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Abstract. We develop a parametric inferential framework for fully observed tree-structured data
containing a large number of vertices using the distributional properties of the Continuum Random

Tree (CRT) introduced by Aldous [1993]. Under a hypothesis testing context, we develop tests based

on two equivalent characterizations of the CRT. In both cases, the Rayleigh distribution with a scale
parameter belonging to the exponential family arises as a limiting distribution and consequently, the

test statistics enjoy optimal statistical properties. We examine properties of the parametric families

of distribution induced through the two approaches and perform detailed simulations evaluating the
performance of the proposed tests. A secondary contribution is in the efficient simulation of large

trees of a particular class used in this article, which is of independent interest.
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1. Introduction

The statistical analysis of tree-structured objects has received appreciable attention in recent years
owing to the emergence of datasets wherein the underlying quantities of interest allow for tree-like
representations. However, some central challenges have stymied the systematic development of tools for
statistical inference: The non-Euclidean nature of the underlying space offers considerable challenges
while developing probability models for fully observed trees; tree-structured data rarely contain the
same number of vertices leading to issues in comparing trees of differing sizes; generating trees from
a probability model for simulation purposes is not straightforward. Motivated by these issues, our
approach in this article is based on the abstract notion of a Continuum Random Tree (CRT) from
Aldous [1991a] and Aldous [1993] which arises as a continuous limit as the number of vertices grows
without bound for a large class of random trees. Our objective is to investigate the utility in employing
the CRT in developing asymptotic inferential tools on fully observed tree-structured data containing
a large number of vertices. To this end, we confine our attention to finite, rooted trees: trees with
a distinct vertex, referred to as the root, containing a finite number of vertices. These trees can be
labelled or unlabelled, ordered or unordered, have positive branch lengths, unequal number of vertices
and are referred to in combinatorial literature as simply generated trees, or equivalently (leaving aside
some extreme cases) within the probability community as Conditioned Galton-Watson trees (CGW)
obtained as the family tree of a Galton-Watson process conditioned on a given total number of vertices.

The CRT is an archetypal example of the weak convergence paradigm proposed by Aldous [1994b]
based on an isometric `1 embedding of a tree with n vertices such that the graph distance between
vertices are preserved. Such an embedding makes possible comparing trees for different n. Equipped
with a probability measure on the vertices, a continuous weak limit as n tends to infinity is determined
which then offers insight into structural and numerical properties of the original object which would
otherwise be hard to ascertain. We propose to embed the statistical problem of interest on large
trees in the continuous environment offered by the CRT and develop tools based on the two equivalent
characterizations of the CRT leading to the definition of simple parametric probability models on trees.

The distribution of the CRT can be specified in four equivalent ways of which the following two
will be of primary concern in this article (see Aldous [1991a] and Aldous [1993]): as a weak limit
of family trees of critical Conditioned Galton-Watson processes; distributions of spanning subtrees
which are analogous to finite dimensional distributions of a stochastic process. The first specification
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is characterized by a continuous function on the vertex set, referred to as a Dyck path, obtained from
the depth-first walk at unit speed on the tree which converges to a Brownian excursion. The second
specification is based on the limiting distribution of family of subtrees referred to as Least Common
Ancestor trees. These considerations on CGW tree-models for tree-structured data lead us to the
primary focus of this article:

(i) Developing parametric families using the limiting distribution of a special class of subtrees of the
CRT for hypothesis testing;

(ii) Using the Dyck path representation to define parametric families for hypothesis testing based on
the Brownian excursion approximation;

(iii) Efficient simulation of CGW trees.

The parameter of interest is the variance of the offspring distribution generating the CGW trees. The
parametric setup allows us to rigorously examine the theoretical properties of the family of distributions
on trees and the proposed tests using conventional ideas such as Neyman-Pearson tests, UMP tests,
exponential family etc. It will be seen that the induced family in (i) and (ii) is the Rayleigh family
parameterized by a scale factor given by the variance of the offspring distribution of the CGW tree;
the Rayleigh with a scale parameter is a member of the one-parameter exponential family enjoying
various desirable statistical properties. While we restrict our attention to hypothesis tests, this article
ought to be viewed a first step of a systematic program in developing statistical procedures on large
trees using the CRT.

Another contribution of this article is in the efficient simulation of critical CGW trees which encom-
pass a broad class of random trees including Catalan trees, Cayley trees, Binary trees, uniform random
trees etc. We use the efficient algorithm for generating CGW trees proposed by Devroye [2012] for our
simulations which has a universal linear expected run-time. As a consequence, we are able to generate
a large number of CGW trees with thousands of vertices fairly quickly under a parallel distributed
computing setup. The generation of CGW trees is, in general, not a trivial matter, and with our
software, we provide means to simulate a broad class of trees from a critical Galton-Watson process
which can be used as “ground-truth” for simulation experiments involving tree-structured data.

Methodology on tree-structured data has hitherto been characterized by nonparametric or algo-
rithmic approaches (Wang and Marron [2007], Busch et al. [2009], Aydin et al. [2011], Shen et al.
[2013], Wang et al. [2012], Aydin et al. [2009], Rosa et al. [2012] etc.). In relation to our approach,
Shen et al. [2013] used FDA methods on Dyck paths using an aligning mechanism which led to the
creation of some spurious tree-structures—for eg. negative branch lengths—while exploring modes of
variation in the trees in a regression problem. A parametric route was taken by Steele [1987] wherein
a one-parameter exponential family of distributions on labeled trees was proposed with the natural
parameter representing the expected number of leaves (terminal vertices) in the trees. In similar vein,
but with phylogenetics in mind, Aldous [1996] proposed a beta-splitting parametric model for clado-
grams; he noted the utility of a simple parametric model for phylogenetic tree construction. Motivated
by the parametric approaches, we will consider a few one parameter family of distributions for testing
statistical hypotheses on CGW trees considered in this article which are induced from the distributional
properties of the CRT and Brownian excursion. CGW trees can be used as models for tree-structured
data frequently encountered in many scientific settings. For instance, plane-rooted trees are considered
in Busch et al. [2009] under the context of a protein classification problems; Shen et al. [2013], Aydin
et al. [2009], Aylward and Bullitt [2002] modeled brain artery data as three dimensional trees embed-
ded on the plane; also see Yang et al. [2005] and Tatikonda and Parthasarathy [2010] for datasets in
the context of XML documents and secondary structure of RNA.

In section 2 we review the key ingredients of the CRT including CGW trees, Dyck paths and Least
Common Ancestors trees. In section 3, we propose a parametric family induced by the spanning
subtrees of the CRT, examine its properties, and propose one-sample and two-sample tests for distri-
butions on trees. In section 4, we propose a parametric family based on the random projection of Dyck
path representation and propose one and two-sample tests for distributions. In section 5, we generate
CGW trees using the algorithm proposed by Devroye [2012] and verify the validity of the theoretical
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results and performance of proposed tests. Section 6 discusses some salient aspects of our approach
and comments on possible extensions. Proofs of results and details of simulations are relegated to the
Appendix in section 7.

2. Preliminaries

2.1. Representation of trees. Consider a finite rooted tree τn as set of vertices V(τn) = (root, v1, . . . , vn−1)
and a set of edges E(τn) = (e1, . . . , en−1) , represented as a point

τn =
(
V(τn), E(τn)

)

in the space Tn×Rn−1+ where Tn is the set of all finite trees on n vertices. One way to compare different
size trees is to embed τn = (V(τn), E(τn)) as an element of the linear space `1, the Banach space of
infinite sequences x = (x1, x2, . . .) such that ||x|| = ∑

i |xi| < ∞. Such an embedding makes possible
comparison and scaling of trees consisting of different number of vertices in a natural way. Formally,
suppose d(v1, v2) is the distance between two vertices defined as the sum of edge lengths along the
unique path from v1 to v2. The embedding of τn = (V(τn), E(τn)) as a subset of `1 is the determination
of points wi for 1 ≤ i ≤ n in `1 such that ||wi − wj || = d(vi, vj) for all 1 ≤ i, j ≤ n. Then, the subset
of `1 containing w1, . . . , wn and the connecting paths is referred to as the set representation of τn. In
this article, however, we shall not directly employ the set representation; the use of Aldous’ results
obtained through the set representation, implies its indirect use. The formal definition the CRT is
based on the set representation S and a probability measure µ on `1 connected to S through two
technical conditions; see p. 253 in Aldous [1993]. The pair (S, µ) is then the CRT. We shall only be
concerned with the CRT through its distributional properties.

