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Abstract—Stability studies are a crucial part of the design
of power electronic systems, especially for safety critical ap-
plications. Standard methods can guarantee stability under
nominal conditions but do not take into account the multiple
uncertainties that are inherent in the physical system or in the
system model. These uncertainties, if unaccounted for, may lead
to highly optimistic or even erroneous stability margins. The
structured singular value-based µ method justifiably takes into
account all possible uncertainties in the system. However, the
application of the µ method to power electronic systems with
multiple uncertainties is not widely discussed in the literature.
This work presents practical approaches to applying the µ
method in the robust stability analysis of such uncertain systems.
Further, it reveals the significant impact of various types of
parametric uncertainties on the reliability of stability assessments
of power electronic systems. This is achieved by examining the
robust stability margin of the dc/dc buck converter system,
when it is subject to variations in system load, line resistance,
operating temperature and uncertainties in the system model.
The µ predictions are supported by time domain simulation and
experimental results.

Index Terms—Robust stability analysis, dc/dc buck power
electronic converter, Linear fractional transformation, Structured
singular value, µ analysis.

I. INTRODUCTION

TRANSPORT accounts for nearly two thirds of the global
crude oil consumption and about a quarter of carbon

dioxide emissions [1]. In order to address the issues of energy
security and greenhouse emissions, a shift towards more

electric-intensive architectures of transportation system such as
land vehicles, aviation and ships is not only needed but seems
inevitable. This implies a partial to complete electrification
of transport modes, which are referred to as “more electric”
transport (MET) [2]. Power electronics (PE) lies at the heart
of this technology transition. Yet, the susceptibility of power
electronic systems to instability remains an important issue
that needs attention [3], [4], [5], [6]. Finding an answer
to this problem is crucial, particularly for safety critical
applications. System stability may be assessed at both the
small and large signal level. Lyapunov theory of stability is
generally employed to estimate large signal stability regions
of the system [7]. This work focusses on small-signal stability
analysis, which is one of the important concerns in the reliable
operation of the system [4], [5], [8].

While power electronic technology is fast evolving, the
methods that are widely employed to assess the small-signal
system stability are mostly based on classical techniques.
These include the eigenvalue approach and impedance meth-
ods based on Nyquist stability criterion [9], [10]. Since clas-
sical methods work on the nominal model of the physical
system, the outcome of the stability assessment is heavily
dependent on the quality of the system model [3], [11]. The
model may be refined to great detail by matching its response
to that of the physical system. Yet, in practice, excessive model
refinement is unlikely to be viable or practical. Further, the
exact values of system components may not be known accu-



rately. For instance, system parasitics, often hard to quantify,
can have a significant influence on the quality of the model.
The power supply and external filters, to be connected on site,
may be unknown at the design stage. This may significantly
alter the impedance of the power stage. Hence, the nominal
system is bound to contain model uncertainties. From another
perspective, even though a nominal model is deemed to be
accurate, it may not truly represent the actual system, which is
generally subject to various operating conditions uncertainties.
Electrical power systems may be exposed to large variations in
their loads. In aerospace applications power electronic systems
may be exposed to temperatures typically ranging from -40
oC to 125 oC [12]. In practice, PE systems may be subject
to the aforementioned types of uncertainties that are normally
not accounted for by classical techniques. In order to keep
pace with evolving technology in power electronics, there is
a need to adopt new analysis techniques that duly incorporate
uncertainties inherently present in the system. The structured
singular value (SSV) based µ method is a robust stability
analysis tool that justifiably takes into account all possible
system perturbations. This work focuses on parametric uncer-
tainties [13], [14]. Recent works [15] and [16] demonstrate the
effect of parametric uncertainties on the stability of PE-based
systems.

Classical methods, that are designed for single-input-single-
output systems, can include multiple uncertainties in stability
analysis. For instance, the authors in [17] have incorporated
uncertainties in the application of the classical impedance-
based energy source analysis consortium method. However,
the process involves extensive parameter iteration and system
linearisation. In addition, the eigenvalue method is applied in
combination with probabilistic stability method such as the
Monte Carlo simulation [18], [19]. However, when such clas-
sical methods are applied to multi-input multi-output (MIMO)
systems, there is no guarantee that all possible combinations of
uncertainties acting on the system can be evaluated to identify
the most critical scenario with respect to stability [18], [20],
[21]. The results may not always be reliable. Conversely, the µ
method is a robust, reliable and deterministic approach that can
be employed to incorporate uncertainties in stability analysis
of MIMO systems [14], [22], [23], [24]. Further, it does not
involve a laborious iterative process. In contrast with classical
techniques based on Nyquist stability criterion, the µ method
provides a direct and explicit measure of the robust stability
margin as a percentage of the maximum change that is allowed
in an uncertain parameter for the system to remain stable.
Despite the aforementioned advantages, a major drawback of
the µ method is that µ cannot be computed as an exact value
particularly for large size problems, since the computational
burden increases exponentially with the size of the problem.
A lower bound and an upper bound are calculated instead of
its exact value. It has been reported in the literature that the
method can be computationally expensive for the analysis of
complex systems with a large number of uncertainties [25],
[26]. However, a number of algorithms has been developed
to reduce the gap between the µ bounds while maintaining
reasonable computational time [25], [27], [28], [29]. Tools
to optimise state space system models and model reduction

methods may be employed to decrease the computational
burden [30].

Although the strength of the µ tool lies in the fact that it
can be applied to system models with multiple uncertainties,
the benefits of this powerful feature have been utilised or
examined in a limited number of studies [21], [31]. This may
be due to a few limitations that tend to make the approach
hard to apply. First is the complexity of the underlying µ
theory. Although a great amount of literature is devoted to the
theoretical framework, certain key aspects of the µ method
are not examined from an engineering viewpoint, particularly
when treating multiple uncertainties [13], [32]. Further, the
methodology required to practically apply the µ tool to PE
systems subject to single and multiple uncertainties is not
widely discussed in the literature. In addition, the µ method is
generally applied to linear systems while most systems anal-
ysed have nonlinear behaviour. A few works in the literature
have successfully applied the µ method to analyse stability
of conventional power systems [33], [34], [35], [36], [37],
[38]. However, the methodology applied through associated
software is not discussed and multiple uncertainties are not
considered. Certain works such as [25], [39] have treated the
practical aspects of the µ approach in good depth. While the
results are clearly examined, the method employed are not
presented in a manner that is comprehensive enough to reapply
them to other systems. Other works related to the µ approach
deal with µ sensitivity or the design of a robust controller as
opposed to the robust stability of PE systems [18], [40], [41],
[42], [43].

In order to make the µ approach more application-friendly
and to fully realise the benefits of the method, the current
work addresses the aforementioned limitations of the µ tool.
First, it presents practical approaches to apply the µ tool
to a PE system subject to single and multiple uncertainties.
In [44], the methodology to apply the µ tool to determine
the robust stability margin of a dc/dc buck converter subject
to uncertainty in load and operating temperature is pre-
sented. This work extends the practical application of the
µ tool to assess the robust stability of the aforementioned
dc/dc buck converter system when it is subject to multiple
uncertainties in the nominal system model. It shows how
model uncertainties, which may be known to different level
of accuracy, can be incorporated in robust stability analysis
of the system, without compromising the reliability of the
results. For the purpose of demonstrating how the µ tool
supports a possible trade-off between accuracy and simplicity
in the system model, this work evaluates the robust stability
of the experimentally-refined model of the system under study
against that of its approximate system model. As discussed
earlier, this is particularly relevant to the design engineer
who, in practice, may not have sufficient information of the
exact values of all system components. Secondly, this work
applies the modelling methodology, developed and presented
in [45], [46], to convert the nonlinear model of the dc/dc buck
converter under study into an equivalent linear model that is
suited for µ analysis. The modelling method is based on the
symbolic linearisation about an arbitrary operating point, and
also caters for dependences of operating points on parameter



variations. In contrast, the work in [21] does not take into
account dependences of operating points on uncertainties in
system parameters. In addition, this work demonstrates the
significance of the robust stability measure µ for a practical
PE system subject to multiple parametric uncertainties. In [47],
the authors demonstrate the usefulness of µ by presenting the
concept of the hypercube. It has been demonstrated that a
system subject to N parametric uncertainties is guaranteed
robustly stable within a hypercube of dimension N and of
coordinate size 1/µ, centred about a nominal point [25], [47].
This work applies the hypercube concept to demonstrate the
significance of the µ results for the practical dc/dc buck
converter system under investigation when it is subject to
both single and multiple parametric uncertainties. The paper
also gauges the impact of uncertainties on the reliability of
stability assessments, and consequently call for the adoption
of robust tools in the stability analysis of PE systems for
MET applications. Experimental validation of the µ results
is provided for the buck converter system under a single
parametric uncertainty and then when it is exposed to an
additional parametric uncertainty. Time domain simulations
are used to evaluate the µ predictions for the analysed system
when it is subject to multiple parametric uncertainties.

