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Abstract 

This paper is to rationalise the empirical aspect of the Tsai-Wu failure criterion in the context 

of UD composites associated with the determination of the interactive strength property F12 based on 

the analytic geometry.  It reveals that the condition of closed failure envelope cannot be satisfied by 

all UD composites and hence the restriction should be abandoned.  Depending on the way the failure 

envelope opens, UD composites can be classified into two categories.  (a) F12 can be determined 

uniquely using the conventional strength properties with an additional assumption that the material 

exhibits very high or infinite strength under triaxial compression at a specific stress ratio; or (b) The 

Tsai-Wu criterion leads to one of the two scenarios: either allowing infinite strength for an in-plane 

stress state or allowing infinite strength under triaxial stresses involving tension along fibres. 
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1 Introduction 

Failure criteria have been one of the central subjects in the study of composites and even more 

so in their applications.  It is fair to describe that the failure criteria available so far are mostly 

applicable practically to unidirectionally fibre reinforced composites (UD), whether as a ply in a 

laminate or a tow in a textile composite, which can be classified in terms of material anisotropy as a 

transversely isotropic material.  The state-of-the-art has been well-reflected through the series of 

World Wide Failure Exercises (WWFEs) spanning the past two decades [1-3].  The Tsai-Wu failure 

criterion is one of the earliest failure criteria proposed originally for materials of the most general 

anisotropy in a non-phenomenological manner employing a tensorial expression as the failure 

function [4] whilst most of its practical applications have been made to UD composites.  Over the 

past decades, the criterion has enjoyed remarkable success as it has been employed by researchers 

and designers all over the world.  It has been included in most textbooks on the subject of composites, 

e.g. [5].  It has also been incorporated in commercial FE codes, such as Abaqus [6].  On the other 

hand, it has been subjected to criticisms for being non-phenomenological without due consideration 
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of the failure mechanisms by employing a single quadratic function to account for all possible failure 

modes observed in experiments [7], although the quadratic function stemmed from a more generic 

and comprehensive expression [8] as a simplification.  More recent attempts of appraising it can be 

found in [9,10].  The debate on its suitability for engineering applications is likely to continue.  

Leaving the controversy aside, the performances of this criterion as published in the WWFE-I and II 

have been appropriately appraised.  It is therefore not the purpose of this paper to reproduce such an 

account in any form.  The authors have noticed that Tsai and his co-workers have continued to work 

to enable more convenient applications, e.g. [11,12]. 

Nevertheless, there has been one issue of the criterion which has never been thoroughly 

investigated, and that is the determination the interactive coefficients F12.  Tsai and his co-workers 

tended modestly to consider the Tsai-Wu criterion as empirical, e.g. [13-15].  However, the authors 

would argue that the Tsai-Wu criterion rested on a reasonably rational footing in the form as it was 

proposed [4], if one defines rationalism as formulation obtained based on logical deductions from a 

set of predefined assumptions and conditions.  On the other hand, if one defines empiricism as 

opposed to rationalism, it is associated with measures taken based mostly on experience or intuition 

with limited justifications.  It should be pointed out that employment of experimental data does not 

compromise rationality whilst extrapolating experimental data or logical consequences does.  In this 

sense, the Tsai-Wu criterion was rational conceptually with the failure function introduced as an 

assumption, if all coefficients could be determined experimentally.  In reality, though, the 

determination of all coefficients has never been achieved, in particular, those associated with 

interactive stress terms, and it does not seem likely that it will be achieved in any foreseeable future.  

Users of the criterion have therefore been left with a room for empiricism.  Putting in the context of 

UD composites as a type of transversely isotropic materials, which accounts for most applications of 

the criterion and indeed most applications of composites as a whole, the empiricism in the Tsai-Wu 

criterion was associated only with the determination of F12, if its special application to this specific 

type of materials is considered as a predefined condition. 

