

reproducibility of the aberrant melting patterns on separate PCR runs and the consistency amongst 

the three replicates. 

 

Primer Sequence 5’-3’ Length (bp) GC(%) Tm (°C) 

E1F GCCATCTACAAGCAGTCACA 20 50.00 57.90 

I1R GCAATCAGTGAGGAATCAGAGG 22 50.00 58.80 

I1F CACTGATTGCTCTTAGGTCTG 21 47.62 56.08 

E2R CATAGGGCACCACCACACTA 20 55.00 59.09 

E3F TGGCTCTGACTGTACCACCA 20 55.00 60.47 

E3R GGAGTCTTCCAGTGTGATGATG 22 50.00 58.47 

I2Fseq CCTGCTTGCCACAGGTCT 18 61.11 59.57 

I3Rseq TGGAAGAAATCGGTAAGAGGTG 22 45.45 57.80 

I4Rseq* GTTGGGCAGTGCTCGCTTAG 20 60.00 61.64 
Table 2 - Primer sequences used for screening and sequencing. F indicates a forward primer and R a reverse primer. 

Primers marked seq were used for sequencing. *Spans junction between exons 4 and 5. 

 

RNA extraction, cDNA synthesis and RT-PCR 

RNA was extracted from mutant clones and wild-type HCT116 cell line using the total RNA 

kit (Sigma Adrich). DNAse I digestion was performed to eliminate contaminant genomic DNA. 

cDNA synthesis was carried out by using M-MLV transcriptase (Promega, M170A) and  2µg of 

RNA were combined with 0.5 μg of hexamer primers (ThermoFisher Scientific, SO142) and up 



 

to12μl nuclease free water. The mixture was heated to 70°C for 5 minutes, immediately cooled to 

4°C and then the following were added: 5 μl of 5xM-MLV buffer, 1.75 μl of 10mM dNTPs 

(ThermoFisher Scientific, R0191), 25 units of RNAse inhibitor (Promega, N2111) and 200 units 

of M-MLV reverse transcriptase and nuclease free water to make a final volume of 25 μl. The mix 

was then incubated in a thermocycler for 60 min at 37°C, after which the cDNA was stored at -

20°C. 

RT-PCR was performed with 1µL of cDNA template, 1 unit of AmpliTaq 360 DNA 

polymerase (Applied Biosystems, 4398818), 1X AmpliTaq buffer, 400nM of primers (E1F/E4R 

and E3F/E3R), 200µM of dNTPs and 1.75mM of MgCl2. To prevent any secondary structure on 

the template that could have been caused by heteroduplex formation with the induced mutation, 

betain (Sigma Aldrich, B0300-1VL) at a final concentration of 1.3M and 1.3% DMSO PCR grade 

(Sigma Aldrich, D9170-1VL) were used in the RT-PCR. The cycling parameters were set at 94°C 

for 5 min, followed by 10 cycles of touchdown annealing temperature, decreasing 1°C/cycle (94°C 

– 15 seconds, 65 to 55°C – 30 seconds, 72°C – 40 seconds), 30 cycles of denaturation at 94°C for 

15seconds, annealing at 60°C for 30seconds and extension at 70°C for 40 seconds and a final 

extension at 72°C for 5 minutes with storage at 4°C. 

Cloning of PCR products 

In order to get the highest quality sequencing data, PCR products containing amplified 

cDNA from exons 1 to 4 was cloned into a pCR2.1-TOPO vector after purification using  

GenEluteTM PCR Clean-Up Kit (Sigma Aldrich, NA1020-1KT) according to the manufacturer’s 

instructions.  

For the ligation reaction, 46ng of purified PCR product were added to 10 ng pCR2.1-TOPO 

vector (Invitrogen, K450001), 1µL salt solution (1.2 M NaCl, 0.06 M MgCl2) and incubated for 

20 min at room temperature. Next, 2 μL of the ligation mix were added to a 50uL vial of One 

Shot® Chemically Competent E. coli (TOP10, Invitrogen, K450001), gently mixed, incubated on 



 

ice  for 30min and then heat shocked for 30 seconds at 42°C then quickly returned to ice for 5 min. 

