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Abstract		

Context:	Fibroblast	growth	factor	21	(FGF21)	secretion	has	been	shown	to	respond	directly	to	

carbohydrate	consumption,	with	glucose,	fructose	and	sucrose	all	reported	to	increase	plasma	

levels	 of	 FGF21	 in	 rodents	 and	 humans.	 However,	 carbohydrate	 consumption	 also	 results	 in	

secretion	of	insulin.		

Objective:	 The	 aim	 of	 this	 study	 was	 to	 examine	 the	 combined	 and	 independent	 effects	 of	

hyperglycemia	and	hyperinsulinemia	on	total	and	bioactive	FGF21	in	the	postprandial	period	in	

humans,	 and	 determine	 whether	 this	 effect	 is	 attenuated	 in	 conditions	 of	 altered	 insulin	

secretion	and	action.		

Methods:	Circulating	glucose,	insulin,	total	and	bioactive	FGF21	and	fibroblast	activation	protein	

(FAPa)	were	measured	in	adults	with	and	without	type	2	diabetes	(T2D)	following	an	oral	glucose	

tolerance	test	(OGTT),	and	under	a	series	of	insulin	and	glucose	clamp	conditions	and	following	

high	fat	diet	in	healthy	adults.		

Results:	Circulating	total	and	bioactive	FGF21	levels	responded	acutely	to	OGTT,	and	their	ratio	

was	attenuated	in	T2D	patients	with	reduced	postprandial	insulin	response.	The	clamp	studies	

revealed	that	insulin	but	not	glucose	accounts	for	the	postprandial	rise	in	FGF21.	Finally,	there	

was	an	attenuated	rise	in	FGF21	in	response	to	a	high	fat	dietary	intervention	that	is	known	to	

alter	insulin-stimulated	substrate	utilization	in	metabolically	active	tissues.	

Conclusions:	 Insulin	 rather	 than	 glucose	 per	 se	 increases	 total	 and	 bioactive	 FGF21	 in	 the	

postprandial	period	in	adult	humans.	Understanding	the	impact	of	T2D	on	bioactive	FGF21	will	

have	a	significant	effect	upon	the	efficacy	of	therapeutic	agents	designed	to	target	the	FGF21	

pathway.		
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Precis	

Circulating	FGF21	levels	respond	acutely	to	insulin	but	not	glucose.	A	high	fat	diet	impairs	this	

response.	The	postprandial	rise	in	the	ratio	of	bioactive	to	total	FGF21	is	attenuated	in	T2D.	
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Introduction		

Fibroblast	growth	factor	21	(FGF21)	is	a	181	amino	acid	(aa)	hormone	with	significant	potential	

for	the	treatment	of	type	2	diabetes	(T2D)1,2.	The	therapeutic	actions	of	FGF21	require	binding	

of	its	N-terminus	to	the	tyrosine	kinase	receptor,	FGF	receptor	1	(FGFR1)	and	its	C-terminus	to	

the	co-receptor	βklotho	(KLB),	forming	the	FGF21	receptor	complex	(FGFR1-KLB)3-5.	Circulating	

FGF21	levels	are	driven	primarily	by	hepatic	production6,7,	while	other	tissues	including	skeletal	

muscle	and	brown	fat	are	able	to	contribute	in	response	to	specific	stimuli8.	In	the	obese	and	T2D	

states,	 FGF21	 is	 elevated	 in	 the	 plasma,	 albeit	 demonstrating	 significant	 inter-individual	

variation9-12.	 Furthermore,	 increased	 circulating	 concentrations	 of	 FGF21	 are	 associated	with	

conditions	characterized	by	increased	circulating	lipids	and	abnormal	hepatic	metabolism13-15.		