Given the nature of the Tsai-Wu failure criterion, determination of F12 through experimental 

means proves to be difficult as applying biaxial loads up to the failure of the material at a 

representative stress ratio has always been a challenge.  The way F12 was obtained in the Tsai-Wu 

criterion is empirical supported by limited justifications.  Various attempts of determining it have 

been summarised and presented in Table 1 [16-25].  Although the Tsai-Wu criterion has been a well-

known theory in the composites community, favoured by some while objected by others, it is the 

authors’ view that users’ judgements had been made largely without the full facts.  The objective of 

this paper is to offer one missing facet associated with the determination of the interactive coefficient, 

F12, on a rational basis to eliminate the empiricism, as far as its applications to UD composites are 
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concerned.  For this reason, the aim of this paper is neither to promote the use of the criterion in 

engineering nor to undermine it, but to develop the criterion as a theory to its full maturity for UD 

composites such that those who favour the theory will have a better reason to continue their practices 

with likely improved level confidence while those objecting it will have the full facts in front of them 

to support their views.  Equally true, having the full facts established, some of the users might change 

their views either way.  It is not for this paper to dictate the readers’ views and users still have to 

come to their own assessments objectively and intellectually.  For this reason, no efforts will be made 

to compare with experimental results to justify or disapprove the criterion.  Ultimately, experimental 

data will serve as the proof but such data are unavailable.  There is therefore a desperate need for 

them to be made available in order to address the failure of composites. 

 

2 The Original Tsai-Wu criterion 

With conventional assumptions, such as homogeneity and linear elasticity up to failure, the 

Tsai-Wu criterion [4] was originally proposed in the context generally anisotropic materials by using 

a quadratic polynomial expression of stresses with tensorial coefficients as a simplified form from a 

more comprehensive but less practical form [8].  The tensorial expressions employed enables its 

general applicability in terms of coordinate systems to be adopted to describe the problem.  However, 

generally anisotropic materials are not often encountered in practice, and the world is in fact not quite 

ready for them, if one is honest, given the coverage of existing industrial standards [26,27].  If any, 

they are likely to be orthotropic materials but put in a coordinate system off their materials principal 

axes.  As a result, the most familiar form of the Tsai-Wu criterion employs the following failure 

function for orthotropic materials in their materials’ principal axes 

2 2 2
11 1 22 2 33 3 23 2 3 13 1 3 12 1 2

2 2 2
1 1 2 2 3 3 44 23 55 13 66 12

2 2 2F F F F F F F
F F F F F F
        
     

     
     

    (1) 

which has reflected the material symmetries as present in orthotropic materials.  In this function, Fij 

and Fi (i,j=1,2,…,6) are contracted forms of 4th and 2nd ranked tensors, whilst the components not 

appearing in the function, such as F16 and F4, are deemed to vanish due to the material symmetries.  

To deliver a failure criterion, it is claimed that the material is safe if  

1F             (2) 

while the critical condition for failure is predicted when 

1F  .           (3) 

In fact, there have not been many genuine generally orthotropic materials.  It is generally 

unsatisfactory to consider laminated composites, e.g. cross-ply, or 3D textile composites as a material 

of orthotropy as far as their strength predictions are concerned, even they might exhibit orthotropic 
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elastic behaviour macroscopically.  Unlike elastic properties which are dominated by the global 

behaviour at a macroscale, strengths are dictated by localised features at a meso/micro level.  Even 

in so-called non-local theories, e.g. [28], it is still local enough with the focus placed in a small 

neighbourhood of a point of singularity, such as a crack tip.  Fortunately, most composites are made 

of UD building blocks, whether as laminae of a laminate or tows of a textile composite.  There is 

always sufficient interest in understanding the behaviour of UD composites.  The present paper should 

limit the discussion of the Tsai-Wu criterion within this category of composites in terms of its 

applicability. 