Next, S.O.C. medium (2% Tryptone, 0.5% Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCl2, 10 mM MgSO4, 20 mM glucose) was added and the mixture incubated for 1 hour at 37°C, 

shaking at 230rpm before spreading onto pre-warmed selective plates of Luria Broth (LB) agar 

containing 100ug/mL of ampicillin (Invivogen, fas-am-s), coated with 40uL of 40mg/mL X-gal 

in dimethylformamide. After overnight incubation at 37°C, 12 white colonies were picked, 

inoculated in 5mL of LB containing 100µg/mL ampicillin (Invivogen, fas-am-b), incubated for 

16h at 37°C and then used for plasmid DNA extraction following the instructions on the Genelute 

Plasmid Miniprep kit (Sigma Aldrich, PLN350). 

Sequencing and analysis 

The purified PCR products were diluted to 10ng/µL and cloned plasmids were diluted 

100ng/µL in nuclease free water. Sanger sequencing was performed at the DeepSeq facilities in 

the School of Life Sciences at the University of Nottingham using dye terminator chemistry 

(BigDye version 3.1) on the 3130xl ABI PRISM Genetic Analyzer . The obtained sequences were 

analysed with BioEdit software version 7.2.5 and aligned to human genomic or transcript TP53 

sequences using Mega software version 7.0.1.8. Translation of gene sequences of wild-type TP53 

isoform A (NCBI RefSeq: NG_017013.2, Homo sapiens tumor protein p53 (TP53), RefSeqGene 

(LRG_321) on chromosome 17) and mutant clone G11A8 with a point deletion, was performed 

using the online translation tool Expasy (http://web.expasy.org/translate/) and the respective 

protein alignments were performed on Mega software version 7.0.1.8. 

Western Blot 

Wild-type and clone G11A8 HCT116 cells seeded at a density of 106 cells/well were 

incubated overnight and then lysed using ice-cold RIPA buffer (ThermoFisher Scientific, 

10017003) , incubated for 10minutes on ice with 1x Halt protease and phosphatase inhibitor 

(ThermoFisher Scientific, 78440)  and then centrifuged for 30minutes at 16,000xg and 4°C. The 



 

supernatant was collected and quantified by BCA assay (ThermoFisher Scientific, 23225). Thirty 

µg of protein were mixed with 4x LDS sample buffer (Invitrogen, 11549166), loaded into a 4-

12% Bis-Tris Nupage Gel (Invitrogen, NP0321BOX) and run at constant voltage of 150V for 90 

min. Protein was transferred onto a nitrocellulose membrane using a semi-dry transfer system 

(Bio-rad laboratories, Turbo-blot) which was incubated in blocking buffer (5% skimmed milk in 

TBST (Tris buffer saline, pH 7.6, 0.1% Tween 20)) for 1hour and then hybridised overnight at 

4°C with mouse monoclonal TP53 antibody at 1:200 dilution (DAKO, clone do-7, M700101-2) 

and MDM2 at 1:500 dilution (Abcam, ab3110), diluted in blocking buffer. Mouse anti-human 

beta-actin (1:2000 dilution in blocking buffer, Sigma Aldrich, A5441) was used as a loading 

control and the membrane was incubated for 2 hours at room temperature. After 3x washes of 

5min each in TBST, the membranes were incubated for 1 hour at room temperature with secondary 

HRP-conjugated Rabbit anti-mouse IgG (Sigma Aldrich, A6154), diluted 1:1000. After another 

3x5min washes with TBST and incubation with ECL prime (GE Healthcare, RPN2236) for 5min, 

the membranes were scanned with a digital scanner (Li-cor, C-digit) to detect chemiluminescence. 