2.2. Conditioned Galton-Watson trees and random sampling. Given a probability distribution
(πk, k = 0, 1, . . .) on the non-negative integers, or equivalently a random variable ξ with distribution πk,
we construct a Galton-Watson tree τ recursively starting with root and giving each node a number of
children that is an independent copy of ξ; P (ξ = k) = πk for k = 0, 1, . . . is referred to as the offspring
distribution and the out-degrees of the vertices are i.i.d. copies of ξ from πk). As a consequence, ξ
induces a unique distribution on τ as

P (τ = t) =
∏

v∈V(t)

πo(v,t),

where o(v, t) is the out-degree or the number of children of vertex v in tree t.
If one wishes to model a set of tree-structured data using Galton-Watson trees, two issues arise at

this point: Galton-Watson trees, with positive probability, can be infinite, whereas observed trees in
practice are always finite; secondly, how could we ensure that the observed trees have been collected
through random sampling? We shall address these issues by considering Conditioned Galton-Watson
(CGW) trees; these are Galton-Watson trees conditioned on total progeny. That is, the distribution
of a CGW tree τn conditioned to have n vertices is

P (τn = t) ∝
∏

v∈V(t)

πo(v,t) on {t : cardinality of V(t) = n}.

Importantly, it is known, that for a fixed offspring distribution πk, the corresponding CGW tree can be
viewed a being picked according to a uniform distribution on certain types of tree with n vertices. For
example, if we wish to choose a strictly binary tree (0 or two children only) with n vertices according
to a uniform distribution on the space of n-vertex binary trees, then, we can equivalently construct
a CGW tree with a offspring distribution 0.5 each for 0 and 2 children. We enumerate a few useful
classes of trees for modeling purposes:

(i) Ordered trees with unrestricted degree: CGW trees with offspring distribution given by a Geo-
metric distribution with success probability 1/2;

(ii) Binary trees: CGW trees with vertices containing 0,1 or 2 children with a Binomial distribution
with 2 trials and success probability 1/2;
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(iii) Strict binary trees which are ordered : CGW trees with vertices containing either 0 or 2 children
with equal probability 1/2;

(iv) Unary-binary trees which are ordered : CGW trees with vertices containing 0, 1 or 2 children each
with probability 1/3;

(v) Unary-binary trees which are unordered and unlabelled : CGW trees with vertices containing 0, 1

or 2 with probabilities π0 = 1
2+
√
2
, π1 =

√
2

2+
√
2

and π3 = 1
2+
√
2
, respectively.

(vi) m-ary trees: CGW trees with vertices containing 0, 1, . . . ,m for m > 3 children with distribution
given by a Binomial with m trials and success probability 1/m 1.

Ordered trees imply that they can be embedded on the plane and therefore possess a natural labelling
mechanism. From a tree perspective, this implies that there is an order amongst the children at any
given vertex. Note that the offspring distributions of the CGW trees considered are with unit mean
implying that the Galton-Watson process generating the tree is critical. This is because conditioning on
n makes the family of offspring distributions parameterized by a mean parameter identically distributed
(see Kennedy [1975]). While it is conceivable that inference on such trees can be performed by a mere
counting of the number of observed children at arbitrary, knowledge of distributions of local structural
aspects like height, variations in branching structure and also information about branch lengths are
not easy to obtain. In this article, we shall consider CGW trees and refer to them simply as trees.

2.3. Dyck paths. Any rooted ordered tree τn can be uniquely coded by a traversal of the tree; when
the traversal is a depth-first walk, one can construct a function which is a bijection to the tree in
the following manner: for ease of exposition, assume that the edges or branches of a tree τn with n
vertices have length 1. For a fixed positive integer n, Dyck paths are lattice excursions of length 2n,
that is sequences (dj , 0 ≤ j ≤ 2n) where d0 = d2n = 0 and dj > 0 with dj+1 − dj ∈ {−1,+1} for
all 0 ≤ j ≤ 2n − 1. Imagine the motion of a particle that starts at time t = 0 from the root of the
tree and then explores the tree from the left to the right, moving continuously along the edges at unit
speed until all the edges have been explored and the particle has come back to the root. Since it is
clear that each edge will be crossed twice in this evolution, the total time needed to explore the tree
is 2n. For simplicity, suppose all edges are of unit length, the value Hn(s) of a continuous function
Hn : [0, 2n]→ R≥0 at time s ∈ [0, 2n] is the distance (on the tree) between the position of the particle
at time s and the root; figure 1, taken from Pitman [2006], offers a more intuitive description with edge
lengths not all equal to one. Therefore, if τn is a tree of size n the sequence (Hn(0), Hn(1), · · · , Hn(2n))
is its Dyck path of length 2n. The representation of the Dyck path of a tree τn in terms of the distance
d between its vertices is related to the function Hn as

(2.1) Hn(s) = d(root, v),

where v is the vertex obtained during the depth-first walk such that the sum of the edges traversed
till v is s. This discussion is formalized by the following proposition whose proof is straightforward.

Proposition 1. The map τn 7→ (Hn(0), Hn(1), · · · , Hn(2n)) is a bijection from the set of plane trees
with size n to the set of all Dyck paths of length 2n.

The key result combining the two ideas is the following result in Aldous [1993]:

Theorem 1. Let τn be a CGW tree conditioned to have n vertices with offspring distribution with
mean 1 and variance σ2 ∈ (0,∞). Let Hn(k), 0 ≤ k ≤ 2n be the Dyck path associated with τn. Then,
as n→∞ through the possible sizes of the unconditioned Galton-Watson tree,

{
1√
n
Hn([2nt]), 0 ≤ t ≤ 1

}
⇒
{

2

σ
Bext : 0 ≤ t ≤ 1

}

where Bex is the standard Brownian excursion and ⇒ implies weak convergence of processes in C[0, 1],
the space of continuous functions on [0, 1], and [·] stands for the integer function.

1There is an identifiability issue for the m-ary trees with m = 3 since the variance is 2/3 which is the same as the

variance for the unary-binary trees.
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Figure 1. A tree with root at the bottom and its corresponding Dyck path. The
x axis ranges from 0 to twice the sum of lengths of the edges; the Dyck path is
constructed by traversing the tree in a depth-first manner at unit speed.

Roughly, the Brownian excursion in the limit is the ‘Dyck path’ of the CRT and the distribution of
the CRT is specified by a careful construction from the excursion.

2.4. Least Common Ancestor subtrees. We define here the class of spanning subtrees which
characterize the distribution of the CRT. For a CGW finite tree τn = (V(τn), E(τn)), define its Least
Common Ancestor (LCA) tree in the following manner: choose a subset B of V(τn); for vertices v1
and v2 in B find their last common ancestor, or the branch point after which the paths to the v1 and
v2 from the root diverge or branch out. Now, the LCA tree corresponding to the subset B of vertices
of τn is the tree, denoted as LCA(τn, B), containing the root, the vertices of B and all the branch
points with distances from the root to the vertices of B preserved. Figure 2 illustrates this idea with
B = {v1, v2, v3, v4}; the branch points are b1 and b2, and in order to preserve the distances from root
to the vertices of B, the new edge from the branch points to elements of B are the sum of the edges
along the path from the root to elements of B in the original tree. Now, for a tree τn randomly reorder

1v

2v
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1v

3v

4v

1b 2b

1b
2b

2v

1e

2e

3e

4e
21 ee  43 ee 

Figure 2. A tree on the left and its LCA tree on the right corresponding to vertices
{v1, v2, v3, v4}. The LCA tree contains the root, the branch points b1, b2 and the set
of vertices {v1, v2, v3, v4}.

the vertex set V(τn) to obtain (vn,1, . . . , vn,n). For a fixed k < n, consider the LCA tree of τn defined
by LCA(τn, (vn,1, . . . , vk,n)); this is akin to picking k < n vertices according to a uniform distribution
on V(τn). LCA trees have been used in the context of reconstruction of the trees; see Gronau and
Moran [2007] for a phylogenetic applications and Aho et al. [1981] for related work in a computational
context. Aldous showed that for each k, as n → ∞, the random LCA trees LCA(τn, (vn,1, . . . , vk,n))
converge, as subsets of `1, to a limit tree L(k), which is strictly binary (each vertex has either 0 or 2
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children) with k leaves or terminal vertices. The key point here is that Aldous proved that the family
(L(k), k ≥ 1) is a consistent class of subtrees which characterize the CRT (S, µ); in other words, for
modeling purposes one can justifiably view the class (L(k), k ≥ 1) as finite dimensional distributions
of the CRT. One can then use the distribution of the limiting class to approximate the distributions
of the LCA trees of CGW trees.

2.5. A parametric family. Throughout, we shall assume that we have a random sample of fully-
observed trees τni = (V(τni , E(τni))) for i = 1, . . . , N from some distribution on the product space
⊗Ni=1Tni ×Rni−1+ . The six types of CGW trees outlined in section 2.2 represent a very broad class for

modeling purposes. The variances σ2 of the distributions considered are, respectively, 2, 12 , 1,
2
3 ,

2
2+
√
2

and m−1
m for m = 4, 5, . . .. Since the offspring distributions completely characterize the law on

the CGW trees, it is conceivable that a class of probability distributions on the non-negative inte-
gers parameterized by their variance parameter σ2 can be used for statistical purposes. Let S ={

2, 12 , 1,
2
3 ,

2
2+
√
2
, m−1m ;m = 4, 5, . . .