Given the random distribution of fibres in the cross-section of most UD composites, transverse 

isotropy is usually a sufficiently satisfactory description of behaviour of UD composites, for which 

one has 

33 22F F , 13 12F F , 3 2F F , 55 66F F , 

and 23 22 44

1

2
F F F  .         (4) 

The Tsai-Wu failure function can then be reduced to [4] 

     2 2 2
11 1 22 2 3 22 44 2 3 12 1 3 2

2 2 2
1 1 2 2 2 3 44 23 66 13 66 12

2 2F F F F F F
F F F F F F
       
     

      
     

   (5) 

where most of the coefficients involved can be determined as follows from the conventional strengths 

of UD composites as 

11 * *
1 1

1

t c

F
 

   22 * *
2 2

1

t c

F
 

 , 

1 * *
1 1

1 1

t c

F
 

  , 2 * *
2 2

1 1

t c

F
 

        (6) 

 44 2*
23

1
F


    and 

 66 2*
12

1
F


  

with * *
1 1 and t c   being the tensile and compressive strengths of the material along fibres, * *

2 2 and t c   

those in the direction transverse to the fibres, and *
12  and *

23 the shear strengths along and transverse 

to fibres.  These conventional strength properties of typical UD composites should be obtained when 

they are loaded under uniaxial stress states or pure shear stress states in their material’s principal axis.  

There are standards available for the experimental measurement of them, e.g. [26,27]. 

However, there is still one coefficient F12 which has not yet been specified above and it should 

ideally be determined through biaxial stress tests.  Given the difficulties in conducting this type of 

tests and the lack of standard testing procedure, no standard experimental method is available to 

determine it. 
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In [4], Tsai and Wu insisted that the failure envelope must be an ellipsoid and hence remains 

closed.  According to analytic geometry [29], this condition offers some constraints on F12 but the 

constraints are given as ranges rather than any fixed value for F12. 

For most applications under in-plane stresses, (1) or (5) can be rewritten in its 2D form as 

 2 2 2
11 1 12 1 2 22 2 66 12 1 1 2 22F F F F F F F            .     (7) 

As F12 involves only direct stresses σ1 and σ2, some considerations can be made below when the 

material is subject to biaxial direct stresses.  The critical condition (3) can be simplified in this case 

to  

2 2
11 1 12 1 2 22 2 1 1 2 22 1F F F F F          .       (8) 

This defines a typical conic section in the σ1-σ2 plane.  The condition for the failure locus in the σ1-σ2 

plane to be an ellipse is given largely as 

2
12 11 22F F F .          (9) 

However, this only defines a range for F12, which appears to be rather wide in most cases.  The 

complete determination of F12 remains as an issue to be resolved.  It has been left as an empirical 

parameter [14,15].  One form of it has been suggested as [13,30] 

12 11 22

1

2
F F F           (10) 

which was expressed in terms of conventional strength properties.  The justifications for the particular 

form (10) are  

(a) It falls in the range as defined by (9), and 

(b) It allows itself to be degenerated to that of von Mises if the material is specialised to isotropic 

having equal tensile and compressive strengths.   

While some may argue that it fits well with some of the experiments, others can always produce a 

counterargument in other cases.  Expression (10) satisfies both consideration (a) and (b) as stated 

above, but it cannot be deduced from considerations (a) and (b).  A different choice from (10) for F12 

could be −F11/2, which falls within the range (9) for and also degenerates to the von Mises criterion.  

This, in fact, reproduces the Hoffman criterion [31] which came to light in the same era as [4] but 

slightly earlier.  The focus of the present paper is on this coefficient where hitherto empiricism has 

been the norm [32], given the presence of attempts of bringing rationality into the determination of 

this strength coefficient, e.g. [20,21]. 

For the sake of clarity, the following terminologies will be adopted in this paper.  The function 

of stresses, such as those given in (1), (5) and (7) will be called failure functions, based on which the 

failure criterion (3) is presented.  The spatial surface as given by (3) will be called the failure envelope 

in the six dimensional stress space, in general.  Without any confusion, that in a three dimensional 
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subspace associated with the direct stresses only is also called the failure envelope.  The intersection 

of the failure envelope with any plane, e.g. coordinate plane σ1-σ2, is called a failure locus in this 

plane. 

Plotting (8) as a quadratic failure locus in the σ1-σ2 plane, the four conventional strength 

properties of tensile and compressive strengths along and transverse to fibres offer four anchoring 

points at the intersections with the coordinate axes, as illustrated in Fig. 1.  They are apparently 

insufficient to determine the ellipse completely as a conic section involves five independent constants, 

in general, as illustrated in Fig. 1 where both ellipses pass those four anchoring points but they are 

apparently different.  The interactive term F12 plays exactly the role of providing another anchoring 

point in the σ1-σ2 plane so that the ellipse can be uniquely determined.  Different values of F12 tend 

to tilt the ellipse as illustrate in Fig. 1. 