Results 

Identification of targeted cell pools 

By using flow cytometry to detect FAM-6 labelled tracr transfected in the cells, we were 

able to detect and identify the molarities showing best FAM-6 labelling in the population of cells 

succesfully transfected with sgRNAcontaining FAM6-labelled tracr and Cas9 mRNA (Figure 3). 

The labelled population ranged from 1.67 to 4.55% in the pooled triplicates containing over 3x106 

cells. The sorted cells were enriched in a second sorting, increasing FAM-6 positivity purity from 

the initial 50-80% obtained in the first sorting (Figure 4). 



 

 

Isolation of single cell clones 

In total, 32 colonies were selected for further expansion, genomic DNA extraction and 

cryopreservation. The 3 pools of selected sgRNA1, sgRNA2 and sgRNA3 initially targeted cells 

were also cryopreserved to allow a repeated selection of single cell clones in case a mutant clone 

could not be detected. . 

 

Detection of mutant clones by high-resolution melting (HRM)  

HRM was used to screen for the presence of mutant clones isolated from the pools of sg 

RNA1,2 and 3 targeted cells. The use of normal template genomic DNA from untargeted HCT116 

in the PCR reactions served as a baseline control to which shifts in melting temperatures could be 

compared. Of the 32 clones which were tested, 12 (37.5%) showed aberrant metling (Figure 5). 

 

Confirmation of indel mutation and its expression by sequencing 

HRM is a robust method for mutation detection and one clone, G11A8, was selected for 

further expansion and testing. In order to confirm that mutation, mRNA was extracted, reverse 

transcribed and the coding sequence spanning exons 1- 4 of TP53 was cloned and sequenced. 

Analysis of the sequencing data showed that the selected clone contained both wild type and 

mutant sequence thereby confirming the heterozygous nature of the mutation (Figure 6).  The 

mutation consisted of a single G deletion within the region complementary to the targeting 

sequence of sgRNA1 - CTGCATGGGCGGCATGAAC (deleted base underlined). This 

corresponds to the mutation c735delG in the TP53 coding sequence. Usually frameshift mutations 

(insertions or deletions which are not a multiple of three) result in a truncated protein. The new 



 

sequence created as a consequence of the c735delG mutation, when translated, is predicted to 

produce a truncated protein of 343 amino acids with a molecular weight of 41kDa (Fig 7C). 

 

Confirmation of truncated TP53 protein and its functional effect  

Having confirmed that the mutation was present at the mRNA level, we sought to confirm 

that the mutation led to a truncated protein form. A western blot with protein lysates from both the 

parental cell line HCT116 (wild-type for TP53) and mutated clone G11A8 was performed. The 

parental cell line contained a single band of correct size (approximately 53kDa). The mutated 

clone showed both the wild type band and an extra band, corresponding to the predicted truncated 

TP53 protein of approximately 41kDa (Figure 7A). To confirm that there was a functional 

consequence of the induced mutation, we performed a Western blot for MDM2. This protein has 

a complex relationship with p53 as it is both a target of p53 and an inhibitor of p53. Comparison 

of the parental HCT116 with the mutated clone G11A8 confirmed that there was indeed a 

functional effect with a change in the pattern of MDM2 splice variants in the mutated clone (Figure 

7). When aligning the translated wild-type coding sequence of human TP53 isoform A 

[(NG_017013.2:15957-16030, NG_017013.2:16148-16169, NG_017013.2:16279-16557, 

NG_017013.2:17315-17498, NG_017013.2:17580-17692, NG_017013.2:18261-18370, 

NG_017013.2:18714-18850, NG_017013.2:18943-19016, NG_017013.2:21836-21942, 

NG_017013.2:22861-22942) Homo sapiens tumor protein p53 (TP53), RefSeqGene (LRG_321) 

on chromosome 17] with the respective G11A8 presenting point deletion on the gRNA1 target site 

(CTGCATGGGCGGCAT[G]AAC), a significant change in the protein can be observed from the 

point mutation occurring. When a guanine (G) is deleted in the ATG codon, which would translate 

into methionine in the wild-type protein, a frameshift occurs to synthesize isoleucine (a.a. 246) 

(Figure 7B) and missense amino acids follow, until a stop codon is produced. 