}
. Then, the class

(2.2)
{
πk,σ2 : k = 0, 1, 2, . . . ;σ2 ∈ S

}

is a one-parameter class of probability models for fully observed finite rooted, ordered trees, with the

constraints
∑∞
k=0 kπk,σ2 = 1 and

∑∞
k=0 k

2πk,σ2 < ∞, and set σ2 =
∑∞
k=0 k

2πk,σ2 −
[∑∞

k=0 kπk,σ2

]2
.

The first constraint implies that the Galton-Watson branching process generating the CGW tree is
critical. An obvious shortcoming with the class in (2.2) is the absence of any branch-length information
in the distribution—the probabilities purely reflect the topological structure or “shapes” of trees.

Since our primary interest is in developing hypothesis tests for parametric families, we recall the
definition of distinguishable property of parametric families.

Definition 1. Suppose Θ is an index set and Θ0 and Θ1 are disjoint subsets of Θ such that Θ0∪Θ1 = Θ.
Denote by H0 and H1 the null and the alternative hypothesis that θ is a member of either Θ0 or Θ1.

Then, the set of probability measures
{
Pθ : θ ∈ Θ

}
is distinguishable if

(i) Pθ 6= Pθ′ for all distinct θ, θ′ ∈ Θ;
(ii) There is at least one Borel set A such that Pθ(A) 6= Pθ′(A) for θ ∈ H0 and θ′ ∈ H1.

This is a crucial requirement while testing with parametric families; it will be shown that the
parametric families induced by the LCA-tree based approach and Dyck path approach satisfy the
above conditions.

3. Parametric family and test from LCA trees

In this section we consider a parametric family for finite rooted trees which may or may not be
ordered; the canonical CGW tree contains n vertices and methodology is developed by constructing
a subtree by choosing k < n vertices according to a uniform distribution on the vertex set excluding
the root; the root is always included in the subtree as its root. Recall that any tree τn is represented
as (V(τn), E(τn)) with vertex set V(τn) = {root, v1, . . . , vn−1} and edge set E(τn) = {e1, . . . , en−1}; a
similar representation holds for any subtree. From section 3, it is known that the family of subtrees
(L(k), k ≥ 1), arising as the limit of LCA trees, can be regarded as consistent “finite dimensional
projections” of the CRT. For a random CGW tree τn with distribution πσ2 for some σ2 in S, con-
sider its LCA(τn, v1, . . . , vk) defined earlier for k < n vertices chosen randomly from V(τn). Since
LCA(τn, v1, . . . , vk) converges in distribution to L(k) (see p. 251 in Aldous [1993]), the limit distribu-
tion inherits σ2 too. Lemma 21 in Aldous [1993] provides the limit distribution and Theorem 3 proves
the characterization of the CRT by (L(k), k ≥ 1). We combine the two results into a single Lemma
for our purposes.
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Lemma 1. There exists a consistent family (L(k), k ≥ 1) of strictly binary trees which define the
CRT having the density

f(l(k)) =

[
k−1∏

i=1

1

2i− 1

]−1
1

2k−1
se
−s2
2 ,

where s = e1 + · · ·+ ek−1 and l(k) is a strict binary tree with k vertices.

We propose to use the density above for the LCA trees of large CGW trees τn with the dependence
on σ2 introduced in a natural manner: 1/σ will be the scale parameter; as a consequence, we have a
parameterized class of distributions for LCA(τn, v1, . . . , vk), given by

(3.1)
{
fσ2 : σ2 ∈ S

}
,

where, for the LCA tree with k vertices lk,

(3.2) fσ2(lk) =

[
k−1∏

i=1

1

2i− 1

]−1
1

2k−1
σ2se

−s2σ2
2 ,

where lk has edge set E(lk) = (e1, · · · , ek−1). The vertex set manifests itself in the factor 2−(k−1); see
Aldous [1993] for details.

Remark 1. Note that the density in (3.2) uses information about the branch-length aspects of the tree;
this is in contrast to the distribution in (2.2). Choosing k vertices from n according to a uniform
distribution might appear to be restrictive. This can be relaxed in a simple manner as remarked in
p.274 of Aldous [1993]. The word “consistent” in the Lemma refers to two properties: if an edge is
removed from L(k), then the remainder tree is distributed as L(k − 1); second, the labeling of the
vertices are exchangeable. Upon ignoring the normalizing factors, when viewed as a density of the
random variable representing the sum of the edges, the density in (3.2) is the Rayleigh density.

While class in (3.1) is a family of distributions on the LCA trees and consistent for the CRT, it is
not immediately clear if the class can be extended to τn for every n; this is especially important while
developing tests based on the LCA trees. Specifically, noting the obvious fact that LCA(τn,V(τn)) =
τn, it is necessary that fσ2(·) defined on LCA(τn, B) for any B ⊂ V(τn) can be extended to τn upon
inserting vertices from V(τn)−B to LCA(τn, B), while retaining the interpretability of σ2. To formalize
this ideas, recall that τn = (V(τn), E(τn)) resides in Tn × Rn−1+ ; its LCA corresponding to B ⊂ V(τn),

where |B| = k, lies in Tk × Rk−1+ . Then, for all k and n with k < n, the class in (3.1) defined on

Tk ×Rk−1+ can be extended to Tn×Rn−1+ , or is n-extendable, if fσ2(·) on LCA(τn, B) can be recovered

by marginalization over fσ2(τn) on Tn × Rn−1+ for every σ2. Denote by Pσ2 the law on CGW trees τ
with σ2 ∈ S corresponding to the density in (3.1). The following Propositions justifies the use of the
class in (3.1) for defining a proper family on τn for every n, and its amenability for testing purposes.

Proposition 2. The class
{
fσ2 : σ2 ∈ S

}
on Tk × Rk−1+ is n-extendable for every n.

Proposition 3. The parametric class of probability measures
{
Pσ2 : σ2 ∈ S

}
is distinguishable.

Remark 2. The issue of extendability was considered by Shalizi and Rinaldo [2013] in the context of
Exponential Random Graph Models, where they defined a notion of the class of distributions being
projective for the exponential family of distributions. Without going into details of their work, it suffices
here to note that the density in (3.2), when viewed as the density of s, is the Rayleigh distribution with
a scale factor σ, which belongs to the one-parameter exponential family. Then, s = e1 + · · ·+ ek−1 is
the minimal sufficient statistic for σ2 and is clearly separable as defined by Shalizi and Rinaldo [2013]—
adding an edge increases the value of the sufficient statistic by an amount equaling the edge length.
In fact, the conditional volume factor defined by them, in our case, is precisely the length, say e, of
the newly added edge when viewed as the Lebesgue measure of the interval [0, e] as a generalization of
the definition of conditional volume factor. We remark here that the sufficient statistic s induces the
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density on the tree and the density is hence with respect to the Lebesgue measure. This is in contrast
to the density in the Exponential Random Graph Models which posses density with respect to the
counting measure.

We now put to use the parametric class in (3.1) to the inferential problem of testing hypothesis
on sets of random trees. The method involves choosing a subset of vertices (excluding the root)
uniformly from the vertex set of each tree and constructing its corresponding LCA tree; this leads to
a sample of LCA trees. The LCA trees are assumed to have been generated from the family in (3.1)
parameterized by σ2 as the number of vertices of the original trees approach infinity. The conclusions
of the subsequent hypothesis test on the LCA trees are extended on to the fully observed trees using
Proposition 2.

Theorem 2. Suppose we have an independent sample of CGW trees τni = (V(τni , E(τni))) for
i = 1, . . . , N from a distribution πσ2 on the product space ⊗Ni=1Tni × Rni−1+ with σ2 ∈ S. Let
K = (K1, . . . ,KN ), where Ki ⊂ V(τni) chosen according to a uniform distribution on V(τni) for
each i = 1, . . . , N ; let #Ki denote the cardinality of set Ki and denote by Cα,2N , the αth percentile of
a Chi-square distribution with 2N degrees of freedom.

(1) Given K, define the critical function

φ(K, N, α, σ2
0) =





1 if σ2
0

N∑

i=1

s2i < Cα,2N

0 if σ2
0

N∑

i=1

s2i > Cα,2N ,

where si = e1 + · · ·+ e#Ki−1. Then, conditional on K, for the pair of hypotheses H0 : σ2 = σ2
0

vs H1 : σ2 = σ2
1 where σ2

1 > σ2
0, the test given by φ(K, N, α, σ2

0) is such that as ni → ∞
for each i = 1, . . . , N , Eπφ(K, N, α, σ2

0) → α, and is the most powerful test for the pair of
hypotheses.

(2) Given K, the likelihood ratio test for testing H0 : σ2 = σ2
0 vs H0 : σ2 6= σ2

0 is given by the
critical function

ψ(K, N, α, σ2
0) =





1 if σ2
0

N∑

i=1

s2i < Cα
2 ,2N

or σ2
0

N∑

i=1

s2i > C1−α2 ,2N ;

0 otherwise,

where as ni →∞ for each i = 1, . . . , N , Eπψ(K, N, α, σ2
0)→ α and all other quantities are as

in part 1.