 

Fig.1  Elliptic failure loci determined to four anchor points on the axes 

 

Failure criteria based on failure functions, such as (1), (5) and (7), for special material systems 

or stress states, are special forms of its general presentation for completely anisotropic materials under 

3D stress states as proposed in [4] , as had been provided as special cases also in [4], and they have 

all been referred to as the Tsai-Wu criterion in the literature in the special context concerned.  When 

they were presented in [4], the coefficient(s) to the interactive terms were meant to be determined 

through biaxial tests.  The lack of success in achieving their experimental determination must have 

triggered empirical alternatives, e.g. expression (10) as was found in [30] which seemed to have 

dominated the practical applications of the Tsai-Wu criterion since then.  In the context of the present 

paper, the Tsai-Wu criterion employing expressions like (10) to determine the coefficients to the 

interactive terms in the failure function will be referred to as the original Tsai-Wu criterion, whilst 

the objective of this paper is to tackle the empirical aspect of the determination of such a coefficient. 

*
1t

 

*
2t

 

*
1c

 

*
2c

 


1
 


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3 Abandonment of the restriction of closed failure envelopes 

Tsai and Wu only considered the possibility of closed failure envelopes in their original paper 

[4].  This will be disputed in this section as a starting point in the context of its applications to 

transversely isotropic materials for which the failure function is given by (5).  It will be revealing to 

examine the failure locus in the σ2-σ3 plane where σ1=0.  In this case, the critical condition (3) becomes 

 2 2
22 2 22 3 22 44 2 3 2 2 2 32 1F F F F F F           .     (11) 

According to the established rules in analytic geometry [29], the above equation defines an ellipse in 

the 2 3   plane if the second invariant of the above conic section as a discriminator satisfies 

   22 2
22 22 44 44 22 44 44

1 1 1
2 4 0

4 4 4
D F F F F F F F            (12) 

where 
 

* *
2 244

2*
22 23

4 4 t cF

F

 


    .        (13) 

It will be shown later that  is a characteristic parameter for UD composites.  For the conic section to 

give a real ellipse, as opposed to an imaginary one, there is in fact another condition to be placed on 

the first and third invariants.  However, it seems to be implied by (12) for most practical materials.  

For conic sections, the concept of being a closed locus is equivalent to being an ellipse as otherwise 

the locus would be either a parabola or a hyperbola, which is deemed to be open.  Condition (12) is 

equivalent to  

0  .           (14) 

This places a restrictive condition on some of the strength properties for the failure locus (11) to be 

elliptic in the σ2-σ3 plane.   

Unfortunately, this condition cannot be satisfied by every material.  To facilitate the 

discussions to follow, nine different UD composites as employed in the WWFE-I, II & III [1-3] 

(composites of the same effective strength properties are considered as the same material for the 

present discussion) are quoted with their relevant strength properties listed in Table 2.  Among the 

nine different materials, two of them do not satisfy condition (14).  They produce negative values for 

 as shown in the shaded columns in Table 2, i.e.  

0             (15) 

and fall outside the category of (14)  As a result, the failure locus is hyperbolic in the σ2-σ3 plane, 

which is open.   

According to the analytic geometry [29], if  

0             (16) 

the conic section in the σ2-σ3 plane as given by (11) will be a parabola which is also open.  A parabolic 



8 
 

failure locus in the σ2-σ3 plane as defined by (16) gives a critical position between ellipse and 

hyperbola but will unlikely be satisfied precisely by a material with strengths *
2t , *

2c  and *
23  

physically measured from experiments. 