Recently,	FGF21	secretion	has	been	shown	to	 respond	directly	 to	carbohydrate	consumption,	

with	glucose,	fructose	and	sucrose	all	reported	to	increase	plasma	levels	of	FGF21	in	rodents	and	

humans6,16-18.	 Studies	 in	 rodents	 suggested	 increased	 hepatic	 expression	 of	 carbohydrate	

responsive-element	binding	protein	(ChREBP)	as	a	mechanism	for	the	increased	plasma	levels	of	

FGF21	following	fructose	ingestion19.	However,	the	mechanism	by	which	glucose	regulates	FGF21	

levels	in	the	postprandial	period	in	adult	humans	has	not	been	explored.	Interestingly,	in	subjects	

diagnosed	with	metabolic	syndrome	(MetS),	a	greater	increase	in	circulating	FGF21	was	reported	

when	compared	to	healthy	controls	following	oral	glucose	consumption.	However,	as	this	was	

accompanied	with	a	greater	blood	glucose	and	insulin	response	in	these	subjects14,	it	is	difficult	

to	 disentangle	 whether	 the	 induction	 of	 FGF21	 following	 a	 glucose	 load	 is	 a	 result	 of	 the	

associated	hyperglycemia	and/or	hyperinsulinemia.	Furthermore,	FGF21	has	a	 relatively	short	
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half-life	(1-2h)	and	circulates	in	inactive	[3-181	aa	(16-30%),	5-181	aa	(10-25%)]	and	bioactive	[1-

171	aa	(10-34%)]	forms	in	healthy	participants3,20-22.	The	inactive	form	of	FGF21	is	generated	via	

proteolytic	 cleavage	 of	 the	 C-terminus	 by	 fibroblast	 activation	 protein	 (FAPα),	 a	 serine	

dipeptidase	 and	member	of	 the	 S9	 family	 proteases23.	Numerous	 studies	have	examined	 the	

impact	 of	 T2D	 on	 total	 FGF21	 levels10,24,	 although	 it	 is	 not	 clear	what	 effect	 T2D	 has	 on	 the	

bioactive	form	of	FGF21.	Understanding	the	impact	of	T2D	on	bioactive	rather	than	total	FGF21	

will	have	a	significant	effect	upon	the	efficacy	of	therapeutic	agents	designed	to	target	the	FGF21	

pathway.		

Therefore,	the	aim	of	the	current	study	was	to	investigate	the	combined	and	independent	effects	

of	hyperglycemia	and	hyperinsulinemia	on	FGF21	 in	the	postprandial	period	 in	adult	humans,	

and	to	determine	whether	this	effect	is	attenuated	in	conditions	of	altered	insulin	secretion	and	

action.	Furthermore,	we	assessed	the	levels	of	total	and	bioactive	FGF21,	in	addition	to	FAPα	in	

these	states.	Our	findings	suggest	that	FGF21	is	an	insulin-dependent	postprandially	regulated	

hormone	in	adult	humans.		

	 	



	 6	

Research	Design	and	Methods	

Subjects			

Diabetes	study.	Seven	control	subjects	(age	41.9	±	4.0	yrs,	BMI	31.2	±	1.5	kg/m2)	and	7	patients	

with	T2D	(age	48.3	±	2.3	yrs	and	BMI	28.5	±	1.3	kg/m2)	controlling	their	T2D	with	diet	alone	(n	=	2)	

or	metformin	 (n	=	5;	dose	1300	±	300	mg/d)	participated.	Patients	were	excluded	 if	 they	were	

taking	 anti-hyperglycaemic	medication	other	 than	metformin	or	 presented	with	 any	 secondary	

complications	of	T2D.	Control	subjects	were	excluded	at	a	screening	oral	glucose	tolerance	test	

(OGTT)	visit	if	their	fasting	blood	glucose	was	>5.6	mmol/l	or	2	h	blood	glucose	was	>7.0	mmol/l.		

Clamp	studies.	Six	healthy,	non-obese	male	individuals	[age	23.2	±	2.4	yrs,	BMI	23.9	±	1.0	kg/m2]	

participated	in	the	hyperglycemic/hyperinsulinemic	studies,	whereas	9	healthy	males	(age	26.1	±	

2.8	yrs,	and	BMI	23.4	±	1.1	kg/m2)	were	recruited	for	the	high	fat	study	(HF).	