II. THEORETICAL FRAMEWORK

A great advantage of the µ approach is that it works with the
uncertain system model as opposed to the nominal model [14],
[22], [23], [24]. An uncertain system model considers not only
nominal values of the system parameters but also the possible
range of parameter changes. In order to analyse stability of
uncertain systems, the principle of structured singular value
(µ) can be used. Prior to applying µ analysis, the system
must be expressed in the linear fractional transformation (LFT)
form [13], [23]. The aim is to verify that a system remains
stable for all conditions that may arise within the defined
uncertainty set, in which case it is said that the system is
robustly stable.

LFT is a modelling technique which is employed to “pull
out” the indeterminate part from the known part of a system
model and place it in the feedback form. If a general uncertain
parameter P is considered to be bounded in the region [Pmin,
Pmax], it may be represented in its normalised form δP
bounded within [−1, 1]. The parameter P can be modelled
as an LFT in δP in the expression (1) and in the matrix form
in Fig. 1a [14], [48], where the input and output signals of the
parameter are denoted as usp and ysp respectively, while u∆p

and y∆p denote the output and input of δP [14], [39].

P = Po + PoPvarδP , δP ∈ [−1, 1] (1)
where Po = (Pmin + Pmax)/2

and Pvar =
(Pmax − Pmin)

2
/

(Pmax + Pmin)

2

The model of an entire system with parametric uncertainties
can also be represented in the LFT form as shown in Fig. 1b
and in the general LFT equation in (2) [23], [49]. The diagonal
uncertainty matrix ∆ as shown in Fig. 1b contains the set of

uncertainties in their normalised form, that have been extracted
from the uncertain system model.

u∆py∆p
ysp usp

0 Po 

Pvar Po 

δP

(a)

u∆y∆
ys us

N11 N12 

N21 N22 

∆

(b)

Fig. 1: (a) Uncertain parameter P as an LFT (b) General
uncertain system model N∆ as an LFT

Fu(N,∆) =
ys
us

= N22 +N21∆(I −N11∆)−1N12 (2)

Referring to the general LFT expression (2), it can be
seen that the only source that can cause the system N∆ to
become unstable is the feedback term (I − M∆)−1 where
M = N11 [23]. The stability of the whole system therefore
rests on the stability of the subsystem (I−M∆)−1. The robust
stability condition for structured uncertainties is given by the
structured singular value (SSV), as defined in (3).

µ∆(M) =
1

min[σ̄(∆) : det(I −M∆) = 0,∆ structured]
(3)

The structured singular value, commonly denoted as µ,
identifies the smallest perturbation matrix (∆) that desta-
bilises the system. Thus, the SSV theory gives necessary
and sufficient conditions for stability robustness [13]. For the
identified smallest perturbation matrix (∆), the system poles
are at the imaginary axis [14], [22]. If µ is less than 1, the
system is guaranteed to be stable for the entire uncertainty
set. Further, as metioned earlier in this work, for a system
subject to N parametric uncertainties, µ provides the largest
hypercube of dimension N , centred about the nominal point
and of coordinate size 1/µ, within which the system can be
guaranteed robustly stable. 1/µ is a measure of the robust
stability margin of the system [25], [45].

Since, it is generally hard to compute the exact value of µ, a
lower and an upper bound to µ are calculated. The concept of
the µ bounds is illustrated in Fig. 2. A lower bound µ

¯
(which

is also the upper bound of the robust stability margin) provides
a sufficient condition of the instability of the system for the
model perturbation ∆ = 1/µ

¯
[25]. On the other hand, the

upper bound µ̄ (which is also the lower bound of the robust
stability margin) provides a sufficient condition that guarantees
stability of the system for all perturbations that are smaller than
1/µ̄ [25].

Although, µ
¯

is not guaranteed to be equal to µ, it is always
computed at the boundary of stability [28]. Further, µ

¯
yields

the worse case perturbation model for a system [28]. On the
other hand, the upper bound µ̄ is generally higher than µ and
tends to be conservative. The worse ratio of µ/µ̄ has been
reported to be equal to 0.85 while in most cases the ratio is
close to unity [14]. The lower bound µ

¯
is therefore generally
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Fig. 2: Representative figure to illustrate µ bounds and robust
stability margin

close to µ [29]. For the aforementioned reasons, the lower
bound µ

¯
is used as a good estimate of µ in this study.

III. SYSTEM MODELLING FOR µ ANALYSIS

The electrical network of the MET will consist of a
large number of power electronic converters. A typical sub-
distribution system in the MET architecture can be represented
by a source feeding power through a distribution line and an
input filter to a power electronic interfaced load. The buck
converter system, as shown in Fig. 3, has been chosen as a
representation of the aforementioned sub-distribution system.
The general modelling method, proposed in [45], [46], is used
in this work to convert the nonlinear buck converter system
model into an equivalent linear model, which is valid for
µ analysis over a range of operating points and parameter
variations. The method is based on symbolic linearisation
around an arbitrary equilibrium point. All elements in the
system model are explicitly expressed in terms of definable
system parameters and input only, and for instance not in
terms of indeterminate equilibrium states. The method, not
being the focus in this study, is not emphasised in this work.
The reader is referred to [45], [46] for more details. Further,
in this work, a modular modelling approach is used in that the
small-signal ac models of the power stage and the controller
are built separately and then combined to yield the complete
linear time invariant model of the closed loop converter, as is
presented in the rest of this section [40], [50], [51], [52].

A. The experimental buck converter

The experimental closed loop buck converter, that is used
in this study, is depicted in the circuit model in Fig. 3. The
power stage is made up of an inductor-capacitor (LC) input
filter and the open loop buck converter [50] . The U3825
PWM controller consists of a Type III analogue compensator
and a modulator [53]. The sawtooth generator of the mod-
ulator generates a sawtooth waveform of peak voltage (Vpp)
measured as 3.52 V . The modulation gain fm is given by
1/Vpp and is equal to 0.284 [54]. The switching frequency has
been measured as 51.2 kHz. The small-signal ac model of the
closed loop controlled buck converter, which is illustrated in
Fig. 3, is developed in the subsequent subsections. The system
parameters are defined as “initial” parameters in Table I.
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Fig. 3: Circuit representation of the closed loop controlled
buck converter with input filter

B. Power stage model

The buck converter has two operating modes over one
switching period. Equations (4) and (5) describe the dynamics
of the power stage when the switch is on and off respectively.
The parameters in (4) - (5) are shown in Fig. 3 and described
in Table I.