A locus in the σ2-σ3 plane is the intersection of the failure envelope in the six dimensional 

stress space to the σ2-σ3 plane.  If the locus as an intersection is open in the σ2-σ3 plane, the failure 

envelope in the stress space cannot be closed.  A clear conclusion obtained from the above elaboration 

is that, for the failure criterion as defined by failure function (5), an open failure envelope should be 

allowed for it to be applicable to all materials consistently.  The restriction of closed failure envelopes 

contradicts with the rule of analytic geometry for some practical materials.  This should therefore be 

abandoned as a rational step forward. 

In general terms, having an open failure envelope is not really entirely unacceptable.  The 

failure envelope given by the von Mises criterion is open as hydrostatic stress makes no contribution 

to the failure and therefore the strength against this stress condition is infinite, although the failure 

mechanisms in materials suitable for the von Mises criterion, typically metals, and those in 

composites are characteristically different.  The Tsai-Wu criterion was supposed to degenerate to that 

of von Mises for isotropic materials of equal tensile and compressive strengths [13,30], which would 

not be possible without allowing an open failure envelope in general.  The Hashin criteria [33] also 

assumed infinite strength for equal biaxial transverse compression, which seemed having been well-

accepted without implying authors’ approval.  This was duplicated in [20,21] for the same purpose 

of determining F12 which will be seen as an inferior assumption as there is a better one as will be 

adopted in the present paper.  The openness of the failure envelope does not necessarily exclude the 

closeness of failure loci as the intersections between the open failure envelope and some of the 

representative planes in the stress space, as will be elaborated later in this paper. 

 

4 A rational way of determining F12 

As another attempt of determining F12 for the Tsai-Wu criterion, the closed failure envelope 

restriction will be will be abandoned.  The underlying consideration is that, instead of prohibiting the 

openness of the failure envelope, it would be more productive to manage it.  As a result, the Tsai-Wu 

criterion can be fully rationalised in the context of transversely isotropic composites.  A logical 

outcome can be deduced from the following three basic assumptions for the present endeavour. 

i) The failure is determined using a single quadratic function of stresses; 

ii) The material is transversely isotropic; and  

iii) The composites exhibit much higher strength, which can be taken as infinite for 

mathematical convenience, under triaxial compression at a specific stress ratio, than any 
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of the strengths obtained under a uniaxial stress or pure shear in principal axes. 

The third assumption above, whilst widens the range for F12 greatly, has been set as tightly as possible 

in order to narrow the openness as much as possible.   

Since the framework based on the above assumptions represents a substantial deviation from 

the original Tsai-Wu criterion, with (ii) as a specialisation whilst (iii) as a fundamental extension, the 

outcome will therefore be called the rationalised Tsai-Wu criterion to distinguish it from the original 

Tsai-Wu criterion as previously defined.  A similar assumption to (iii) was made in the Hashin 

criterion [33] for equal biaxial compression in the plane transverse to the fibres.  Its counterpart in 

the von Mises criterion is infinite strength under hydrostatic pressure.  However, it will be shown that 

the reproduction of the von Mises criterion from the rationalised Tsai-Wu criterion for isotropic 

materials of equal tensile and compressive strength is not a requirement a priori.  It can be obtained 

as a natural consequence.  These two stress conditions, viz. equal biaxial compression in the plane 

transverse to the fibres and hydrostatic compression,  were taken in [20,21] and the expressions for 

F12 were derived from each of them.  In the context of the paper, a search will  be conducted for the 

stress ratio which maximises the strength.  If a more favourable stress ratio can be identified to exhibit 

higher strength than these two specific stress ratios, it will be more representative for an ‘infinite 

strength’.  The approach taken here is considered to be rational because it will be based on the above 

three assumptions only and the rest are purely logical and mathematical deduction. 