Theorem 3. Suppose we have two independent samples of CGW trees τni = (V(τni), E(τni)) for
i = 1, . . . , N1, and ηmj = (V(ηmj ), E(ηmj )) for j = 1, . . . , N2, from distributions πσ2

1
and πσ2

2
on the

product spaces ⊗N1
i=1Tni × Rni−1+ and ⊗N2

j=1Tmj × Rmj−1+ , respectively, with σ2
i ∈ S for i = 1, 2. Let

K = (K1, . . . ,KN1
), where Ki ⊂ V(τni) is chosen according to a uniform distribution on V(τni) for

i = 1, . . . , N1; in similar fashion let L = (L1, . . . , LN2
), where Lj ⊂ V(ηmj ) is chosen according to a

uniform distribution on V(ηmj ). Given K and L, as ni,mj →∞, for each i and j, the likelihood ratio

test of asymptotic size α, for the pair of hypotheses H0 : σ2
1 = σ2

2 vs H0 : σ2
1 6= σ2

2 is given by

φ(K,L, N1, N2, α) =

{
1 if

N1
∑N2
i=1 r

2
i

N2
∑N1
i=1 s

2
i

< Fα
2 ,2N2,2N1 or

N1
∑N2
i=1 r

2
i

N2
∑N1
i=1 s

2
i

> F1−α2 ,2N2,2N1 ;

0 otherwise,

where si = eτ1 + · · · + eτ#Ki−1 and rj = eη1 + · · · + eη#Lj−1, for 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2, with eτ

and eη representing generic elements of the edge sets E(τ) and E(η) respectively; Fα,a,b denotes the
αth percentile of an F distribution with a, b degrees of freedom.
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Remark 3. Observe that the tests in Theorem 2 and 3 are finite sample tests in the sense that we do
not let the sample size N1 or N2 tend to infinity. The class in (3.1) is a valid distributional class on
a set of trees and whenever the data generating model is a CGW model, the test represents a useful
tool to distinguish between a fairly general class of trees. It is evident now how crucial Proposition 2
on extendability is for inferential purposes.

4. Parametric family and test based on Dyck Path

In the section, we consider a parametric class and develop tests for trees which are ordered and can be
embedded on the plane. The pertinent question behind the Dyck path representation of an ordered tree
is this: suppose a CGW tree τn is distributed as a member of the class (2.2); what is the ramification of
the bijective transformation τn 7→ Hn on the class {πk,σ2 : k = 0, 1, 2, . . . ; 0 < σ2 <∞}? If we propose
to develop inferential tools on the space of Dyck paths, it is then required to establish the equivalence
of statistical procedures, perhaps in the Le Cam sense, on {πk,σ2 : k = 0, 1, 2, . . . ; 0 < σ2 <∞} and the
class resulting from the transformation. Indeed, this requires us to know exactly the induced class prior
to establishing equivalence. The probabilistic structure of the Dyck path corresponding to an arbitrary
CGW tree is not easily ascertained; only under the special case when the offspring distribution is the
Geometric with success probability 1/2, is it known that the corresponding Dyck path can be modeled
as a simple symmetric random walk conditioned on first return to 0 (see Aldous [1993]). This issue
poses a serious difficulty if one wishes to establish some sort of equivalence between procedures on
the two classes using the notion of a deficiency distance. However, weak equivalence of the procedure
is easily established as consequence of the invariance principle in Theorem 12: for a CGW tree τn, if
{Pnσ2 : σ2 ∈ S} is the experiment associated with its density (with respect to the counting measure)
π2
σ, then as n → ∞ through the sizes of the unconditional CGW tree, {Pnσ2 : σ2 ∈ S} ⇒ {Pexσ2 :
σ2 ∈ S}, where Pex is the law on the Brownian excursion. This is our motivation in using the weak
convergence argument in developing statistical models on trees: we are able to circumvent the issue of
proving equivalence since the limit process is a Brownian excursion regardless of the original offspring
distribution. Conveniently though, the dependence on the offspring distribution arises through the
variance parameter σ2 as the scaling factor.

To recall, 2
σB

ex is the limit of normalized Dyck paths which code CGW trees uniquely. Aldous’

result connects the CRT to 2
σB

ex in the following manner: Pick U1, . . . , Uk uniformly from [0, 1] and

consider the order statistics U1:k < · · · < Uk:k. Set Vi = minUi:k≤t≤Ui+1:k

2
σB

ex(t). Draw an edge of

length 2
σB

ex(U1:k) and label one end as the root and the other end as U1. Inductively, from Ui:k move

back a distance 2
σB

ex(Ui:k)− Vi towards the root, draw a new edge of length 2
σB

ex(Ui+1:k)− Vi and
label the new endpoint Ui+1. Aldous then proved that the resulting binary tree on k vertices with
k − 1 edges has the density given in (3.2). The implication of this construction is that the random
tree constructed the Brownian excursion at k uniform random times leads to the class of consistent
distributions given in (3.1) which characterize the CRT. This opens up the possibility of another family
of parametric models for large CGW trees using the excursion.

For a tree τn, let 0 = U0:n < U1:n < · · · < Un+1:n = 1 be uniform order statistics and let Vi =
minUi:n≤t≤Ui+1:n

2
σB

ex(t). Now define the 2n+ 2 dimensional vector taking values in R2n+2
+ as

Xn =
( 2

σ
Bex(Ui:n),

2

σ
Bex(Vi)

)
.

Based on the construction above it can be seen that the distribution of the random vector Xn defines
a distribution on the random tree constructed with n vertices. One way at looking at the density in
(3.2) via the construction above is as the density of the random variable which is the total variation
of the function obtained via a linear interpolation between points in Xn; using this approach it was

2Note that if we restrict ourselves to a finite set S for modeling purposes, then weak convergence of the procedures is

equivalent to convergence in deficiency distance since the canonical Blackwell measure of the two experiments coincide.
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shown in Theorem of Pitman [1999] that

Xn
d
=
σ(2Γn+1)1/2

4

(
Ui−1:n − Vi−1, Ui:n − Vi−1; 1 ≤ i ≤ n+ 2

∣∣ ∩ni=1 (Ui:n > Vi)
)
,

where Un+2:n := 1 and Γn+1 is a Gamma random variable with shape n + 1 and scale 1. While, in
principle, it would be reasonable to define a parametric class, the distribution of Xn is not easy to
compute.

4.1. Test based on random projection. Testing on trees with offspring variance σ2 ∈ S is weakly
equivalent to distinguishing between brownian excursions scaled by 2

σ . We first construct a parametric
class based on a random coordinate projection of Bex; by this, we mean that we consider the family
of distributions induced by the map pU : 2

σB
ex 7→ 2

σB
ex(U), where U is chosen uniformly on [0, 1].

In order for this approach to bear fruition, we first need to verify that the law on the Brownian
excursion is completely determined by the law of pU (Bex) for a random U . This would then ensure
that the resulting family based on random projections is distinguishable. In the tree-setting, the
approach translates to the following scenario: For a tree τn with offspring variance σ2, pick a vertex
v from V(τn) according to a uniform distribution, and use the distribution of d(root, v) to define a
parametric class. In the language of Dyck paths, we would be interested in the distribution of Hn(s)

for 0 ≤ s ≤ 2
∑n−1
i=1 ei where s corresponds to the sum of the edges up to vertex v encountered during

the depth-first walk.

Proposition 4. For ordered CGW trees, the class of distributions {rUσ2 : σ2 ∈ S} induced through

pU
(
2
σB

ex
)

is distinguishable.

This immediately provides the following useful result:

Proposition 5. On an ordered CGW tree τn with offspring variance σ2, suppose V is a vertex chosen
according to a uniform distribution on V(τn). Then, the random variable

n−1/2d(root, V )
d→W,

where W is a Rayleigh distributed random variable with scale 1/σ. Therefore, pV
(
2
σB

ex
)

is Rayleigh
distributed with scale 1/σ.

Remark 4. The question, Given a vertex v what is the distribution of d(root, v)?, is different to the one
answered above, which is more meaningful for the following reason: the distance of a given vertex on
tree is completely determined by the value of the Dyck path which was constructed using the depth-
first walk; indeed, there are several ways to uniquely code a tree and the distance of a vertex from
the root should not be dictated by the choice of a traversal. More importantly, if we wish to define a
parametric class to distinguish between populations of trees, then this becomes a more pressing issue.