On-state period :

dig
dt

= (vg − igRin − vcin − (ig − il)Rcin)/Lin

dvcin
dt

= (ig − il)/Cin

dil
dt

= (vcin + (ig − il)Rcin − (vo + ilRlon))/L

dvc
dt

= (il − vo/R)/C

vo(t) = (Rcil + vc)(R/(Rc +R))

(4)

Off-state period :

dig
dt

= (vg − igRin − vcin − igRcin)/Lin

dvcin
dt

= ig/Cin

dil
dt

= (−vd − vo − ilRld)/L

dvc
dt

= (il − vo/R)/C

vo(t) = (Rcil + vc)(R/(Rc +R))

(5)

where Rlon = Rl +Ron, Rld = Rl +Rd,

The averaging modelling method is applied.
Equations (4) and (5) are firstly represented as the
state equations (6) and (7) respectively, with state
vectors x(t): [ig(t), vcin(t), il(t), vc(t)], input vector



u(t): [vg(t),vd(t)] and output vector y(t): [vo(t)].

dx(t)

dt
= A1x(t) +B1u(t), y(t) = E1x(t) + F1u(t) (6)

dx(t)

dt
= A2x(t) +B2u(t), y(t) = E2x(t) + F2u(t) (7)

Then, averaging (6) and (7) over a switching period pro-
duces the system model as given by (8). This is based on the
duty cycle d(t) during the on-state period and d′(t) = 1−d(t)
during the off-state period.

dx(t)

dt
= [d(t)A1 + d′(t)A2]x(t) + [d(t)B1 + d′(t)B2]u(t)

y(t) = [d(t)E1 + d′(t)E2]x(t) + [d(t)F1 + d′(t)F2]u(t)
(8)

The averaged model (8) is nonlinear as it involves the
multiplication of time varying quantities. In order to obtain
the linear small-signal ac model of the system, the averaged
model must be linearised about a dc steady state operating
point. To that end, the variables in (8) are firstly expanded in
terms of their dc and ac components. The averaged state vector
x(t), input vector u(t), output vector y(t) and duty cycle d(t)
are expressed in terms of their dc steady state values X , U , Y
and D with superimposed small ac variations x̂(t), û(t), ŷ(t)
and d̂(t) respectively as shown in (9). It can be shown that
d̂(t) = −d̂′(t).

x(t) = X + x̂(t), u(t) = U + û(t)

y(t) = Y + ŷ(t), d(t) = D + d̂(t)
(9)

After substituting (9) in (8) and collecting common terms,
the averaged state space model can be written as (10) and (11).

d(x̂(t))

dt
= AX +BU

+Ax̂(t) +Bû(t) + ((A1 −A2)X + (B1 −B2)U)d̂(t)

+ (A1 −A2)x̂(t)d̂(t) + (B1 −B2)û(t)d̂(t)
(10)

Y + ŷ(t) = EX + FU

+ Ex̂(t) + Fû(t) + ((E1 − E2)X + (F1 − F2)U)d̂(t)

+ (E1 − E2)x̂(t)d̂(t) + (F1 − F2)û(t)d̂(t)
(11)

The averaged model in steady state corresponds to the dc
terms in (10) and (11) and is given as (12).

0 = AX +BU, Y = EX + FU (12)

where A = A1D +A2D
′, B = B1D +B2D

′

E = E1D + E2D
′, F = F1D + F2D

′

D′ = 1−D

The equilibrium state can be computed as (X = −BUA−1)
with U = [Vg, Vd]T based on (12).

Symbolic linearisation of the averaged model about the
quiescent dc point, given by (12), involves neglecting the
second order nonlinear terms in (10) - (11) as they are very

small in magnitude when compared to the linear terms. The
resulting linearised small-signal ac model, in symbolic form,
is obtained as (13) - (14) in its full form.

dîg(t)

dt
=
−(Rcin +Rin)

Lin
îg(t)− 1

Lin
v̂cin(t)

+
DRcin

Lin
îl(t) +

1

Lin
v̂g(t) + p1d̂(t)

dv̂cin(t)

dt
=

1

Cin
îg(t)− D

Cin
îl(t) + p2d̂(t)

dîl(t)

dt
=
DRcin

L
îg(t) +

D

L
v̂cin(t) +

q

L
îl(t)

− R

L(R+Rc)
v̂c(t) +

D − 1

L
v̂d(t) + p3d̂(t)

dv̂c(t)

dt
=

R

C(R+Rc)
îl(t)−

1

C(R+Rc)
v̂c(t)

(13)

v̂o(t) =
RcR

Rc +R
îl(t) +

R

Rc +R
v̂c(t) (14)

where k1 = R+Rl +Rd +D2(Rin −Rcin)

+D(Rcin −Rd +Ron)

k2 =
RRc

R+Rc
, k3 = DVg + (D − 1)Vd

k4 = (R+Rl +Rd)Vg +DRinVd +DRcinVg

+D(Ron −Rd)Vg −D2(RcinVg +RinVd)

p1 =
Rcink3

Link1

p2 = − k3

Cink1

p3 =
k3(Rd −Rcin −Ron)

Lk1
+

k4

Lk1
+
DRcink3

Lk1
+
Vd
L

C. Controller model

The transfer functions of the compensator and modulator,
shown in Fig. 3, can be written as (15) and (16) respectively.

Gc(s) =
vcom(s)− vref (s)

vref − vo(s)

=
k(s+ wz1)(s+ wz2)

s(s+ wp2)(s+ wp3)
(15)

d(s) = fm(vcom(s)− voff (s)) (16)

where k =
(R1 +R3)

R1R3C3

wz1 =
1

C1R2
, wz2 =

1

C2(R1 +R3)

wp2 =
1

C2R3
, wp3 =

(C1 + C3)

C1C3R2

Based on the above transfer functions, the state equa-
tions of the small-signal ac model of the controller can
be obtained as (17) and (18) respectively with state vector



x̂(t): [x̂5(t), x̂6(t), x̂7(t)], input vector û(t): [v̂ref (t),v̂off (t)]
and output vector ŷ(t): [d̂(t)].

˙̂x5(t) = −(wp2 + wp3)x̂5(t)− wp2wp3x̂6(t)

+ v̂ref (t)− v̂o(t)

˙̂x6(t) = x̂5(t)

˙̂x7(t) = x̂6(t)

(17)

d̂(t) = m1x̂5(t) +m2x̂6(t) +m3x̂7(t)

+ fmv̂ref (t))− fmv̂off (t) (18)

where m1 = fmk, m2 = fmk(wz1 + wz2),

m3 = fmkwz1wz2

D. Closed loop controlled converter model

At this point, the power stage and controller models,
derived in the earlier sections, can be combined to yield
the small-signal ac model of the closed loop controlled
buck converter. The process involves replacing v̂o(t) in
(17) with expression (14), and d̂(t) in (13) with expres-
sion (18). The resulting state space model has state vector
x̂(t) = [̂ig(t), v̂cin(t), îl(t), v̂c(t), x̂5(t), x̂6(t), x̂7(t)], input
vector û(t) = [v̂g(t), v̂d(t), v̂ref (t), v̂off (t)] and output vector
ŷ(t) = v̂o(t), and is shown in (20), in the form ( A B

E F ).
All elements in the system model (20) must be expressed

as functions of definable system parameters and inputs only.
Hence, the duty cycle D in (20) is expressed in terms of
determinate elements by solving the quadratic equation (19)
which is based on the equivalent steady-state model of the
buck converter in Fig.4. This modelling step serves to cater
for system nonlinearities in the system model (20).

D2Vo
Rin

R
+D[−Vg − Vd + Vo

(Ron −Rd)

R
]

+ [Vd + Vo
(R+Rd +Rl)

R
] = 0 (19)

Further, all elements in the developed model must be in
their rational forms in order to allow conversion of the system
model to its corresponding LFT configuration. The duty cycle
D in (13), which is obtained as a solution to (19), is irrational
and is therefore approximated by a polynomial expansion.
Fig. 5 shows the rational zeroth, first and second order Taylor
series expansions of duty cycle D about the nominal operating
point. Of note is that the nominal resistive load is 2.5 Ω as
given in Table I, and the zeroth order Taylor approximation of
the duty cycle is 0.2768. Although the second order Taylor
series provides the best approximation, as can be seen in
Fig. 5, the first order approximation is used in this section
of the work, not to unnecessary increase the computational
complexity.

It is to be added that all the elements of the developed
model are rational, in symbolic form and expressed in terms of
system parameters and system inputs only. The system model
(20), referred to as the linear equivalent model of the buck
converter, is suited for µ analysis over a range of operating
points and parameter variations [45], [46].
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Fig. 4: Model of the buck converter in steady state
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IV. SYSTEM MODEL REFINEMENT OF THE EXPERIMENTAL
PROTOTYPE

The system model of the experimental buck converter shown
in Fig. 3 has been built in Simulink R© environment. One of the
initial objectives of the study was to obtain the refined system
model of the experimental prototype to predict the behaviour
of the system such as borderline stability with fairly good
accuracy. The procedure for refining the system model is done
in three main stages, as described in this section.

A. Initial system model

The first step consists in defining the initial average model
of the buck converter under study based on available data and
nameplate information, as defined under “the initial parameter
values” in Table I. Many of these parameter values can be
further refined to increase model fidelity.