The coefficient F12 characterises only the interaction between direct stresses σ1, σ2 and σ3 

(under triaxial stresses with F13=F12 under the assumption of transverse isotropy) and therefore it is 

sufficient to consider stress states involving these direct stresses.  Given the transverse isotropy, under 

any stress state with σ2≠σ3, distortion arises in the σ2-σ3 plane which undermines the strength.  In order 

to achieve the highest strength, it is therefore sufficient to consider only stress states having σ2=σ3 in 

addition to an independent 1  by assuming a triaxial compressive stress state  

* *
1 2 3   and   r          (with 23 13 12 0     )   (17) 

where σ* is a positive value indicating the level of triaxial compression when failure takes place and 

r the ratio between the longitudinal stress and the transverse stresses.  For the stress state to be triaxial 

compression, one must have r>0.  Substituting these stresses into the failure function (5), one obtains 

    22 * *
11 22 44 12 1 24 4 2F r F F F rF rF F       .    (18) 

Failure is characterised by the critical condition 

    22 * *
11 22 44 12 1 24 4 2 1 0f r F F F rF rF F         .   (19) 

This defines *  as an implicit function of r  

 * * r  .          (20) 
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It is conceivable that σ* varies with r and σ* can take its highest value at an appropriate value of the 

stress ratio r.  Finding the favourable stress ratio to achieve the highest strength can be presented as 

an extreme value problem of an implicit function which is solved mathematically below.  In order to 

find the extreme value of σ*, the derivative of σ* with respect to r is required.  Following the rule of 

derivatives of implicit functions [29], one has 

*

*

d f f
rdr




  
 

         (21) 

where f as given in (19) is considered as a function of σ* and r.  Its partial derivatives can be found as 

follows 

 
  

2 *
11 22 44 12 1 2*

2* *
11 12 1

2 4 4 2

2 2 .

f
r F F F rF rF F

f
rF F F

r




 


     




  


     (22) 

For the implicit derivative (21) to exist, one should have 

 2 *
11 22 44 12 1 2*

2 4 4 2 0
f

r F F F rF rF F



      


    (23) 

which can be later verified if one wishes.  Thus 

  
 

2* **
11 12 1

2 *
11 22 44 12 1 2

2 2

2 2 4 2

rF F Fd

dr r F F F rF rF F

 


 
 

    
 .    (24) 

It vanishes to give the necessary condition for an extreme value of σ* with respect to r, i.e.  

  2* *
11 12 12 2 0rF F F    .       (25) 

This can be re-written into  

*
12 1 12 1

* *
11 11 11

4 2

2 2

F F F F
r

F F F


 


      .       (26) 

It is anticipated that, when the stress ratio r satisfies the above, the material would be able to sustain 

a stress level significantly higher than its strengths under uniaxial stresses, i.e. σ* can be taken to a 

value significantly greater than any of * *
1 1, t c  , * *

2 2, t c   and *
23 .  In other words, the failure envelope 

in the σ1-σ2-σ3 space is significantly elongated or open in the triaxial compressive octant.  If so, the 

term with *  in the denominator can be neglected and r can therefore be approximated as 

12

11

2F
r

F
  .          (27) 

The same ratio as above can be equally obtained if F1 is negligibly small, i.e. the tensile and 

compressive strengths in fibre direction are sufficient close to each other.  On the other hand, 

rearranging (19), one has 
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 
 21 2

12 11 22 442 **

21 1
4

4 44

rF F
F r F F F

r rr 


          (28) 

where the first two terms on the right hand side of the above equation have σ* in the denominator.  

With the same argument as above, these two terms can be neglected to give 

 11
12 22 44

1
4

4 4

rF
F F F

r
    .        (29) 

It should be pointed out that the smallness of F1 and F2 alone would not be sufficient to deliver (29) 

from (28) and one has to resort to the largeness of *  in this case. 

Substituting (27) into (29) to eliminate r, one obtains a simple quadratic expression for F12 as 

follows 

  2 11
12 22 444

4

F
F F F  .         (30) 

It can then be presented as 

 12 11 22

1

2
F k F F           (31) 

where 0k      with   being defined in (13).      (32) 

The dimensionless parameter  is an important material property defined completely by the 

strength properties of the material.  It must be non-negative for (32) to produce a real value for k.  It 

has significant implications on the nature of the failure envelope if it becomes negative as will be 

explored later in this paper. 

In order to determine the sense of F12 as obtained in (31), substituting (31) into (27) 

11 22 22

11 11

k F F F
r k

F F
           (33) 

where the plus or minus signs are kept consistent with those in (31).  For the stress state as defined in 

(17) to be triaxial compression, r must take the positive sign, i.e. 