Remark 5. It is interesting to note that the Rayleigh distribution arises again as the limiting distribution—

-this was the case in (3.2) when viewed as the density of
∑k−1
i=1 ei. This is not a coincidence; in the

interests of brevity, we refer to the intricate construction of the CRT and Corollary 22 in Aldous [1993]
for an explanation of the connection. In the context of LCA trees, the Rayleigh density was used to
define the density on an entire LCA tree; the tree functional of interest in this setup is, however, dif-
ferent. Suppose v is a vertex chosen randomly from τn and is a part of the subset ofB of V(τn) chosen
to construct LCA(τn, B). Note now that the distance from the root of v is preserved in LCA(τn, B).
In the Dyck path approach the induced parametric family is based on this distance, whereas in the
LCA-tree based approach the induced parametric family is based on the sum of all such distances in
the LCA(τn, B) which additionally contains the branchpoints.

In the context of hypothesis testing on CGW trees, we are again under the exponential family
framework with the Rayleigh distribution, but this time using the Dyck path approach. We state
results omitting the proofs, as they are similar to the ones under the LCA approach.
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Theorem 4. Suppose we have an independent sample of ordered CGW trees τni = (V(τni , E(τni))) for
i = 1, . . . , N from a distribution πσ2 on the product space ⊗Ni=1Tni × Rni−1+ with σ2 ∈ S. In each tree,
choose a vertex Vi uniformly from V(τni) = (root, v1, . . . , vni−1) and record its distance from the root:
d(root, Vi); then let di = n−1/2d(root, Vi) for i = 1, . . . , N .

(1) Given V = (V1, . . . , VN ), define the critical function

φ(V, N, α, σ2
0) =





1 if σ2
0

N∑

i=1

d2i < Cα,2N

0 if σ2
0

N∑

i=1

d2i > Cα,2N .

Then, conditional on V, for the pair of hypotheses H0 : σ2 = σ2
0 vs H1 : σ2 = σ2

1 where
σ2
1 > σ2

0, the test given by φ(V, N, α, σ2
0) is such that as ni → ∞ for each i = 1, . . . , N ,

Eπφ(K, N, α, σ2
0)→ α, and is the most powerful test for the pair of hypotheses.

(2) Given V, the likelihood ratio test for testing H0 : σ2 = σ2
0 vs H0 : σ2 6= σ2

0 is given by the
critical function

ψ(K, N, α, σ2
0) =





1 if σ2
0

N∑

i=1

d2i < Cα
2 ,2N

or σ2
0

N∑

i=1

d2i > C1−α2 ,2N ;

0 otherwise,

where as ni →∞ for each i = 1, . . . , N , Eπψ(K, N, α, σ2
0)→ α and all other quantities are as

in part 1.

Theorem 5. Suppose we have two independent samples of ordered CGW trees τni = (V(τni), E(τni))
for i = 1, . . . , N1, and ηmj = (V(ηmj ), E(ηmj )) for j = 1, . . . , N2, from distributions πσ2

1
and πσ2

2
on

the product spaces ⊗N1
i=1Tni × Rni−1+ and ⊗N2

j=1Tmj × Rmj−1+ , respectively, with σ2
i ∈ S for i = 1, 2.

Given V = (V1, . . . , VN1
) and W = (W1, . . . ,WN2

), let di and cj be the normalized distances from the
root for the chosen vertices as in Theorem 4, for 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2. Given V and W, as
ni,mj →∞, for each i and j, the likelihood ratio test of asymptotic size α, for the pair of hypotheses
H0 : σ2

1 = σ2
2 vs H0 : σ2

1 6= σ2
2 is given by

φ(V,W, N1, N2, α) =

{
1 if

N1
∑N2
i=1 c

2
i

N2
∑N1
i=1 d

2
i

< Fα
2 ,2N2,2N1 or

N1
∑N2
i=1 c

2
i

N2
∑N1
i=1 d

2
i

> F1−α2 ,2N2,2N1 ;

0 otherwise,

where Fα,a,b denotes the αth percentile of an F distribution with a, b degrees of freedom.

5. Simulations

For a non-negative integer-valued random variable ξ with distribution πk for k = 0, 1, . . ., the
construction of a Galton-Watson tree τ was explained in Section 2.2. However the construction of
τn, the Galton-Watson tree conditioned to have n vertices, is not straightforward. Using a random-
walk construction from n independent copies of ξ, it can seen that in order to generate a CGW τn,
a necessary condition is to generate a vector Ξ = (ξ1, . . . , ξn) such that

∑n
i=1 ξi = n − 1 and then

determining a rotation of Ξ, i.e. a vector (ξk, ξk+1, . . . , ξn, ξ1, ξ2, . . . , ξk−1), with the property that
the total number vertices of τ equals n. We use an efficient algorithm provided by Devroye [2012]
with linear expected time to generate the CGW trees. This enables us to efficiently simulate a large
number of CGW trees, each containing a large number of vertices—each tree is generated in expected
linear time. We have made our C++ code is available at www.github.com/pkambadu/DyckPaths.
Pseudo-code and description of the algorithm and shuffling can be found in the Appendix.
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5.1. Performance of LCA-based tests. Computing details pertaining to the construction of an
LCA tree following the CGW tree are elucidated in the Appendix. We report here the performance of
the LCA test for distinguishing between two tree populations with offspring distributions πσ2 where
σ2 ∈ S. Recall from Theorem 2 that the critical function for the test was based on the statistic
corresponding to the sum of edge lengths of the LCA tree constructed from a randomly chosen subset
of the vertex set of the CGW tree. We generate CGW trees from πσ2 for different values of σ2 and
present empirical rates of rejection for the test. We perform 10000 simulations at varying sample sizes
of tree—note that Theorem 2 represents a finite sample test. Firstly, Figure 3 plots the histogram
of the sum of the edges of the constructed LCA tree; as postulated, the Rayleigh distribution with
scale 1/σ offers a good approximation. Tables 1 and 2 detail the performance of the one-sample most
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Figure 3. Histograms of s = e1+· · ·+ek−1 from LCA trees of 10000 CGW trees from
π2 with number of vertices 10, 100 and 1000 (from left). LCA trees were constructed
by choosing 40% of the vertices randomly from the vertex set of the CGW tree. Solid
red curve is the Rayleigh density with scale 1/

√
2.

powerful (MP) and Likelihood Ratio (LR) tests. Power calculation is performed only for the LR test
since the MP is for simple hypotheses.

H0 : π = πσ2 Rejection rate for test of MP test Rejection rate of LR test
10 50 100 10 50 100

π2/3 0.036 0.040 0.047 0.041 0.049 0.050
π1/2 0.071 0.043 0.052 0.067 0.053 0.049
π2 0.024 0.047 0.056 0.029 0.049 0.051

Table 1. Level of one sample UMP and LR tests under H0 based on the LCA method
for CGW trees with 1000 vertices each from different offspring distributions. LCA
trees were constructed by choosing 30% of vertices from the vertex set of each tree at
random.

For the two-sample LR test, we generate 1000-vertex CGW trees from different distributions at
varying sample sizes and examine the simulation level of the test and its power; these are reported in
Tables 3 and 4.

The tests based on the LCA, in general, appear to be performing well with low sample sizes as long
as the number of vertices of the CGW trees are large, validating the use of the CRT approach. Since
the LCA trees are, in a sense, finite dimensional distributions of the CRT, the tests based on them are
able to distinguish between populations of trees quite efficiently.
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H0 : π1/2 vs H1 : Rejection rate for test of LR test
10 50 100

π2/3 0.948 0.964 0.991
π1 0.924 0.967 0.999
π2 0.919 0.957 0.987

Table 2. Rejection rate under alternative hypothesis when H0 : πσ2 = π1/2 for the
one sample LR test based on the LCA method for CGW trees with 1000 vertices each
from different offspring distributions. LCA trees were constructed by choosing 30%
of vertices from the vertex set of each tree at random.

π0 = π1 under H0 Level of LR test
10 50 100

π2/3 0.050 0.055 0.047
π1 0.040 0.047 0.048
π1/2 0.060 0.052 0.045
π2 0.050 0.046 0.044

Table 3. Level of two-sample LR test under H0 based on the LCA method for CGW
trees from two distributions with 1000 vertices each from different offspring distribu-
tions. LCA trees were constructed by choosing 30% of vertices from the vertex set of
each tree at random.

π0 vs π1 under H1 Rejection rate for LR test
10 50 100

π2/3 vs π1 0.508 0.897 0.991
π2/3 vs π1/2 0.271 0.926 1.000
π2/3 vs π2 0.781 0.874 0.993
π1 vs π1/2 0.943 0.982 1.000
π1 vs π2 0.914 1.000 1.000
π1/2 vs π2 0.977 0.985 1.000

Table 4. Rejection rate of two-sample LR test under the alternative based on the
LCA method for CGW trees from two distributions with 1000 vertices each from
different offspring distributions. LCA trees were constructed by choosing 30% of
vertices from the vertex set of each tree at random.