In	all	studies,	subjects	were	informed	of	all	procedures	and	risks	associated	with	the	experiments	

prior	 to	 obtaining	written	 informed	 consent.	 All	 procedures	 were	 performed	 according	 to	 the	

Declaration	 of	 Helsinki	 and	 approved	 by	 the	 University	 of	 Nottingham	 Medical	 School	 Ethics	

Committee	(Clamps	studies)	and	the	local	NHS	Research	Ethics	committee	(Diabetes	study).		

Experimental	protocols			

Diabetes	study.	All	subjects	underwent	an	OGTT	performed	after	consumption	of	an	isocaloric	diet	

for	72	h.	They	also	refrained	from	strenuous	exercise	for	48	h	before	the	visit.	Patients	with	T2D	

that	were	using	metformin	did	not	take	metformin	on	the	morning	of	the	trial.	Subjects	attended	

the	laboratory	after	an	overnight	fast	having	consumed	a	standardized	meal	the	evening	before,	
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comprising	of	55%	carbohydrate,	30%	fat,	and	15%	protein.	At	the	start	of	the	2	h	OGTT,	subjects	

consumed	 75	 g	 dextrose	 dissolved	 in	 300	 ml	 water	 prepared	 on	 the	 morning	 of	 the	 trial.	

Arterialised	blood	samples	were	obtained	from	a	dorsal	hand	vein	of	one	arm	(placed	in	a	hot-air	

box	maintained	at	50-55oC)	at	baseline	and	every	30	min	during	the	OGTT.		

Clamp	studies.	On	three	randomised	occasions,	2	weeks	apart,	after	an	overnight	fast	all	6	subjects	

underwent	the	following	4	h	clamps:	(i)	hyperinsulinemic	(78	±	3	mU/l)-hyperglycemic	(10.1	±	0.1	

mmol/l)	clamp	(HIHG	trial);	(ii)	euinsulinaemic	(7.3	±	1.1	mU/l)-hyperglycemic	(10.4	±	0.1	mmol/l)	

clamp	(EIHG	trial);	(iii)	hyperinsulinemic	(76	±	2	mU/l)-euglycaemic	(4.4	±	0.1	mmol/l)	clamp	(HIEG	

trial).	On	2	occasions,	infusion	of	human	soluble	insulin	(Actrapid,	Novo,	Copenhagen,	Denmark)	

into	 an	 antecubital	 vein	 on	 one	 arm	 commenced	 at	 a	 rate	 of	 50	mU	m-2	min-1	 and	 continued	

throughout	each	clamp,	with	20%	dextrose	infused	at	a	variable	rate	to	maintain	blood	glucose	

concentrations	at	either	euglycaemic	(HIEG	trial)	or	hyperglycaemic	(HIHG	trial)	levels,	respectively.	

On	both	occasions,	infusion	of	somatostatin	at	500	mg/h	(to	inhibit	endogenous	insulin	secretion),	

and	replacement	infusion	of	glucagon	(0.7	ng	kg-1	min-1)	started	30	min	before	dextrose	infusion.		

On	 a	 third	 occasion,	 20%	 dextrose	 was	 infused	 at	 a	 variable	 rate	 to	 maintain	 blood	 glucose	

concentration	at	the	designated	level	(EIHG	trial).	Infusion	of	somatostatin	at	500	mg/h	and	basal	

replacement	infusions	of	glucagon	(0.7	ng	kg-1	min-1)	and	insulin	(5	mU	m-2	min-1)	started	30	min	

before	dextrose	infusion.	On	all	occasions,	arterialised	blood	samples	were	obtained	from	a	dorsal	

vein	 from	 the	non-dominant	hand	at	baseline	 and	every	5	min	 for	 the	determination	of	blood	

glucose	concentrations,	and	every	60	min	for	hormone	concentrations.		
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High	fat	study.	All	subjects	underwent	two	7-day	trials,	at	 least	2	weeks	apart,	 in	a	randomised	

cross-over	design.	On	each	occasion,	subjects	consumed	for	6	days	either	a	high	fat	[(HF)	76.7	±	