 
* * * *
2 2 1 122

2 * **
11 2 223

4 t c t c

t c

F
r k

F

   
 

    .       (34) 

Accordingly, F12 in (31) should take the negative sign to be consistent with the sense of r, i.e. 

 
* *
2 2

12 11 22 2 * * * **
1 1 2 223

1 1 1
4

2 2
t c

t c t c

F k F F
 

   
      .    (35) 

For the sake of mathematical rigor in validating the above manipulations, one can verify that the 

denominator of (24) does not vanish.   

Expression (35) can be viewed as a corrected form of the empirical expression of F12 in the 

original Tsai-Wu criterion as given in (10) with a correction factor of k.  The correction is obtained 
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here in a completely rational manner based on a set of three clearly stated assumptions, in particular 

the third one, i.e. UD composites exhibit much higher strengths under triaxial compression at an 

appropriate stress ratio than any of the strengths under a uniaxial stress or pure shear stress state in 

the materials’ principal axes, after abandoning the closed failure envelope restriction.  It is uniquely 

determined without any empiricism.  The identical result can also be obtained alternatively by finding 

the principal axes of the conic section instead of the extreme value approach as adopted above. 

It can be observed that the F12 obtained here also enables (5) or (7) to degenerate to the failure 

function of the von Mises criterion for isotropic materials of equal tensile and compressive strengths, 

where * * *
2 2t c     and * * * 3t    , and, as a result, 

 
* *
2 2

2*
23

4 1t c 


    and k=1.  It was 

mentioned previously that the Hoffman criterion also degenerates to the von Mises criterion.  It has 

been shown here once again that (10) is indeed not the only expression to reproduce the von Mises 

criterion, neither a rational one.  

It is obvious to observe from (35) that with δ≥0, 

0 2k   thus 11 22 12 0F F F   .      (36) 

The failure locus in the σ1-σ2 plane is therefore always closed, i.e. an ellipse, like the one as shown in 

Fig. 1, as well as in the σ1-σ3 and σ2-σ3 planes.  However, in the σ1-σ2-σ3 space, the failure envelope 

is open, in fact a paraboloid.  The openness of the failure envelope can be easily shown in the σ2=σ3 

plane where the analytic geometry dictates that the failure locus as a conic section is a parabola, as 

dictated by condition (30) as the condition for a parabola.  The σ2=σ3 plane should not be confused 

with the σ2-σ3 plane.  Putting in a form of an equation for the plane analytically in consistence with 

the σ2=σ3 plane, the σ2-σ3 plane should be given as σ1=0.  In the σ2-σ3 plane, the failure locus is an 

ellipse as previously stated, in contrast with that in the σ2=σ3 plane.  The central axis of the paraboloid 

in the σ1-σ2-σ3 space is 1 2 3r r    .  It opens towards the triaxial compression octant and intersects 

with coordinate planes finitely, giving elliptic failure loci as intersections with these planes. 

It can be proven that if r is assigned any value other than that given in (34), finite strength will 

be obtained.  Infinite strength is obtainable only at a unique stress ratio which is neither hydrostatic 

compassion (r=1) nor equal biaxial compassion transverse to fibres (r=0), in general.  It is completely 

determined by conventional strength properties and hence varies from material to material as shown 

in Table 2. 

Another observation is the involvement of the transverse shear strength *
t  in the expression 

of F12 and it is necessary even for the assessment of failure under in-plane stress conditions.  However, 

this is not uncommon and the similar observation can be made on the Puck criterion [34] although 

the explicit inclusion of it was avoided by the introduction of a hypothetic relationship between the 
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transverse and in-plane shear strengths along with some assumed slopes to the failure envelope.  It 

does affect the practicality to an extent, especially when only in-plane stress states are of interest.  In 

Table 2, the case for T300/BSL914C could not be addressed with the present formulation because of 

the lack of this particular strength properties.  However, it is an established experimental observation 

that the failure could take a mode out of the plane whilst under in-plane stresses as illustrated in [34].  