5.2. Performance of Dyck path-based tests. In this section we evaluate the performance of the
tests based on the random projection method on normalized Dyck paths of CGW trees from Theorems
4 and 5. Figure 4 provides an illustration of CGW trees with offspring distributions π1/2 and π1 and
their corresponding normalized Dyck paths. Recall that the test statistics were based on the distance
from the root of a randomly chosen vertex which is equivalent to the value of the corresponding Dyck
path at a randomly chosen point on the x-axis. Figure 5 below plots the histogram of this statistic
scaled by n−1/2 where n is the number of vertices of the tree for varying n. This offers verification of
Proposition 5. We now examine the performance of the one-sample and two-sample tests based on the
Dyck-path approach and Brownian excursion. Tables 5, 6,7 and 8 tabulate the results.

While the performance of the Dyck path-based tests are acceptable while verifying their attained
level of significance, their power under small samples, say 10-20 trees, is quite poor; this can be seen
from the power at sample size 10 in Table 8. But upon increasing the sample size to 100 or so, there
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Figure 4. Left: 11-node CGW tree with offspring distribution π1/2 and its corre-
sponding normalized Dyck path. Right: 11-node CGW tree with offspring distribution
π1 and its normalized Dyck path.
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Figure 5. Histograms of n−1/2d(root, V ) where V is vertex chosen at random on
10000 CGW trees from π1/2 with number of vertices n = 10, 100 and 1000 (from left).

Solid red curve is the Rayleigh density with scale
√

2.

H0 : π = πσ2 Rejection rate for test of MP test Rejection rate of LR test
10 50 100 10 50 100

π2/3 0.043 0.050 0.049 0.041 0.044 0.052
π1 0.051 0.049 0.046 0.061 0.047 0.049
π1/2 0.046 0.054 0.049 0.057 0.043 0.049
π2 0.047 0.051 0.051 0.049 0.051 0.050

Table 5. Level of one sample UMP and LR tests under H0 based on the Dyck path
method for CGW trees with 1000 vertices each from different offspring distributions.

is marked improvement in the distinguishing power. The fact that the test is based on one randomly
chosen vertex, as opposed to LCA subtrees, is reflected in the its minimal utility in small sample sizes.

6. Discussion

Aldous’ papers on the CRT and variants (see, in addition, Aldous [1994a, 1991b]) provide use-
ful distributional results and connections to common stochastic processes, which in principle can be
harnessed in developing asymptotic statistical tools. The circumscription of our considerations to
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H0 : π1/2 vs H1 : Rejection rate for test of LR test
10 50 100

π2/3 0.262 0.873 0.998
π1 0.197 0.764 0.989
π1 0.441 0.777 0.979
π2 0.631 0.816 1.000

Table 6. Rejection rate under alternative hypothesis when H0 : πσ2 = π1/2 for the
one sample LR test based on the Dyck path method for CGW trees with 1000 vertices
each from different offspring distributions.

π0 = π1 under H0 Level of LR test
10 50 100

π2/3 0.056 0.056 0.047
π1 0.052 0.046 0.053
π1/2 0.057 0.051 0.054
π2 0.050 0.043 0.052

Table 7. Level of two-sample LR test under H0 based on the Dyck path method for
CGW trees from two distributions with 1000 vertices each from different offspring
distributions.

π0 vs π1 under H1 Rejection rate for LR test
10 50 100

π2/3 vs π1 0.258 0.833 0.994
π2/3 vs π1/2 0.169 0.371 0.996
π2/3 vs π2 0.628 0.999 1.000
π1 vs π1/2 0.308 0.939 1.000
π1 vs π2 0.235 0.859 0.994
π1/2 vs π2 0.817 0.993 1.000

Table 8. Rejection rate of two-sample LR test under the alternative based on the
Dyck path method for CGW trees from two distributions with 1000 vertices each from
different offspring distributions.

hypothesis testing for distributions is not a shortcoming of the CRT-based approach; rather, as men-
tioned in the introduction, this article represents a first step in developing inferential procedures on
large tree-structured data. One immediate extension to this work is to approximate distributions of
local tree-functionals by corresponding Brownian excursion functional. For example, the Wiener in-
dex of a tree, popular in phylogenetics and chemistry, is exactly 2

nAn where An is the area under
the curve of the Dyck path of a tree with n vertices. The distribution of An can be approximated
by the distribution of Brownian excursion area which is well-know (albeit difficult to compute); see
Janson [2012] and references therein for details. Other tree functionals whose limit distributions as
Brownian excursion functionals are known include height of a tree, which is the number of generations
before extension, maximal distance between a pair of vertices etc. Preliminary investigations based on
simulations appear promising.

The ‘weak convergence paradigm’ set forth by Aldous wherein properties (global and local) of ran-
dom combinatorial objects likes trees, triangulations, planar maps etc. are studied through continuous
approximations offers a fertile ground for development of statistical methodologies on such objects;
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see Aldous [1994b]. This is an investigative route well worth pursuing in today’s data centric climate
wherein complex data structures, modeled in a combinatorial fashion, is prevalent.

On a modeling note, our statistical characterizations of the trees using CRT admits a full likelihood
based inference using frequentist and Bayesian techniques. For the latter, a particular context of
importance might be regression models that enable modeling of covariate effects on tree-structured
responses. For instance, the offspring variance σ2 can be modeled as a function of covariates through
parametric and non-parametric prior specifications. This might be particularly appealing in applied
contexts where evaluations of systematic variations induced by the covariates are of prime interest.
We leave these tasks for future consideration.

7. Appendix

Proof. Proposition 2. First observe that the density in (3.2) implies that the edge lengths are ex-

changeable: s =
∑k−1
i=1 ei is invariant to permutations of ei. This implies that the actual labeling to

the vertices and the edges has no relevance to the distribution. For ease of notation, let

Ck = Tk × Rk−1+ .

For a tree, τn = (V(τn), E(τn)), with n vertices, we shall consider its LCA tree, LCA(τn, v1, . . . , vk),
constructed from k vertices, chosen uniformly, with k < n. The question of extendability is basically a
question of whether models specified in terms of joint distributions over a class of index sets is projective
as defined in eq. 13, p. 92 of Kallenberg [1997]—this is the basis of our definition of n-extendability.
The probability kernel pk from C1 × · · · × Ck−1 to Ck is defined in terms of the conditional density
(ignoring the normalizing factors)

fσ2

(
LCA(τn, v1, . . . , vk) = ·

∣∣∣LCA(τn, v1, . . . , vk−1)
)
,

which is obtained as

f(LCA(τn, v1, . . . , vk)|LCA(τn, v1, . . . , vk−1)) =
f(LCA(τn, v1, . . . , vk))

f(LCA(τn, v1, . . . , vk−1))

=
s′

s
e−

(s′2−s2)σ2

2 ,

with s = e1 + · · · + ek−1 and s′ = s + ek. By induction on k, we can extend the existence of the
probability kernel pn to Cn with conditional density

f(LCA(τn, v1, . . . , vn)|LCA(τn, v1, . . . , vn−1)) =
s′

s
e−

(s′2−s2)σ2

2 ,

where s = e1 + · · · + en−1 and s′ = s + en. By Theorem 5.17 in Kallenberg [1997], we can assert the
existence of the tree τn with distribution p1 ⊗ · · · ⊗ pn; in other words, the distribution on τn can be
defined via the conditional densities as

f(τn) = f(LCA(τn, v1))f(LCA(τn, v2)|LCA(τn, v1))f(LCA(τn, v3)|LCA(τn, v1, v2))

. . . f(LCA(τn, vn)|LCA(τn, v1, . . . , vn−1)).

Straightforward computation with the conditional densities verifies this fact. If B = {v1, . . . , vk} and
V(τn)−B is the set difference, what should be noted is that

∑

τ∈V(τn)−B

fσ2(τ) =

∫

ek>0

∫

ek+1>0

. . .

∫

en−1>0

fσ2(τ) dek . . . den−1.

The density on the tree is induced by the density of s with respect to the Lebesgue measure. �

Proof. Proposition 3. Suppose B is a Borel subset of Cn = Tn⊗Rn−1+ . Suppose we define a relation ∼
on subsets B1 and B2 of Cn as B1 ∼ B2 if they contain all trees with n vertices; by this we mean that
the “shape” of the tree is disregarded and imply that all trees with n vertices are equivalent. Note
that ∼ is an equivalence relation and the generates the quotient class C∼n = (tn, (e1, . . . , en−1)) with
(e1, . . . , en−1) ∈ Rn−1+ and tn is the canonical tree with n vertices. The Borel sets of C∼n are the usual
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open rectangles generating the Euclidean space Rn−1+ . Note that the law Pσ2 assigns different mass to
distinct elements in C∼. We are hence interested primarily in Borel subsets of C∼ and will restrict our
examination of distinguishability to this equivalence class.

Suppose the null hypothesis H0 is that σ2 ∈ S0 and the alternative H1 is that σ2 ∈ S1 where
S0 ∪ S1 = S and S0 ∩ S1 = ∅. Note that

S =

{
2,

1

2
, 1,

2

3
,

3

4
,

4

5
, . . .