0.4%	Energy	 as	 Fat]	 or	normal	diet	 [(CON)	32.3	±	0.7%	Fat].	On	day	7,	 after	 an	overnight	 fast,	

subjects	underwent	a	4	h	hyperinsulinemic	(CON:	71.8	±	3.5	and	HF:	70.0	±	3.5	mU/L)-euglycemic	

(4.5	±	0.2	mmol/l)	clamp	as	described	above.	Arterialised	blood	samples	were	obtained	at	baseline	

and	every	5	min	for	the	determination	of	blood	glucose	concentration,	and	before	and	after	each	

clamp	for	the	determination	of	hormone	concentrations.		

Blood	analysis	

In	all	studies,	blood	glucose	concentrations	were	determined	using	a	Yellow	Springs	 Instrument	

Analyzer	(YSI,	2300	STAT	PLUS).	Serum	were	separated	by	centrifugation	(15	min	at	3,000	g)	and	

analyzed	 for	 insulin	 concentrations	 by	 radioimmunoassay	 (Diagnostics	 Products	 Corporation,	

Llanberis,	 Wales,	 UK),	 and	 total	 FGF21	 (Biovendor,	 Research	 and	 Diagnostics	 products,	 Czech	

Republic),	 bioactive	 FGF21	 (Eagle	 Biosciences,	USA)	 and	 FAPa	 (Abcam,	USA)	 concentrations	 by	

enzyme-linked	immunoassays	(ELISA).	

Statistics		

All	data	are	expressed	as	means	±	SEM.	Data	from	each	study	were	analyzed	via	two-way	ANOVA	

and	Tukey’s	post-hoc	test.	P	<	0.05	was	considered	significant.		
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Results	

Baseline	blood	measurements	

T2D	subjects	had	higher	fasting	blood	glucose	concentrations	when	compared	to	non-diabetic	

controls	(6.7	±	0.4	vs.	4.4	±	0.2	mmol/l;	P	<	0.01)	but	similar	fasting	insulin	levels	(12.0	±	1.0	vs.	

13.9	±	2.3	mU/L)	(Table	1).	Despite	higher	fasting	levels	of	FAPa	in	T2D	patients	compared	with	

controls	(168.4	±	12.1	vs.	134.3	±	11.8	ng/ml;	P	<	0.05),	there	was	no	difference	in	fasting	levels	

of	total	or	bioactive	FGF21	(Table	1).	No	correlation	was	observed	between	baseline	 levels	of	

FAPa	and	FGF21	(bioactive,	total	or	their	ratio).	

Blood	glucose	and	insulin	responses	to	OGTT	

In	non-diabetic	and	T2D	subjects,	oral	administration	of	a	75	g	dextrose	solution	increased	both	

circulating	glucose	(Fig	1A)	and	insulin	(Fig	1B).	Despite	a	higher	increase	in	circulating	glucose,	

the	effect	on	insulin	secretion	was	significantly	attenuated	in	the	T2D	group	(Fig	1A	and	B).	To	

determine	whether	a	postprandial	rise	of	FGF21	occurred	 in	response	to	OGTT,	we	measured	

circulating	FGF21	levels	(total	and	bioactive)	in	both	groups.	

FGF21	is	a	postprandial	hormone	that	is	impaired	in	T2D	

In	contrast	to	the	rapid	elevation	of	circulating	glucose	and	insulin,	total	FGF21	was	not	increased	

(P	<	0.01)	until	120	min	(Fig	2A).	Notably,	this	late	induction	of	total	FGF21	was	mirrored	by	an	

increase	(P	<	0.01)	in	the	bioactive	form	of	FGF21	after	90	and	120	min	(Fig	2B).	There	was	no	

effect	of	dextrose	ingestion	on	circulating	FAPa	throughout	the	OGTT	(Fig	2D).	Taken	together,	

these	data	indicated	that	the	postprandial	rise	in	total	FGF21	following	dextrose	consumption	is	
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accompanied	by	 a	 proportional	 increase	 in	 bioactive	 FGF21	 and	 elevated	 glucose	 and	 insulin	

levels.		