B. Individual system components models

The second step of the process models individual system
components through experimental measurements. It has been
shown that non-idealities such as parasitic resistances in wiring
and power supply, the equivalent series resistance (ESR) of
the capacitors and inductors as well as, the voltage drop
in the diode and the on-resistance of the switch transistor
have significant impact on the accuracy of the model. The
experimental measurements of a few system components are
described below.

The output impedance of the power supply has been mea-
sured when connected to different loads and set to differ-
ent voltages, as shown in Fig. 6. A network analyser has
been employed to obtain the dynamic measurements [50].
The best estimate of the experimental measurements of the
power supply impedance, through curve fitting, is found to
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(20)

be 47e−3 + s1.8−6. From these measurements, the equivalent
series resistance (ESR) and inductance of the power supply
are estimated at 47 mΩ and 1.8 mH respectively.
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Fig. 6: Output impedance of power supply estimated through
curve fitting of experimental measurements

The input filter inductance and capacitance have been mea-
sured by means of an impedance analyser. The measurements
are depicted in Fig. 7 and 8 respectively. The filter inductance
is estimated at 510 mH and after deducting the resistance
of the cables used for the measurements of 70 mΩ, the ESR
is estimated as 60 mΩ, as shown in Fig. 7. The input filter
capacitance and ESR are estimated at 95 µF and 95 mΩ
respectively, as depicted in Fig 8. It is to be noted that although
second order polynomials provide better approximations, es-
pecially at high frequencies, the first order approximation
has been selected as it provides sufficient accuracy without
unnecessarily complicating the model.

C. Refined system model

The last step consists first of experimentally measuring the
converter transfer functions, such as the loop gain T , the input
impedance Zi and the output impedance Zo, by means of a net-
work analyser [50]. The experimental measurements are then
compared with the corresponding transfer functions obtained
from the simulation model. The individual component model
and the system model are refined and adjusted iteratively until
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Fig. 7: Input filter inductance including measuring cable
resistance estimated through curve fitting of experimental
measurements
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Fig. 8: Input filter capacitance estimated through curve fitting
of experimental measurements

a good match is obtained. Fig. 9 and 10 depict the loop
gain and the input impedance of the converter obtained from
both experiments and the updated simulation model. These
measurements have been made without the input filter inductor
and with a load of 1.6 Ω. The simulation model transfer
functions match the experimentally observed behaviour of the



converter to good accuracy.
Through the process of model refinement, the “initial”

values of the system components have been fine-tuned to their
final values, as given by the “refined” values in Table I. The
“refined” parameter values in Table I are used as nominal
values for the equivalent system model (20) in µ analysis
and to run simulations in Simulink R© for the case studies
in sections V, VI and VII. The “initial” parameter values in
Table I are used as nominal values for the case studies in
section VIII.
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Fig. 9: Validation of simulation model loop gain against
experimental measurements of loop gain
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Fig. 10: Validation of simulation model input impedance
against experimental measurements of input impedance

V. LOAD UNCERTAINTY

In this section, µ analysis is applied to determine the critical
resistive load R that destabilises the system as shown in Fig. 3.
In this analysis, referred to as case study 1.1, the only uncertain
parameter is load R that can vary around its nominal value by
±50% (i.e Rvar = ±50% as defined in (21) to (23) and Table
II). The other system parameters are assumed to be constant
with nominal values given as the “refined” values in Table I.

A. µ analysis

Prior to µ analysis, the state space model (20) is converted
to its LFT form. In this work, Matlab R© Robust Stability

TABLE I: Initial and refined values for the system parameters

Symbol Initial Refined Description
(units) values values

vg (V ) 19.8 19.8 DC source voltage
vref (V ) 5.1 5.1 Reference Voltage
vd (V ) 0.22 0.22 Diode Voltage
voff (V ) 2.352 2.3252 Offset Voltage
fs (kHz) 51.0 51.2 Switching frequency
fm (- ) 0.284 0.284 Modulator gain
R (Ω) 2.50 2.50 Load resistance
Ron (mΩ) 160 160 Switch-on resistance
Rd (mΩ ) 12 12 Diode on-resistance
Rin (mΩ) 135 160 Input Resistance
Lin µH () 480 511.8 Input filter inductance
Cin (µF ) 100 95 Input filter capacitance
Rcin (mΩ) 80 95 ESR of input filter capacitor
L (µH) 42 45.5 Output filter inductance
Rl (mΩ ) 45 50 ESR of output filter inductor
C (µF ) 590 540 Output filter capacitance
Rc (mΩ) 10 17 ESR of output filter capacitor
R1 (kΩ ) 20.0 19.9 Resistance in compensator
R2 (kΩ) 20.0 19.7 Resistance in compensator
R3 (kΩ) 2.0 2.0 Resistance in compensator
C1 (nF ) 8.22 8.22 Capacitance in compensator
C2 ( nF ) 4.72 4.72 Capacitance in compensator
C3 (nF ) 0.331 0.331 Capacitance in compensator

TABLE II: Case 1.1 - Uncertain resistive load

Parameter Nominal Range of variation (Rvar)
value (Ro) with respect to nominal value

R 2.5 Ω ± 50 %

Toolbox has been employed for performing both LFT and SSV
analysis. Expressing (20) in the LFT form requires that all
uncertain parameters be first converted to their LFT forms. In
this case study, the uncertain element R has to be expressed
as a function of its normalised form δR which lies between
−1 and 1 as shown in (21). Ro and Rvar can be derived from
the minimum value (Rmin) and the maximum value (Rmax)
of the resistive load as shown in (22) and (23) [48].

R = Ro +RoRvarδR where δR ∈ [−1, 1] (21)
Ro = (Rmax +Rmin)/2 (22)
Rvar = (Rmax −Rmin)/(Rmax +Rmin) (23)

The normalised parameters δR are then extracted from the
uncertain system model (20) and grouped in a diagonal matrix
in a feedback form by applying LFT technique. The resulting
uncertainty matrix is shown in (24). δR appears 227 times in
the ∆ matrix, which corresponds to the number of times R
appears in the system matrix.

∆(j · 2π · f) = δR I227×227 (24)

µ analysis is then applied to the uncertain system model in
LFT form by using Matlab R© Robust Stability Toolbox. The
results are shown in Fig. 11a and 11b.

For this test, µ is equal to 1.44 as given by the peak value
of the charts in Fig. 11a and 11b. The smallest destabilising
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Fig. 11: Case 1.1 - System with load uncertainty (a) µ chart
to predict critical R (b) zoomed area near the peak of the µ
chart

matrix, of size 227 × 227 as given by (25), gives the robust
stability margin (1/µ) as 0.696 [49].

∆(j · 2π · 702.4) = −0.696 I227×227 (25)

By comparing (25) with (24), it can be noted that δR =
−0.696. The critical destabilising load can be computed from
δR = −0.696 and (21) and is equal to 1.63 Ω or 16.0 W , as
shown in (26) and Table III.

R = Ro +RoRvarδR where δR ∈ [−1, 1] (26)
= 2.5 + 2.5× 50%× (−0.696)

= 2.5− 2.5× 35% = 1.63

TABLE III: Case 1.1 - System with load uncertainty, µ analysis
results

Perturbation Robust stability µ Critical load
matrix margin (1/µ) R (Ω) power (W )

∆(j · 2π · 702.4) 0.696 1.44 1.63 Ω 16.0 W

µ > 1 indicates that the system is not robustly stable, i.e.
the system does not remain stable over the whole uncertainty
range between 1.25 Ω and 3.75 Ω, as defined in Table II.
In order to ensure that the system remains robustly stable,
µ should be less than 1. This can be achieved by scaling the
operating range of the system load by 1/µ, the robust stability
margin. The robust uncertainty range of R is thus 2.5± 2.5×
50%× 0.696 i.e. 2.5 Ω± 35%.