}

is a countable set and consequently, so are S0 and S1. Furthermore the distribution function associate
with Pσ2 , for a tree τn, corresponding to the continuous density fσ2(·)

Fσ2(x1, . . . , xn−1) =

∫ x1

0

. . .

∫ xn

0

fσ2(τ) de1 . . . den

is continuous for each vector (x1, . . . , xn) representing edge lengths. Therefore by part (i) of Theorem
1 in Rao [2000], the proof is complete. �

Proof. Theorem 2.

(1) Simple hypotheses:

The key observation here is that conditional on K, s = (s1, . . . , sN ) where si = e1 + · · ·+ eki ,
is a vector of independent Rayleigh distributed random variables with scale 1/σ. Let us first
perform some calculations in the limit as ni →∞ for each i = 1, . . . , N . Suppose W1, . . . ,WN

are i.i.d R+ -valued random variables from a Rayleigh distribution with scale 1/σ and density

f2σ(w) = σ2we−
w2σ2

2 ,

leading to the likelihood

Lσ2 = (σ2)Nexp

[
−σ

2

2

N∑

i=1

w2
i

]
N∏

i=1

wi.

Consider

Λ =
Lσ2

1

Lσ2
0

∝ exp

[∑N
i=1 w

2
i (σ

2
1 − σ2

0)

2

]
.

By the Neyman-Pearson Lemma (see, p. 60 Lehmann and Romano [2005]), the most powerful
test for testing H0 : σ2 = σ2

0 against H1 : σ2 = σ2
1 , where σ2

1 > σ2
0 is given by the rejection

region

{(w1, . . . , wn) : Λ > Cα}
for a suitable value Cα such that P (Λ > Cα) = α with P denoting the law corresponding to the

Rayleigh density. Note now that Λ > Cα if and only if
∑N
i=1 w

2
i < Cα. It is easy to ascertain

that σ2
∑N
i=1W

2
i follows a Chi-square distribution with 2N degrees of freedom; therefore the

rejection region defined as

{(w1, . . . , wn) : σ2
0

N∑

i=1

W 2
i < Cα,2N},

where Cα,2N is chosen such that P (χ2N > Cα,2N ) = α with χ2N denoting a Chi-square random
variable with 2N degrees of freedom, is of size α. The power function of the test is

(7.1) θ(N,α, σ2) = P
(
σ2

N∑

i=1

W 2
i < Cα,2N

)
,

17



with θ(N,α, σ2
0) = α. For each i = 1, . . . , N , from discussion earlier, we know that LCA(τnij , v1, . . . , vki |Ki =

ki) converges in distribution to L(ki), as ni →∞, with density

fσ2(l(ki)) := fσ2(e1, . . . , eki−1) =



ki−1∏

j=1

1

2j − 1



−1

1

2ki−1
σ2sie

−σ
2s2i
2 .

Note now that a calculation of likelihood ratio for L(ki) using the density above leads to the
exact ratio as Λ. Therefore it is now easy to see that as ni →∞, for every i = 1, . . . , N , and
for every k,

Eπφ(K, N, α, σ2)→ θ(N,α, σ2) ∀σ2 ∈ S,

ensured by the extendability of the class proved in Proposition 2; quite naturally then,

Eπφ(K, N, α, σ2
0)→ θ(N,α, σ2

0) = α.

(2) Composite hypothesis:

If Wi, i = 1, . . . , N are i.i.d. Rayleigh distributed random variables with scale 1/σ, the it

is easy to determine that the MLE of σ2 is σ̂2 = 2N∑N
i=1W

2
i

. The likelihood ratio test, then, is

to reject H0 if and only if

(σ2
0)Ne−

σ20
∑N
i=1 w

2
i

2

(σ̂2)Ne−N
< β

⇐⇒
[
te1−t

]N
< β,

where t =
σ2
0

∑N
i=1 w

2
i

2 for a suitable β. Observe that the function g(t) = te1−t for t > 0; g is
increasing for t < 1 and decreasing for t > 1. Therefore, the likelihood ratio test is equivalent
to rejecting H0 if and only if

σ2
0

N∑

i=1

w2
i < β1 or σ2

0

N∑

i=1

w2
i > β2;

then, β1 and β2 are determined as in part 1 for the Neyman-Pearson test. Using identical
arguments with power function and weak convergence, as in part 1, the proof is complete.

�

Proof. Theorem 3. We will work again in the limiting scenario of the Rayleigh densities. In the
interests of brevity, we refer the reader to the proof of Theorem 2 for arguments concerning the trees—
they follow along identical lines. Suppose X1, . . . , XN1

are i.i.d. from a Rayleigh distribution with scale
1/σ1 and Y1, . . . , YN1

are i.i.d. from a Rayleigh distribution with scale 1/σ2. Under H0 : σ2
1 = σ2

2 = σ2,
the maximum likelihood estimate of σ2 is

σ̂2 =
2(N1 +N2)

∑N1

i=1 x
2
i +

∑N2

i=1 y
2
i

.

The maximum likelihood estimates, in general, of σ2
1 and σ2

2 are, respectively,

σ̂1
2 =

2N1∑N1

i=1 x
2
i

and σ̂2
2 =

2N2∑N2

i=1 y
2
i

.
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Then likelihood ratio is

Λ =
(σ̂2)N1+N2

(σ̂1
2)N1(σ̂2

2)N2

=

(
N1

N2
+ 1
)N1+N2

(
N1

N2

)N1

(
1 +

∑N2

i=1 y
2
i∑N1

i=1 x
2
i

)−N1
(

1 +

∑N1

i=1 x
2
i∑N2

i=1 y
2
i

)−N2

.

Consider now function g(t) = tN2(1 + t)−(N1+N2) for t > 0. Observe that g(0) = 0 and

g′(t) =
tN2−1

(1 + t)N1+N2

[
N2 −

t(N1 +N2)

(1 + t)

]
,

which is positive (negative) for t > (<)N2

N1
, implying that g(t) is increasing (decreasing) for t > (<)N2

N1

. Setting t =
∑N1
i=1 x

2
i∑N2

i=1 y
2
i

, it is the case that t ∼ N2

N1
F2N2,2N1

under H0 where σ2
1 = σ2

2 . �

Proof. Proposition 4. First, we need to establish that law on the Brownian excursion is completely
determined by the law of pu(Bex) for a random u on [0, 1]. For this we use a result from Cuesta-
Albertos et al. [2006]. It can be checked that mk =

∫
||x||kne(de) for k ∈ N, the moments of the scaled

excursion are finite, where ne is the normalized Ito measure of positive excursion of linear Brownian
motion—this is true for every σ2 ∈ S. Now suppose ne1 and ne2 are two excursion measures on R+

and neu1 and neu2 are the randomly projected excursion measures corresponding to the projection pu
where u is uniform in [0, 1]. Consider the set

Eu := {x : neu1 (x) = neu2 (x)}.
Since ne is atomless it is the case that ne(Eu) > 0 for every u. Using the so-called Carleman condition
(see, for instance, p. 19 Shohat and Tamarkin [1943]) and Theorem 2.8 from Cuesta-Albertos et al.
[2006], we can claim ne1 = ne2. The implication of this is that the distribution of the excursion is
fully determined by just one random projection pu for a uniform u in [0, 1].

Before proving distinguishability, we need to ascertain the density ruσ2 of pU
(
2
σB

ex
)

= 2
σB

ex(U)

where U is uniform on [0, 1]. Note that the density of the Brownian excursion 2
σB

ex at time t ∈ (0, 1)
is given by (see Takács [1991])

(7.2) f(t, x) =
x2σ3

4
√

2πt3(1− t)3
e
−x2σ2
8t(1−t) , x > 0.

This implies that

ruσ2(x) =

∫ ∞

0

f(s, x)ds

= σ2xe−
1
2x

2σ2

,

which is a Rayleigh density with scale 1
σ , with continuous distribution function

Ruσ2(x) = 1− e− x
2σ2

2 .

Bearing in mind that ruσ2 completely determines the distribution of 2
σB

ex, from Theorem 1 in Rao
[2000] we have distinguishability. We have omitted details regarding the Borel sets, as detailed in the
proof of Proposition 3, in the interests of brevity. �

Proof. Proposition 5. Let Hn be the Dyck path corresponding to τn. Then, d(root, V ) is distributed
as Hn(2nV ). Since for 0 ≤ s ≤ 1, n−1/2Hn(2ns) converges weakly in C[0, 1] to Bex(s), we can claim

that n−1/2d(root, v)
d→ Bex(v) on the set {V = v}. Using (7.2), we can ascertain the unconditional

density of Bex(V ) as

r(x) =

∫ ∞

0

f(s, x)ds,
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since V is uniform on [0, 1]. Note that the map Bex 7→ Bex(V ) is a one-dimensional random coordinate
projection, and is clearly continuous on C[0, 1] with respect to the uniform norm. Using the continuous

mapping theorem (see Billingsley [1968]), d(root, V )
d→ 2

σB
ex(V ), which follows a Rayleigh distribution

as described in the proof of Proposition 4. �

7.1. Computing notes. In this section, we provide details on the parallel and high-performance sim-
ulation platform that we used for our experiments; this software has been open-sourced on GitHub
(www.github.com/pkambadu/DyckPaths) under a BSD-style license. Our implementation is written in
C++ and makes use of the Boost Graph library (Schling [2011]) to represent trees, the Boost options
library (Schling [2011]) to parse command line options, the Boost random library (Schling [2011]) to
generate various distributions, and OpenMP for parallelism and therefore, its dependencies. Our code
can be compiled and run on any operating system that has a C++ compiler (with or without OpenMP
support) as long as the above mentioned Boost libraries have also been installed; we have tested our
implementation on Darwin 10.7 using GCC 4.2.1 and Ubuntu Linux 2.6.31-23-server using GCC 4.4.1.