 

Discussion 

In cancer biology, changes in gene dosage may have a significant effect on cell biology. 

Oncogenes such as -catenin depend on “just right” signalling for maximum activity[19], tumour 

suppressors, such as TP53, would be expected to confer some selective advantage following 

somatic mutation (prior to loss of heterozygosity) and some tumor suppressors, such as PARK2, 

appear to mediate effect through haploinsufficiency[20]. We have sought to develop an efficient 

protocol to establish models for gene dosage studies by taking advantage of recent technical 

developments in gene editing and combining these with FACS and HRM to enrich for the target 

population and screen for mutations. Using this methodology, we have induced a heterozygous 

truncating mutation in TP53 and shown that it causes a change in the pattern of MDM2 expression.   

The first step in our method involved introduction of the sgRNA and the Cas9 mRNA into 

the cells through lipid-based transfection. This would result in a pulse of gene editing activity 

(lasting until the mRNA was degraded) rather than the constant editing activity which may be 

expected if inducing CRISPR/Cas9 machinery from a DNA plasmid expression vector. Therefore, 

the  main advantage of this methodology is a reduction of  off-targets gene editing as  the translated 

Cas9 protein has a short half-life and reduced editing time[14].  

After single cell cloning, the next step was to screen the clones for the presence of somatic 

TP53 mutation. Rather than performing genomic cleavage detection (GCD) on targeted cells, we 

used HRM with strigent criteria to identify the presence of single mutant clones in our 

methodology. HRM has a number of advantages over GCD. HRM is a cheap, simple  and very 

sensitive method for mutation screening, performed in a closed tube, immediately after PCR[21]. 

In contrast, GCD requires PCR products to undergo a enzymatic digestion followed by resolution 

on an agarose gel in order to identify cleaved PCR products. Another advantage of HRM is that 

each heteroduplex has a unique melting pattern and thus, if there is a second round of 

CRISPR/Cas9 editing to produce a homozygous mutant, HRM can be used to distinguish colonies 



 

with double mutations from single mutations. In contrast, GCD could not do this since the 

mismatches leading to heteroduplex formation will be approximately in the same position whether 

single or double mutations and this will lead to cleavage fragments of the same size, 

Aberrant melting patterns were observed for 37.5% of the clones. Depending on the cell line 

and transfection method, this is commensurate with the range of efficiencies found by Liang et al 

targeting HPRT using the Cas9 mRNA format in several established and primary human cell lines 

(0-70%), even though efficiency of gene editing in HCT116 cell line was not tested[14]. However, 

in the study by Liang et al, the induced mutations were not tested in individual single cell colonies 

but were inferred from PCR product cleaved fragment density from PCR performed on pooled 

colonies, therefore our results are not in comparable terms.  

In summary, we have combined several methods to develop a CRISPR/Cas9 -based system 

for creating models for studying gene dosage effects. The methodology was used to create a 

heterozygous truncating mutation of TP53 which resulted in changes in MDM2 expression. Our 

protocol is rapid, it will probably reduce off-target effects, FACS enrichment allows isolation of 

a single cell clone with a high probability of mutation and HRM allows mutation detection in both 

the heterozygous and the homozygous state.  

Key messages 

 A gene dosage model was developed by applying a variant of the CRISPR/Cas9 

method involving the use of Cas9 mRNA and FAM6 labelled sgRNA. 

 High-Resolution Melting (HRM) was applied to screen for mutant clones instead of 

enzymatic Genomic Cleavage Detection. 

 A TP53 heterozygous truncating mutation was created, resulting in changes in 

MDM2 expression. 
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