B. Experimental results

In this experiment, the electronic resistive load R was
decreased in small steps from a peak value of 2 Ω until the
system reached boundary stability. When R was decreased to
1.62 Ω at t = 0.453 s (i.e. Io increased to 3.15 A), the system
reached the boundary condition of stability, as shown by the
sustained oscillations in Vin and Vo in Fig. 12a and 12b. When
R was increased back to 2 Ω at t = 0.703 s (i.e. Io decreased
to 2.55 A), the system stabilised again, as shown in Fig. 12a.
The critical load resistance of 1.62 Ω closely matches the value
of 1.63 Ω predicted by µ analysis, as depicted in Table IV,
with an error of 0.6 %. It should be noted that, although the

experimental results match closely the µ prediction, they are
subject to measurement error.

In addition, simulation was ran in the Simulink R© environ-
ment on the refined nonlinear model of the buck converter
system under study. The simulation result of the critical load,
as given in Table IV, fall within 1.2 % of the µ prediction,
and the discrepancy may be accounted for by uncertainties in
the model such as the approximation error of duty cycle D.
Model uncertainties can be considered in the robust stability
analysis, as is demonstrated later in section VIII.
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Fig. 12: Case 1.1 - Experimental results for the system with
load uncertainty (a) system is at boundary of stability with
R = 1.63 Ω from t = 0.453 s to 0.703 s (b) zoomed area
near t = 0.453 s

TABLE IV: Case 1.1 - System with load uncertainty, µ
analysis and experimental results

Uncertain Critical values
load µ analysis Simulation Experiment

R (Ω) 1.63 Ω 1.61 Ω 1.62 Ω
power (W ) 16.0 W 16.1 W 16.1 W

C. Computation time

In order to assess the effect of the duty cycle approxi-
mation on robust stability margin and computation time, µ
analysis has also been performed by using the zeroth order
approximation of the duty cycle D, referred to as case study
1.2 in Table V. The analyses, with zeroth and first order



approximation of the duty cycle D, have been performed using
a frequency grid of 250 points between 650 Hz and 750 Hz on
an Intel Core i7-3820 3.6 GHz processor with 32GB RAM.
The µ results and the computation times are given in Table V.
The zeroth order approximation introduces an error of 7% in
the robust stability margin and an error of 4% in the critical
load R, with respect to the first order approximation. Inspite
of the loss in accuracy, the computation time is seen to reduce
considerably, as noted in Table V. This is due to the fact that
D appears 189 times in the system model. By setting D as
a constant, the size of the uncertainty matrix reduces from
227 × 227 to 37 × 37. It can be inferred that the size of the
uncertainty matrix has a key influence on computational cost.
Of note is that nonlinear terms can be treated as uncertain
elements of the system, as will be examined in section VIII.

TABLE V: Cases 1.1 and 1.2 - System with load uncertainty,
evaluation of polynomial approximations of duty cycle D

Case D Robust Critical Size Computation
Study approximation stability load ∆(jw) time

margin(1/µ)

1.1 1st order 0.696 1.63 Ω 227 × 227 34 min
1.2 0th order 0.745 1.57 Ω 37 × 37 54 s

VI. LOAD AND LINE RESISTANCE UNCERTAINTIES

In practice, the actual parameter values of system compo-
nents may differ at the assembly stage when compared to
initial design values. These parametric uncertainties may lead
to system instability. This section considers the case when the
load and the line resistance of the analysed system are not
known accurately, but are known to lie within certain ranges,
as defined in Table VI. The µ tool can be used to determine
the bounds within which these uncertain parameters must lie
in order to guarantee stability of the system under study. The
other system parameters are fixed and given by the “refined”
values in Table I.

TABLE VI: Case 2.1 - Uncertain load and line resistance

Uncertain Nominal Range of variation
parameters value with respect to nominal value

R Ro=2.5 Ω Rvar=± 50 %
Rin Rino=0.3 Ω Rinvar=± 50 %

A. µ analysis

µ analysis is performed on the system model (20), by using
the first order Taylor series approximation of the duty cycle
D with respect to both R and Rin. The peak value of µ is
equal to 1.24, and occurs at a frequency of 701.3 Hz, as can be
seen in Fig. 13a and 13b. The robust stability margin (1/µ) is
0.803. The general uncertainty matrix is given by (27) and the
critical uncertainty matrix obtained from µ analysis is shown
in (28). By comparing (27) and (28), δR and δRin are found
to be equal to −0.803. The critical values of R and Rin can
be computed as 1.50 Ω and 1.18 Ω respectively, from the
aforementioned δR and δRin values and the general equation

(1). This case study shows that if the values of R and Rin

are kept within 80.3 % of their respective nominal values, the
system is ensured to be robustly stable. It can be noted that
the robust stability margin in case 2.1 is increased with respect
to case 1.1, as the line resistance Rin is set in the range [150
mΩ, 450 mΩ], and in that can provide more damping to the
input LC filter.
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Fig. 13: Case 2.1 - System with load and line resistance
uncertainties (a) µ chart to predict critical load R (b) zoomed
area near the peak of the µ chart

∆(j · 2π · f) = diag(δRI227, δRinI217) (27)
∆(j · 2π · 701.3) = diag(−0.803I227, − 0.803I217) (28)

B. Experimental results
In order to validate the µ predictions of the case study 2.1,

a set of experiments were performed on the buck converter
system. By keeping Rin around 0.18 Ω, the load was slowly
decreased until the system became unstable. The experimental
results are shown in Fig. 14. When R is set at 1.89 Ω,
the system stabilises, as shown in the top chart in Fig. 14.
When R is decreased to 1.54 Ω, the system reaches boundary
stability, as shown by the sustained oscillations in the input
voltage Vin in the middle chart in Fig. 14. Decreasing R to
1.50 Ω causes the system to become unstable, as shown in
the bottom chart in Fig. 14. The line resistance Rin, used in
the experiment, has been accurately measured and found to be
1.85 Ω. The experimental results, summarised in Table VII,
are in close agreement with the µ predictions, with an error
falling within 3 %, and the discrepancy may be accounted for
by measurement error and some uncertainties in the system
model.

It is to be added that the Simulink R© model of the system,
which is based on the state space model used in µ analysis,
has also been used to verify the µ analysis results. The
simulation results from the Simulink R© model closely match
the µ predictions as shown in Table VII, and the discrepancy
may be accounted for by some uncertainties in the model such
as the approximation error of duty cycle D. The effect of model
uncertainties on the system stability margins is analysed in
section VIII.

VII. TEMPERATURE UNCERTAINTY

Although, a power system can be modelled to good accu-
racy, however, in practice, the values of its system components



0.00 0.01 0.02 0.03 0.04 0.05 0.06
19.4

19.8

V
in

 (
V

)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
19.0

20.0

V
in

  (
V

)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
time (s)

18.5

20.5

V
in

 (
V

)

Fig. 14: Case 2.1 - Experimental results for system with uncertain R with
Rin = 185 mΩ (i) top chart: system is stable with R = 1.89 Ω (ii) middle
chart: system is at boundary of stability with R = 1.54 Ω (iii) bottom chart:
system is unstable with R = 1.50 Ω

TABLE VII: Case 2.1 - System with load and line resistance
uncertainties, µ analysis, simulation and experimental results

Uncertain Critical values
parameters µ analysis Simulation Experiment

R (Ω) 1.50 1.49 1.54
Rin (Ω) 0.180 0.179 0.185

are bound to vary during operation. Temperature is one of
the main factors that can introduce uncertainties in multiple
system parameters. In this section, the µ approach is applied
to the buck converter, as shown in Fig. 3, when it is exposed
to large temperature variation, based on the methodology
used in section V. The duty cycle D is estimated by its
zeroth order approximation. The µ predictions are thereafter
evaluated against the µ results from case study 1.2 in section
V in order to investigate the effect of extreme temperature
variation on the robust stability margin.

A. Uncertain parameters

In this analysis, referred to as case study 3.1, the buck
converter is considered to be working in an environment where
the temperature may vary between −40 oC and 80 oC with a
reference value of 20 oC, as shown in Table VIII.

The variations in temperature may influence the charac-
teristics of the resistive components of the buck converter,
which include but are not limited to the system parasitics and
cable resistances. These components, which are denoted as
Res further in the text and comprising Rin, Rcin, Rl, Ron,
Rc, may have different temperature coefficients depending on
their constituent materials. However, for the sake of simplicity,
a temperature coefficient of resistance (α) of 0.004 /oC as for
a copper wire is assumed for the aforementioned components
in this study. From (29) and Table VIII, it can be seen that
the variations in temperature (T) of ±60 oC cause variations
in the resistive components of ±24% around their nominal
values denoted as Reso.