Although	there	was	no	significant	difference	in	the	postprandial	rise	in	total	and	bioactive	FGF21	

between	the	non-diabetic	(control)	and	T2D	groups	(Fig	2A	and	B),	the	ratio	of	bioactive	to	total	

FGF21	 responded	differently	 over	 time	 (P	 <	 0.05)	with	 a	 significant	 increase	 observed	 in	 the	

control	subjects	that	was	impaired	in	patients	with	T2D	(Fig	2C).	In	line	with	the	lower	ratio	of	

bioactive	 to	 total	 FGF21,	 circulating	 FAPa	 concentrations	 remained	 higher	 (P	 <	 0.05)	 in	 T2D	

subjects	throughout	the	OGTT	(Fig	2D).	Thus,	here	we	report	that	the	normal	postprandial	rise	in	

the	ratio	of	bioactive	to	total	FGF21	is	attenuated	in	T2D	patients	and	this	effect	is	associated	

with	 both	 reduced	postprandial	 insulin	 concentrations	 and	 increased	 circulating	 levels	 of	 the	

protease	 FAPa.	 However,	 based	 on	 our	 OGTT	 data,	 we	 could	 not	 distinguish	 whether	 the	

induction	of	FGF21	following	dextrose	consumption	was	a	result	of	increased	levels	of	circulating	

glucose	and/or	insulin.	

FGF21	is	an	insulin-dependent	postprandial	hormone	

To	 determine	 directly	 whether	 glucose	 and/or	 insulin	 account	 for	 the	 postprandial	 rise	 in	

circulating	 FGF21	 following	dextrose	 consumption,	we	assessed	 FGF21	 in	blood	 from	healthy	

volunteers	 collected	 during	 4	 h	 of	 HIHG,	 HIEG	 and	 EIHG	 clamps.	 The	 magnitude	 of	

hyperinsulinemia	and	hyperglycemia	achieved	 in	 those	clamps	was	within	 the	 range	of	blood	

glucose	and	insulin	levels	typically	seen	after	oral	carbohydrate	administration.	Consistent	with	

the	OGTT	data	in	non-diabetic	volunteers,	there	was	a	clear	time-dependent	effect	of	the	HIHG	

clamp	on	FGF21.	Total	circulating	levels	of	FGF21	and	its	bioactive	form	were	increased	(P	<	0.01)	
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after	3	h	of	infusion	(Fig	3A	and	D).	There	was	also	an	increase	(P	<	0.01)	in	total	and	bioactive	

FGF21	 following	 the	HIEG	clamps	 (Fig	3B	and	E).	 In	contrast,	 there	was	no	effect	of	 the	EIHG	

clamps	on	total	or	bioactive	FGF21	levels	(Fig	3C	and	F).	There	was	no	difference	between	trials	

in	the	bioactive	to	total	FGF21	ratio	or	circulating	FAPa	(Fig.	3G-I).	Taken	together	with	results	

collected	in	non-diabetic	and	diabetic	patients	during	the	OGTT,	these	data	suggest	that	the	rise	

in	 total	 and	 bioactive	 FGF21	 that	 occurs	 following	 dextrose	 ingestion	 is	 facilitated	 by	 the	

corresponding	increase	in	circulating	insulin	levels.		