Generating CGW trees with given offspring distribution
In order to generate a CGW tree τn with offspring distribution πk based on the algorithm in Devroye
[2012], it is required to generate a vector Ξ = (ξ1, . . . , ξn) where ξi are independent copies from π;
subsequently, we are required to rotate Ξ to ensure that

∑n
i=1 ξi = n − 1. We shall describe the

construction of the CGW tree with unit edge lengths. Such a setup implies that (see Devroye [2012]):

(1) Ξ is a multinomial random vector with success probabilities determined by πk;
(2) Elements of Ξ are bounded between 0 and n− 1.

Once the vector Ξ has been generated, it is then required to shuffle it to ensure that
∑n
i=1 ξi = n− 1.

The first n0 entries of Ξ contain 0, the next n1 entries contain 1’s, and so on. We first impart random
structure to the CGW tree represented by Ξ by a random shuffling or permutation of Ξ. We then
need to rotate Ξ to ensure that a Depth First Search (DFS) traversal will cover all the n nodes. As an
example, suppose following the shuffling we are left with Ξ = [0, 0, 1, 2]. Our DFS based construction
algorithm would assign 0(ψ[0]) children to the root node, thereby terminating the tree generation.
For this Ξ to be valid for our tree construction, we have to rotate to get Ξ = [1, 2, 0, 0]. The index
i, 1 ≤ i ≤ n at which Ξ has to be rotated is given in Devroye [2012]. Given a properly constructed,
shuffled and rotated Ξ, construction of the CGW tree is achieved by a DFS based algorithm that
is best illustrated through the use of an example. Consider Ξ = [2, 1, 0, 3, 0, 0, 0]; when augmented
with the index information, ψ =

[
1
2 ,

2
1 ,

3
0 ,

4
3 ,

5
0 ,

6
0 ,

7
0

]
; here, the numerator denotes the node-ID and the

denominator denotes the number of children (out-degree) of the node. We start by considering node
1 as the root of the CGW tree; in our example, node 1 has an out-degree of 2. Therefore, we mark
nodes 2 and 3 as the children of 1 and connect them in our tree. As we explore in DFS-order, we next
consider node 2, which has 1 child; as the next unmarked node is 4, we connect 4 to be 2’s child. Next,
we explore 4, which has 3 children; therefore, we allocate 5, 6, 7 as 4’s children and connect them. Next
we explore nodes 5, 6, and 7, each of which has 0 children before returning to node 3, which also has 0
children. This completes our tree construction, which is shown in Figure 6. Notice that in addition to

4 BRIEF ARTICLE

1
0

2
00

3
01

4
000

5
000

6
001

7
002

1 1

1

1
1

1

Figure 1. The graph constructed for ψ =
[
1
2 ,

2
1 ,

3
0 ,

4
3 ,

5
0 ,

6
0 ,

7
0

]
using DFS-

visit. Also shown is the DFS-label for each node starting from the root (0);
the left-most child appends a 0 to it’s parent’s DFS-label to form it’s own
label, it’s right sibling appends a 1, and so on.

with illustration in Figure 2, which represents the Dyck path for the CGW tree in Figure 1.
Consider creating two arrays x and y, which contain the (xi, yi)∀i ∈ [1, 2N − 1] give the
coordinates of the Dyck path. Clearly, there are 2N − 1 entries in x and y as there are
N − 1 edges, each of which is visited twice; the additional entry comes from starting and
ending at the root node. When a node is either discovered or finished, we increment x
by 1 (that is, xi = xi−1 + 1) as the x-axis is monotonically increasing. When a node is
discovered, we increment the y-axis by 1 to indicate a gain in height (that is, yi = yi−1+1).
Alternately, if the event is node-finish, we decrement the y-axis by 1 to indicate a loss in
height (that is, yi = yi−1 − 1). Note that when we have weighted CGW trees, the y-axis
increments are decrements are not by 1, but by the weight of the incoming edge incident
on that node. Similarly, when dealing with weighted CGW trees, x-axis increments are
made such that the slope of any continuous line segment is 45o.

0.1.3. Constructing an LCA tree from a CGW tree. Part of our experiment consists of
constructing an LCA tree from a given CGW tree and a subset of nodes that are sampled
from the CGW tree. To formalize, let T = (V,E) represent our CGW tree, with vertex
set V and edge set E. Let V ′ represent a small subset of vertices of V that includes the
root. Given (T, V ′), the goal of the LCA algorithm is to construct a minimum path tree
Tnew that contains all the vertices of V ′ and some additional LCA vertices; that is, we
augment V ′ with additional LCA vertices. Notice that in the worst case, after running
our LCA algorithm, V ′ = V . The LCA of two nodes (v1, v2) in a tree is a node that is
the lowest among the common ancestors of v1 and v2; the caveat is that the LCA of two
nodes can be one of the nodes themselves as each node is it’s own ancestor. The algorithm

Figure 6. The graph constructed for ψ =
[
1
2 ,

2
1 ,

3
0 ,

4
3 ,

5
0 ,

6
0 ,

7
0

]
using DFS-visit with

the DFS-label for each node starting from the root (0);
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constructing the tree, a DFS-label is generated for every node starting from the root (0); the left-most
child appends a 0 to it’s parent’s DFS-label to form it’s own label, it’s right sibling appends a 1, and
so on. This DFS-label is useful in finding the LCA of two nodes in a CGW tree.
Constructing LCA trees
Let T = (V,E) represent our CGW tree, with vertex set V and edge set E. Let B represent a subset
of vertices of V that includes the root. Given (T,B), the goal of the LCA algorithm is to construct a
minimum path tree Tnew that contains all the vertices of B and some additional LCA vertices; that
is, we augment B with additional LCA vertices. Notice that in the worst case, after running our LCA
algorithm, B = V . The LCA of two nodes (v1, v2) in a tree is a node that is the lowest among the
common ancestors of v1 and v2; the caveat is that the LCA of two nodes can be one of the nodes
themselves as each node is it’s own ancestor. The algorithm to compute the LCA is rather simple:

(1) Let Vnew represent the list of vertices B plus the LCA vertices that augment B — initialize
this list to Vnew = B;

(2) For each pair of vertices (v1, v2) ∈ B, compute vLCA, the LCA of (v1, v2) and add it to Vnew;

there are
(
#B
2

)
such vertex pairs;

(3) Construct the LCA tree Tnew by joining the vertices in Vnew using the edge information in T ;
specifically, when connecting vertices that originally had an intermediate vertex between them
in T , augment the new edge to include the weights of the edges that were skipped in T .

We now turn our attention to efficient computation of vLCA = LCA(v1, v2). Notice that we label
each of the vertices in T with their DFS-label (see Figure 6). This DFS-label can be used directly to
determine the LCA; the LCA of (v1, v2) is the longest common prefix of the labels of v1 and v2. For
example, consider the nodes 3 and 5 in Figure 6, which have the labels ‘01′ and ‘000′, respectively.
The longest common prefix is ‘0′, which points to vertex 0, which also is the LCA of 3 and 5. As we
store the DFS-label of each node succinctly as a string, we are able to quickly find the LCA using the
std::mismatch algorithm, which returns the first position of mismatch in the two DFS-labels.

Parallel execution
The basic control structure of our simulations is: (a) generate a large number of CGW trees; (b)
compute local statistics on each CGW tree; and (c) combine the local statistics to make inferences. As
mentioned earlier, generating a single tree is expensive and may potentially incur many failed attempts
before success. Therefore, we parallelize the simulation framework by parallelizing step (b) above us-
ing OpenMP; that is, multiple trials of the experiments are run simultaneously when possible and
combined with care to ensure consistency. Given that most of the computing hardware has inherent
parallelism in the form of multi-cores and multi-sockets, our approach results in linear speedups (w.r.t
number of computational resources) in throughput. Notice that parallelizing step (a) is hard both
because of the sequential dependency in generating Ξ from the multinomial distribution and because
our current random number generators are not thread-safe. However, as we conduct thousands of
experiments, we are able to fully utilize clusters with similar processor counts; that is, parallelizing
step (a) is not necessary.
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