Resvar = (Res −Reso)/Reso = α∆T (29)

The nominal values of the system components, including
Res, are given as the “refined” values in Table I. It is assumed

that the resistive load varies within ±50% of its nominal value,
as in case 1.1 in section V, and as depicted in Table VIII.
The µ approach is applied to study the effect of the defined
temperature variation on stability robustness of the analysed
system.

TABLE VIII: Case 3.1 - Uncertainties in load and temperature

Uncertain Nominal Range of variation
parameters value with respect to nominal value

T To=20oC ∆T=±60oC
Res Reso Resvar=α ∆T =±24%
R Ro=2.5 Ω Rvar = ±50%

B. µ analysis

By employing LFT technique, the system model (20) is
first expressed in the LFT form. The structure of the resulting
uncertainty matrix is shown in (30).

∆(j · 2π · f) = diag(δRI41, δRcI13, δRcinI38,

δRinI25, δRlI23, δRonI27) (30)

The µ approach is then applied to the uncertain system
model in its LFT form. The µ chart is depicted in Fig. 15
where the peak of the µ lower bound is seen to be equal to
1.98 at the critical frequency of 704 Hz.
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Fig. 15: Case 3.1 - System with load and temperature un-
certainties, µ chart to predict load R and critical resistive
components Res

The corresponding critical values of the resistive load and
resistive components, calculated from the µ bounds, are given
in Table X. The critical destabilising load is now 1.87 Ω
(13.9 W ), based on the µ lower bound. This represents a robust
stability margin of 0.505, as shown in Table IX.

C. Simulation verification

The refined Simulink R© model of the buck converter is
used to verify the µ analysis results obtained in the earlier



TABLE IX: System with load and temperature uncertainty -
µ analysis results for load

Uncertain Robust stability µ
¯

Critical load
parameter margin R (Ω) power (W )

Load 0.505 1.98 1.87 Ω 13.9 W

subsection. When the critical values predicted by µ analysis,
as given in Table X, are input in the Simulink R© model of the
buck converter, the system reaches boundary stability. Fig. 16a
and 16b show the results for the case where the load R is
varied with the other Res components fixed at their critical
values given in Table X.
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Fig. 16: Case 3.1- System with load and temperature uncer-
tainties (a) top figure - voltage vo, bottom figure - current io
(i) at t = 0 s, R = 1.1 × 1.87 Ω (ii) at t = 0.3 s, R = 1.87
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the critical load predicted by µ analysis (b) zoomed area near
t = 0.3 s

When R is set to be 10% higher than its critical value of
1.87 Ω at t = 0 s (i.e. Io is 2.48 A), the system stabilises as
shown in Fig. 16a. When R is decreased to the critical value
of 1.87 Ω at t = 0.3 s (i.e. Io is 2.73 A), the system reaches
boundary stability condition, as can be seen from the sustained
oscillations in Vo in Fig. 16a and 16b. When R is decreased
by a further 10% below 1.87 Ω at t = 0.6 s (Io is 3.03 A),
the system becomes unstable. The simulation results closely
match the results predicted by µ analysis as shown in Table
X.

D. Results analysis

From robust stability analysis, µ > 1 indicates that the
system under investigation, with 50 % load uncertainty, is not
guaranteed to remain stable over the whole range of variation
of temperature (i.e. −40 oC to 80 oC). Based on the examina-
tion of the hypercube concept presented in section II, the buck
converter system under study remains robustly stable within
a hypercube of the sixth-order dimension, of coordinate size
µ = 0.505, and centred about the nominal point. Any combi-
nation of parameter values chosen within the aforementioned
hypercube will ensure the robust stability of the buck converter
under study, within the range of temperature variation defined
in Table VIII. As depicted in Table XI, when the uncertainty in

temperature is considered, the robust stability margin is 0.505.
When temperature variation is neglected, the robust stability
margin is 0.745, as shown in case study 1.2 and Table V.
This represents a 32% decrease in the robust stability margin,
as shown in Table XI. The duty cycle D is constant in both
cases 3.1 and 2.1. This study confirms that the variation in
temperature can have a significant influence on robust stability
margin and must therefore be incorporated in the stability
assessment.

TABLE X: Case 3.1 - System with load and temperature
uncertainties, µ analysis and time domain simulation results

Uncertain Nominal Critical values
parameters value µ analysis Simulation

R (Ω) 2.50 1.87 1.87
Rc (mΩ) 17 14.9 14.9
Rcin (mΩ) 95 83.5 83.5
Rin (mΩ) 160 140.6 140.6
Rl (mΩ) 50 43.9 43.9
Ron (mΩ) 160 154.7 154.7

TABLE XI: Cases 3.1 and 1.2 - Effect of temperature on robust
stability margin with D constant

Case Temperature Critical load Robust stability
Study Considered R (Ω ) power (W ) Margin

3.1 Yes 1.87 Ω 13.9 W 0.505
1.2 No 1.57 Ω 16.6 W 0.745

VIII. MODEL UNCERTAINTIES

In practice, it is neither viable nor time-efficient to create
highly refined system models to represent actual systems.
Hence, approximate system models, with a good trade-off be-
tween accuracy and simplicity, are often used for design. The
nominal values of their system components are generally based
on known data such as nameplate information. This section
aims to demonstrate how model uncertainties, which may be
known to different level of accuracy, can be incorporated in
robust stability analysis without compromising the reliability
of the results. In addition, it examines the effect of model
uncertainties on robust stability margin.

The approach is illustrated by applying it to the buck
converter example power system in Fig 3. The “initial” values
of the system components, as given in Table I, are used as the
nominal values for µ analysis. Three cases are investigated,
as defined in Table XII. In case 4.1, robust stability margin is
evaluated without taking into account any uncertainties in the
model. Only uncertainty in the load is considered. In cases
4.2 and 4.3, uncertainties in the model are included in the
analyses. However, the approximation errors in the model in
case 4.2 are larger as compared with those in case 4.3. The
other system parameters are considered to be fixed as defined
by the “initial” parameter values in Table I.



TABLE XII: Cases 4.1, 4.2, 4.3 - Uncertainties in load and
system model

Uncertain Nominal Range of variation
parameters value Case 4.1 Case 4.2 Case 4.3

R 2.50 Ω ± 50 % ± 50 % ± 50 %
Rin 135 mΩ - ± 50 % ± 30 %
Lin 480 µH - ± 50 % ± 30 %
Cin 100 µF - ± 10 % ± 6 %
Rcin 80 mΩ - ± 10 % ± 6 %
L 42 µH - ± 50 % ± 30 %
Rl 45 mΩ - ± 10 % ± 6 %
C 590 µF - ± 50 % ± 30 %
Rc 10 mΩ - ± 10 % ± 6 %
D 0.2768 - ± 4.5 % ± 4.5 %

A. System with no model uncertainty

This subsection evaluates the robust stability margin for case
4.1. µ analysis is applied to the system model (20) with the
uncertain parameters as defined in Table XII. The µ chart, as
depicted in Fig. 17a and 17b, shows that the µ lower bound
is 1.63. This corresponds to a robust stability margin of 0.614
and a critical load of 1.73 Ω or 15 W , as shown in Table XIII.
The buck converter is predicted to remain stable for an output
power of up to 15 W .
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Fig. 17: Case 4.1: System with load uncertainty and no model
uncertainty (a) µ chart to predict critical load R (b) zoomed
area near the peak of the µ chart

TABLE XIII: Case 4.1 - System with load uncertainty and no
model uncertainty, µ analysis results for load

Uncertain Robust stability µ
¯

Critical load
parameter margin R (Ω) power (W )

Load 0.614 1.63 1.73 Ω 15.0 W

B. System with model uncertainties

The stability robustness for cases 4.2 and 4.3 are evaluated
in this subsection. The maximum possible errors that may be
expected in the nominal values, as given in Table XII, are taken
into account in the analyses. This is based on the knowledge
of the system. For instance, for case 4.2, the tolerances of the
capacitors and inductors are known to be well within 10 %

of their nominal values. Parasitic elements, which may be
nonlinear in nature, are generally hard to quantify. Hence,
the system parasitics such as the ESR of the inductors and
capacitors, have been considered to vary within a maximum
range of ± 50% within their estimated nominal values. Further,
nonlinear terms in the system model may be treated as
uncertain elements. Hence in this case, the duty cycle D is set
as an uncertain parameter with 4.5% uncertainty, based on its
maximum variation range as depicted in Fig. 5. This eliminates
the need for high order approximations, which has the added
advantage of reducing the size of the uncertainty matrix. As in
previous case studies, the load R is considered to vary within
50% of its nominal value. In case 4.3, it is considered that
the values of the uncertain parameters are known with better
accuracy, with variation ranges of the system inductances,
capacitors and ESRs being tighter, as depicted in Table XII.
µ analysis is applied to the system model (20) based on

the uncertain parameters defined in Table XII, for cases 4.2
and 4.3. Following the LFT operation, the structure of the
uncertainty matrix, of size 351× 351, is obtained as (31).