Insulin-mediated	secretion	of	FGF21	is	impaired	following	high	fat	feeding	

Short-term	 HF	 in	 humans	 has	 been	 shown	 to	 alter	 inulin-stimulated	 substrate	 utilization	 in	

metabolically	 active	 tissues	 without	 inducing	 peripheral	 insulin	 resistance25,26.	 Thus,	 to	

investigate	whether	the	rise	in	circulating	FGF21	in	response	to	insulin	was	altered	under	such	

conditions,	we	analyzed	the	levels	of	total	and	bioactive	FGF21,	and	FAPa,	before	and	after	a	4	h	

hyperinsulinemic-euglycemic	clamp	in	human	subjects	following	a	normal	or	HF	for	6	consecutive	

days.	As	expected,	insulin-stimulated	CHO	oxidation	rate	was	20%	lower	and	fat	oxidation	60%	

higher	in	HF	compared	with	Control,	and	there	was	no	effect	of	treatment	on	peripheral	glucose	

uptake.	High	fat	feeding	per	se	(prior	to	performing	the	insulin	clamps)	did	not	alter	fasting	levels	

of	either	total	or	bioactive	FGF21	(Fig	4A	and	B)	nor	FAPa	(data	not	shown).	In	line	with	the	clamp	

studies	described	above,	subjects	receiving	the	control	diet	demonstrated	a	robust	induction	of	

FGF21	in	response	to	insulin	(P	<	0.01).	However,	following	the	HF	diet,	the	response	to	insulin	

clamp	was	impaired	resulting	in	lower	(P	<	0.05)	total	FGF21	levels	(Fig	4A)	and	a	tendency	(P	=	
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0.09)	 for	 lower	 bioactive	 form	 (Fig.	 4B)	 when	 compared	 with	 the	 control	 diet.	 The	 ratio	 of	

bioactive	to	total	FGF21	was	unaffected.		

	 	



	 13	

Discussion	

This	study	demonstrates,	for	the	first	time,	that	circulating	bioactive	FGF21	levels	respond	acutely	

to	changes	in	insulin	per	se,	rather	than	glycaemia,	in	the	postprandial	period.	In	particular,	there	

were	4	main	findings.	Firstly,	we	found	that	fasting	total	and	bioactive	FGF21	levels	are	similar	in	

non-diabetic	and	T2D	subjects,	despite	higher	fasting	levels	of	FAPa	in	T2D	patients.	Secondly,	

the	 normal	 postprandial	 increase	 in	 the	 ratio	 of	 bioactive	 to	 total	 FGF21	 is	 impaired	 in	 T2D	

patients	with	attenuated	insulin	response	to	OGTT	when	compared	to	non-diabetic	individuals.	

Thirdly,	we	demonstrate,	in	a	series	of	clamp	studies	that	are	consistent	with	the	OGTT	data,	that	

there	is	a	clear	time-dependent	effect	of	the	hyperinsulinemic-euglycemic	clamp	on	FGF21	(both	

total	 and	 bioactive).	 This	 effect	 is	 lost	 in	 the	 euinsulinemic-hyperglycemic	 clamp.	 These	 data	

suggest	 the	 rise	 in	 total	 and	 bioactive	 FGF21	 that	 occurs	 following	 dextrose	 ingestion	 is	 a	

consequence	 of	 the	 increase	 in	 insulin	 secretion.	 Finally,	 in	 response	 to	 a	 high	 fat	 dietary	

intervention	 that	 is	 known	 to	 alter	 insulin-stimulated	 substrate	 utilization,	 the	 response	 in	

circulating	FGF21	is	attenuated.	Confirming	the	mechanism	by	which	insulin	regulates	secretion	

of	FGF21	and	the	subsequent	tissue	specific	actions	of	FGF21	will	require	further	investigation.		

Recently,	excess	dietary	carbohydrate	had	been	shown	to	increase	FGF21	secretion	in	healthy	

humans18.		Furthermore,	fructose	ingestion	briefly	increased	plasma	total	FGF21	concentration	

at	2	h,	 returning	 to	baseline	within	5	h6.	This	 increase	was	correlated	with	elevated	 levels	of	

circulating	glucose	and	insulin.	Baseline	levels	of	total	FGF21	have	been	previously	shown	to	be	

elevated	in	subjects	with	MetS	that	also	exhibit	exaggerated	glucose	and	insulin	responses	to	an	

oral	glucose	load24.		
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Studies	in	rodents	have	also	implicated	carbohydrates	in	FGF21	induction;	12	h	sucrose	feeding	