∆(j · 2π · f) = diag(δCI2, δCinI6, δDI189, δLI4, δLinI8,

δRI41, δRcI13, δRcinI39, δRinI25, δRlI24)
(31)

The µ charts for cases 4.2 and 4.3 are shown in Fig. 18a
and Fig. 18b respectively. The µ lower bound is 4.76 for case
4.2. This corresponds to a robust stability margin of 0.21 and
a critical load of 2.24 Ω or 11.6 W , as depicted in Table XIV.
For case 4.3, the µ lower bound is 3.47. The associated robust
stability margin is 0.288, and the critical load is 2.14 Ω or
12.2 W . The results are shown in Table XIV. Thus after taking
into account the aforementioned uncertainties in the model,
the buck converter is predicted to remain stable for an output
power of up to 11.6 W for case 4.2, and up to 12.2 W for
case 4.3, as shown in Table XIV. The results for case 4.1 are
included in Table XIV for completion.
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Fig. 18: Cases 4.2 and 4.3 - System with load and model
uncertainties, µ charts to predict critical load R for (a) case
4.2 (b) case 4.3

With the aim of verifying the µ results, the eigenvalues
of the nominal model of the linear equivalent model (20)
are evaluated against the eigenvalues of the critical linear
equivalent model for case 4.2, obtained from the critical
parameter values predicted by µ analysis. The corresponding



TABLE XIV: Cases 4.1, 4.2, 4.3 - System with load and model
uncertainties - µ analysis results for load

Case Model Robust stability µ
¯

Critical load
study uncertainties margin R (Ω) power (W )

4.1 No 0.614 1.63 1.73 Ω 15.0 W
4.2 Yes 0.210 4.76 2.24 Ω 11.6 W
4.3 Yes 0.288 3.47 2.14 Ω 12.2 W

plots of the eigenvalues are depicted in Fig. 19a and 19b. It
can be noted that applying the critical values, predicted by
µ analysis, brings the eigenvalues near to the imaginary axis.
This confirms that µ analysis has identified the critical values
at the boundary of stability.
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Fig. 19: Case 4.2: System with load and model uncertainties
(a) plot of eigenvalues based on µ lower bound predictions,
(*) eigenvalues with nominal parameters, (o) eigenvalues with
critical parameters (b) zoomed view near the imaginary axis

C. Results analysis

The robust stability margins (1/µ) for cases 4.1, 4.2 and
4.3 are depicted in Table XIV. It is interesting to note that the
stability robustness for cases 4.1, 4.2 and 4.3 is represented
by hypercubes, of the tenth-order dimension, centred about the
nominal point, but of sizes 0.614, 0.210 and 0.288 respectively.

When uncertainties are not included in the model, the
analysed system has the largest hypercube with a robust
stability margin of 0.614, as depicted in Table XIV. Although,
the results may seem to be less conservative, they can not
be guaranteed to be reliable, as the nominal parameters are
rough estimates. With model uncertainties incorporated in the
analysis, the robust stability margin is 0.210 and 0.288 for
cases 4.2 and 4.3 respectively, representing smaller hypercubes
with respect to case 4.1. Although, the results for cases 4.2 and
4.3 seem to be conservative in comparison to case 4.1, they are
more reliable. This is because the analyses take into account
uncertainties of the system model, and therefore include worst
case scenarios.

Further, in case 4.2, the parametric space within which
the system under study is robustly stable is smaller than in
case 4.3, as given by the aforementioned hypercubes. These
findings indicate that the larger the uncertainty range, the
tighter is the resulting robust stability margin, and the smaller

the hypercube. While the size of their hypercubes, which
represent the parametric space within which the systems are
robustly stable, may differ, the results are reliable in both
the cases since they include model uncertainties. It is to be
pointed out that the reliability of the results is still dependent
on the validity of the defined bounds of the uncertain system
parameters.

Of note is that incorporating model uncertainties is com-
putationally more expensive. This is evident since the size of
the uncertainty matrix increases with the number of uncertain
parameters. However, it is to be noted that the computation
time is also dependent on the defined frequency grid. For
very large uncertainty matrices, the computation time can
be kept reasonably low by initially using a frequency grid
of low density over a wide range of frequencies so as to
obtain an estimated critical frequency value. µ analysis is
then performed by narrowing the frequency range around the
estimated critical frequency but keeping the initial number
of frequency points. The analysis is eventually performed
around the peak of the µ chart; this process may be repeated
with higher number of frequency points over the very narrow
frequency range until the µ values returned by the analyses
remain consistent. For the case studies in this section, the µ
results and computation times are given in Table XV, based
on a frequency grid of 25 points between 707 and 708 Hz for
case 4.1, 708 and 709 Hz for case 4.2, 709 and 710 Hz for
case 4.3. The analyses were performed on a Intel Core i7-3820
3.6 GHz processor with 32GB RAM.

TABLE XV: Cases 4.1, 4.2, 4.3 - System with load and model
uncertainties, µ analysis results and computation time

Case Model Robust Critical Size Computation
study uncertainties stability load ∆(jw) time

margin (1/µ)

4.1 No 0.614 1.73 Ω 37 × 37 9 s
4.2 Yes 0.210 2.24 Ω 351 × 351 3.4 h
4.3 Yes 0.288 2.14 Ω 351 × 351 3.6 h

The section of the work has important implications. Often
times, the design engineer does not have sufficient information
as to the exact values of the system components. Yet, the
parameters may be estimated within some reasonable bounds.
With the µ approach, the designer is offered the flexibility of
determining the best trade-off between accuracy and practi-
cality, by choosing the levels of details that are incorporated
into modelling, depending on available information. The same
system model is employed. Only the considered uncertain
elements are defined differently.

IX. SUMMARY OF RESULTS

In practice, power electronic systems are subject to varia-
tions in load, line resistance and operating temperature while
their nominal system model is generally bound to contain
parametric model uncertainties. This work has applied the µ
tool to gauge the impact of the aforementioned uncertainties on
the robust stability margin of the dc/dc buck converter system.
The results are depicted in Table XVI. In the case study 1.1,
µ analysis has determined that the example system becomes



unstable when the output power is increased to 16 W . It has
been found in case study 2.1 that if the uncertain parameters
R and Rin are kept within 80.3% of their respective nominal
values, the system under study can be ensured to be stable for
an output power of up to 17.3 W . For the case 2.1, the robust
stability margin increases as the source resistance Rin, set in
the range of [150 mΩ, 450 mΩ], provides more damping to
the resonant LC input filter with respect to case 1.1, when Rin

is set at a constant value of 160 mΩ. The µ predictions for
case studies 1.1 and 2.1 are supported by experimental results.
Further, the robust stability margin of the buck converter has
been found to be 74.5% when uncertainties in temperature are
not included in case study 1.2, as compared to 50.5% when un-
certainties in temperature are included as shown in case study
3.1. The findings emphasise the necessity of incorporating
operating conditions uncertainties for more reliable stability
analysis of a system. The study has also demonstrated how
the µ tool can be employed to account for model uncertainties,
including certain classes of nonlinearities in the system model,
such as in duty cycle D in this work. µ analysis has predicted
the critical output power of the considered buck converter to be
15.0 W , when model uncertainties are neglected in case study
4.1. On the other hand, the critical output power has been
determined as 11.6 W in case study 4.2, when uncertainties
are included, while its value increased to 12.2 W , when the
given uncertainties are defined within a relatively narrower
range in case study 4.3. As discussed in section II, although,
µ
¯

is not guaranteed to be equal to µ, it is generally close
to µ. For the cases investigated in this work, as the µ

¯
based

predictions match closely the results from experiment, time
domain simulations and eigenplots, it can be inferred that the
lower bound µ

¯
is a good estimate of µ.