(following	a	24	h	fast)	was	shown	to	induce	insulin	and	FGF21	mRNA	in	rat	liver27.	Whilst	glucose-

induced	increases	in	FGF21	gene	expression	in	hepatocytes	and	mouse	liver	were	mediated	via	

the	transcription	factor	ChREBP	(a	notion	supported	by	no	change	in	FGF21	content	in	plasma	of	

ChREBP	KO	mice	in	response	to	various	sugars),	it	was	suggested	that	glucose-stimulated	FGF21	

mRNA	expression	may	require	insulin	action28.	In	support	of	this	notion,	FGF21	expression	was	

upregulated	by	insulin	in	a	PI3-kinase-dependent	manner	in	cultured	C2C12	myocytes	and	3T3-

L1	adipocytes29.	Our	data	demonstrates	the	importance	of	insulin,	rather	than	glucose	per	se,	in	

regulating	secretion	of	FGF21	in	adult	humans.	Interestingly,	the	normal	postprandial	increase	in	

the	ratio	of	bioactive	to	total	FGF21	is	impaired	in	T2D	patients	with	attenuated	insulin	response	

to	OGTT	when	compared	to	non-diabetic	individuals.	Whether	this	is	a	consequence	of	reduced	

insulin	levels	per	se	or	resistance	to	the	action	of	insulin	requires	further	investigation.	Although	

FGF21	is	synthesized	in	multiple	organs	and	can	act	on	multiple	tissues	in	either	a	paracrine	or	

endocrine	fashion,	the	major	site	of	FGF21	production	is	the	liver7.	Therefore,	it	is	possible	that	

hepatic	insulin	resistance	in	subjects	with	MetS,	non-alcoholic	fatty	liver	disease	or	diabetes	may	

play	an	important	role	in	the	regulation	of	FGF21	by	insulin,	which	may	also	explain	the	significant	

inter-individual	variation	in	its	levels	in	those	populations. 	

FAP	has	an	extensive	tissue	expression	profile	in	addition	to	circulating	in	the	blood	of	mice,	non-

human	primates	and	humans22,23,30,31.	The	 importance	of	FAP’s	actions	were	demonstrated	 in	

vitro,	where	deletion	of	more	 than	4	 amino	acids	 from	 the	C-terminus	of	 FGF21	 significantly	

attenuates	KLB	binding	affinity,	and	in	vivo	where	the	metabolic	actions	of	FGF21	are	diminished	

in	the	absence	of	KLB	binding7,16,32-35.	Interestingly,	FAP	is	homologous	(48%	sequence	identity)	
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to	dipeptidyl	peptidase-436	(DPP4),	the	therapeutic	target	of	the	antidiabetic	DPP4	inhibitor37.	

However,	while	FAPα	activity	has	been	shown	to	increase	in	liver	and	plasma	from	patients	with	

liver	disease23,	the	impact	of	MetS	on	FAPα	activity,	and	hence	FGF21	biology,	remains	largely	

unknown.	Here	we	demonstrate	for	the	first	time	that	in	T2D,	levels	of	FAPa	are	increased	when	

compared	to	non-diabetic	controls.	Interestingly,	Talabostat	(TB),	a	known	FAP	inhibitor,	reduced	

body	weight	and	food	intake,	increased	energy	expenditure,	and	improved	glucose	tolerance	and	

insulin	 sensitivity	 in	 diet-induced	 obese	mice	 where	 total	 and	 bioactive	 plasma	 FGF21	 were	

observed	 to	 be	 elevated.	 Interestingly,	 these	 effects	 were	 attenuated	 in	 FGF21	 knockout	

animals38.	TB	was	previously	pursued	as	an	anti-cancer	treatment	and	was	found	to	be	safe	to	

support	 repeated	 dosing	 in	 human	 clinical	 trials39.	Whilst	 TB	 is	 not	 selective	 to	 FAP,	 further	

studies	 in	 humans	 are	 required	 to	 evaluate	 the	 use	 of	 FAP	 inhibitors	 as	 relevant	 treatment	

strategy	in	T2D	patients,	particularly	as	FGF21	improves	MetS	in	humans1,40.	