X. CONCLUSION

This work has demonstrated practical approaches to ap-
plying the µ method in the assessment of robust stability of
PE systems with single and multiple uncertainties, based on
the widely employed dc/dc buck converter system. Further,
it has shown the necessity of incorporating uncertainties in
stability analysis. The µ tool has been used to determine the
bounds within which the uncertain load must lie in order to
guarantee the stability of the system under study. The analysis
has been extended to include line resistance uncertainty. The
µ predictions of the critical destabilising resistive load of
the system under study, with and without line resistance
uncertainty, have been validated in experiment. It has been
shown how accounting for variation in operating temperature,
which has an effect on multiple resistive system components,
can increase the reliability of stability assessment. Further,
the practical approach of including uncertainties, such as in
parasitics and nonlinearity in duty cycle, in the nominal system
model has been demonstrated. Although the robust stability
margin has been found to be tighter when uncertainties are
defined within wider ranges or with less accuracy, the work has
shown that the results can be employed reliably as worse case
scenarios are accounted for, which is particularly important
for safety critical applications. In addition, the methodology

for applying the µ tool as well as the interpretation of the µ
results have been presented in a generalised and clear manner,
which allows it to be extended to wider applications, and to
include yet further sources of uncertainties.
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eration of LFT-based parametric uncertainty descriptions from generic
aircraft models,” Mathematical and Computer Modelling of Dynamical
Systems, vol. 4, no. 4, pp. 249–274, 1998.

[27] A. Fabrizi, C. Roos, and J.-M. Biannic, “A detailed comparative analysis
of µ lower bound algorithms,” in European Control Conference 2014,
2014.

[28] G. Balas, R. Chiang, A. Packard, and M. Safonov. (2005) Robust control
toolbox 3 users guide.

[29] D. Piga, “Computation of the structured singular value via moment lmi
relaxations,” IEEE Transactions on Automatic Control, vol. 61, no. 2,
pp. 520–525, Feb 2016.

[30] X. Chen and J. T. Wen, “Model reduction of multidimensional posi-
tive real systems,” in Proceedings of 1994 33rd IEEE Conference on
Decision and Control, Dec 1994, pp. 3758–3763.

[31] M. Ferber, A. Korniienko, G. Scorletti, C. Vollaire, F. Morel, and
L. Krhenbhl, “Systematic lft derivation of uncertain electrical circuits
for the worst-case tolerance analysis,” IEEE Transactions on Electro-
magnetic Compatibility, vol. 57, no. 5, pp. 937–946, Oct 2015.

[32] J. C. Doyle, B. A. Francis, and A. Tannenbaum, Feedback control theory.
Macmillan Publishing Company New York, 1992, vol. 1.

[33] R. Castellanos, C. Juarez, J. Hernandez, and A. Messina, “Robustness
analysis of large power systems with parametric uncertainties,” in Power
Engineering Society General Meeting, 2006. IEEE. IEEE, pp. 1–8.

[34] M. Djukanovic, M. Khammash, and V. Vittal, “Application of structured
singular value theory for robust stability and control analysis in multi-
machine power systems. II. Numerical simulations and results,” IEEE
Transactions on Power Systems, vol. 13, no. 4, pp. 1317–1322, Nov
1998.

[35] R. Castellanos, A. Messina, and H. Sarmiento, “Robust stability analysis
of large power systems using the structured singular value theory,”
International Journal of Electrical Power & Energy Systems, vol. 27,
no. 5, pp. 389–397, 2005.

[36] M. Djukanovic, M. Khammash, and V. Vittal, “Application of the
structured singular value theory for robust stability and control analysis
in multimachine power systems. I. Framework development,” IEEE
Transactions on Power Systems, vol. 13, no. 4, pp. 1311–1316, Nov
1998.

[37] S. Chen and O. P. Malik, “Power system stabilizer design using µ
synthesis,” IEEE Transactions on Energy Conversion, vol. 10, no. 1,
pp. 175–181, Mar 1995.

[38] A. Haddadi, B. Boulet, A. Yazdani, and G. Joós, “A µ-based approach
to small-signal stability analysis of an interconnected distributed energy
resource unit and load,” IEEE Transactions on Power Delivery, vol. 30,
no. 4, pp. 1715–1726, 2015.

[39] D.-W. Gu, Robust control design with MATLAB R©. Springer Science
& Business Media, 2005, vol. 1.

[40] S. Buso, “Design of a robust voltage controller for a buck-boost
converter using µ synthesis,” IEEE Transactions on Control Systems
Technology, vol. 7, no. 2, pp. 222–229, Mar 1999.

[41] C. Zhang, J. Wang, S. Li, B. Wu, and C. Qian, “Robust control for pwm-
based DC-DC buck power converters with uncertainty via sampled-data
output feedback,” IEEE Transactions on Power Electronics, vol. 30,
no. 1, pp. 504–515, Jan 2015.

[42] J. A. Solsona, S. G. Jorge, and C. A. Busada, “Nonlinear control of a
buck converter which feeds a constant power load,” IEEE Transactions
on Power Electronics, vol. 30, no. 12, pp. 7193–7201, Dec 2015.

[43] M. Fard and M. Aldeen, “Robust control design of a dc micro grid
comprising photovoltaic and battery systems,” in 2016 IEEE PES Asia-
Pacific Power and Energy Engineering Conference (APPEEC), Oct
2016, pp. 329–336.

[44] S. Sumsurooah, M. Odavic, S. Bozhko, and D. Boroyevich, “Stability
and robustness analysis of a dc/dc power conversion system under
operating conditions uncertainties,” in Industrial Electronics Society,
IECON 2015 - 41st Annual Conference of the IEEE, Nov 2015, pp.
003 110–003 115.

[45] S. Sumsurooah, M. Odavic, and S. Bozhko, “A modeling methodology
for robust stability analysis of nonlinear electrical power systems under
parameter uncertainties,” IEEE Transactions on Industry Applications,
vol. 52, no. 5, pp. 4416–4425, Sept 2016.

[46] S. Sumsurooah, M. Odavic, and S. Bozhko, “Development of lft-based
models for robust stability analysis of a generic electrical power system
over all operating conditions,” in 2015 International Conference on
Electrical Systems for Aircraft, Railway, Ship Propulsion and Road
Vehicles (ESARS), March 2015, pp. 1–6.

[47] S. Sumsurooah, M. Odavic, and S. Bozhko, “µ approach to robust
stability domains in the space of parametric uncertainties for a power
system with ideal CPL,” IEEE Transactions on Power Electronics,
vol. PP, no. 99, pp. 1–1, 2017.

[48] S. Sumsurooah, M. Odavic, and D. Boroyevich, “Modelling and robust
stability analysis of uncertain systems,” in 2013 Grand Challenges
on Modeling and Simulation Conference. Society for Modeling &
Simulation International, 2013.

[49] G. J. Balas, J. C. Doyle, K. Glover, A. Packard, and R. Smith. (2001)
µ-Analysis and Synthesis Toolbox: For Use with MATLAB.

[50] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics.
Springer Science & Business Media, 2001.

[51] H. J. Zhang, “Modeling and loop compensation design of switching
mode power supplies,” Linear Technology, Appl. Note 149, 2015.

[52] A. A. Elbaset, “Small-signal matlab/simulink model of dc-dc buck
converter using state-space averaging method,” in 17th International
Middle-East Power System Conference (MEPCON’15) Mansoura Uni-
versity, Egypt, December 15-17, 2015, pp. 1–8.

[53] D. Mattingly, “Designing stable compensation networks for single phase
voltage mode buck regulators,” Intersil, Tech. Rep. TB417.1, Dec. 2003.



[54] D. Meeks, “Loop stability analysis of voltage mode buck regulator with
different output capacitor types–continuous and discontinuous modes,”
Texas Instruments, App. Note SLVA301, 2008.