In	summary,	we	employed	a	physiological	and	dietary	strategy	in	human	subjects	which	revealed	

a	 stimulatory	 effect	 of	 insulin	 on	 FGF21	 secretion.	We	 demonstrate	 that	 dextrose	 ingestion	

acutely	and	robustly	increases	total	and	bioactive	FGF21	in	humans.	The	normal	postprandial	rise	

in	the	ratio	of	bioactive	to	total	FGF21	is	impaired	in	T2D	patients	that	have	attenuated	insulin	

response	to	OGTT.	The	effect	of	insulin,	rather	than	glucose	per	se,	on	FGF21	was	confirmed	in	a	

series	of	 insulin	 and	glucose	 clamp	experiments,	 in	 addition	 to	 the	HF	 study,	 suggesting	 that	

FGF21	secretion	is	regulated	by	insulin	and	is	therefore	a	postprandial	hormone	in	adult	humans.		
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Table	1:	Anthropometric	characteristics	and	baseline	blood	biochemistry	data	

	 Control		 T2D		

Subjects	 n	=	7	 n	=	7	

Age	(years)	 41.9	±	4.0	 48.3	±	2.3	

Body	mass	index	(kg/m2)	 31.2	±	1.5	 28.5	±	1.3	

Fasting	plasma	glucose	(mmol/l)	 4.4	±	0.2	 6.7	±	0.4a	

Fasting	plasma	insulin	(mU/L)	 13.9	±	2.3	 12.0	±	1.0	

Fasting	total	FGF21	(pg/ml)	 99.7	±	16.2	 117.0	±	28.1	

Fasting	bioactive	FGF21	(pg/ml)	 68.3	±	18.5	 53.5	±	23.1	

Fasting	FAPa	(ng/ml)	 134.3	±	11.8	 168.4	±	12.1#	

Values	are	means	±	SEM	obtained	in	the	fasted	state;	aP	<	0.01	&	#P	<	0.05	from	Con	(n	=	7)	
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Figure	legends	

Figure	1.	Effect	of	oral	administration	of	dextrose	on	circulating	glucose	(A)	and	insulin	(B).	Data	

are	means	±	SEM;	#P	<	0.05	from	control	(n	=	7).	

Figure	2.	Effect	of	OGTT	on	circulating	total	(A)	and	bioactive	(B)	FGF21,	the	ratio	of	bioactive	to	

total	FGF21	(C)	and	FAPa (D).	Data	are	means	±	SEM;	*P	<	0.05	from	0	min;	**P	<	0.01	

from	0	min;	#P	<	0.05	from	T2D	(n	=	7).	

Figure	 3.	 Effect	 of	 hyperinsulinemic–hyperglycemic,	 hyperinsulinemic-euglycemic	 and	

euinsulinemic-hyperglycemic	clamps	on	circulating	total	(A,	B	and	C)	and	bioactive	FGF21	

(D,	E	and	F),	and	FAPa	(G,	H	and	I).	Data	are	means	±	SEM;	*P	<	0.05	from	Pre;	**P	<	0.01	

from	Pre;	(n	=	6).	

Figure	4.	Circulating	total	(A)	and	bioactive	(B)	FGF21	before	(Pre	Diet)	and	after	(Post	Diet)	6	

days	of	either	a	High	Fat	or	Control	diet.	The	Post	Diet	values	were	obtained	in	the	fasting	

state	on	Day	7	 immediately	before	a	4	h	 insulin	clamp	and	were	also	used	as	baseline	

values	 (Pre	clamp)	 to	assess	 the	effect	of	 treatment	on	 insulin-stimulated	secretion	of	

total	and	bioactive	FGF21	(Post	Clamp	data).	Data	are	means	±	SEM;	**P	<	0.01	from	Pre;	

#P	<	0.05	from	Control	(n	=	9).	
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