Although the Tsai-Wu criterion is independent of failure mode, the present rationalisation must have 

hit some right cords if it captures a genuine feature of physics purely from mathematical and logical 

deduction.  For potential users of the Tsai-Wu criterion in its present rationalised form, one would 

have to get used to a culture that the complete set of strength properties should include *
23  even for 

plane stresses.  If one cares to look back in history of the early days of solid mechanics, Young’s 

modulus had been perceived as the only elastic property required for some time before Poisson’s ratio 

was eventually introduced.  The ability of adapting itself to embrace advances in development and 

improvements in understanding is the spirit of science. 

 

5 Examples and discussions 

For the six materials satisfying >0 as listed in Table 2, their values of , k and r have been 

calculated and listed in Table 2.  The corrected values of F12 are comparable to the values as suggested 

in the original Tsai-Wu criterion but the differences are sometimes significant enough, e.g. for one of 

the most common types of composites, IM7 carbon/epoxy. 

Using the obtained corrections for 2D in-plane stress conditions, the failure loci have been 

plotted in Fig. 2 for the materials shown in Table 2 for those satisfying >0 and they are compared 

with their original form as directly obtained from the Tsai-Wu criterion.  The differences that the 

rationalism has made are marginal in most parts of these failure loci, except for E-glass/LY556 and 

IM7 carbon/8551-7.  The most pronounced discrepancies are found in the compression-compression 

quadrant.  This is a natural consequence of the due consideration given to the triaxial compressive 

strength in the present formulation.  It is admirable that Tsai and Wu’s empiricism hit the target with 

such accuracy intuitively.  However, it should be pointed out that differences would be significantly 

more pronounced when 3D stresses are involved. 

The corrected form of F12 as obtained in (35) is subject to condition >0.  Obviously, there 

are real materials falling outside of this category and one cannot turn a blind eye to these materials.  

This aspect will be pursued in the next section. 
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Fig. 2  In-plane failure loci for UD composites as indicated: comparison between the present theory 

and the original Tsai-Wu criterion   (a) AS4 carbon/3501-6, (b) E-glass/LY556, (c) E-glass/MY750, 

(d) IM7 carbon/8551-7, (e) T300 carbon/PR-319 and (f) A-S carbon/epoxy 1 
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It can also be observed from Table 2 that the stress ratios corresponding to the infinite strength 

is quite different from r=1, i.e. hydrostatic compression.  In fact, the strength under hydrostatic 

compression is bounded, typically not very high if one evaluates it.  In the light of this observation, 

the discussions on the infinite strength or the lack of it under hydrostatic compression [2] would not 

seem relevant.  The expression of F12 obtained under this assumption in [20-21] would therefore not 

be the most appropriate.  Apparently, hydrostatic pressure is not the favourable stress ratio for UD 

composites to exhibit highest strength.  Rather on the contrary, much higher longitudinal stresses than 

the transverse stresses should be applied in general in order to achieve the highest strength due to the 

anisotropy of the strength characteristics of UD composites.  Existence of infinite strength as obtained 

here is a logical consequence of the fact that failure function is described as a quadratic function and 

that the material is transversely isotropic.  It is neither a proven physical fact nor mathematical 

necessity if one introduced different failure functions.  It should not be dismissed light-heartedly, in 

the authors’ opinion, simply based on physical or ideal experiments under hydrostatic pressure as it 

is not necessarily to be the strongest aspect of the material given its anisotropy. 

The Hashin criterion [33] was also based on a quadratic failure function.  In its derivation of 

for matrix failure under compression, it assumed infinite strength under equal biaxial compression 

transverse to the fibres, which corresponded to r=0.  The present study also challenges the validity of 

the assumption Hashin made there. 

 

6 Cases where <0 

The conclusion from the previous sections is only applicable if 0 and it is deduced from the 

three assumptions introduced at the beginning of Section 4.  In the case of <0, as is the subject of 

this section, the failure envelope in the stress space will have to be open as argued in Section 3 and 

hence the following discussion will be made with two basic assumptions. 

i) The failure is determined using a single quadratic function of stresses; and 

ii) The material is transversely isotropic. 

One will then find that it is no longer possible to identify any meaningful condition to obtain a real 

value for F12.  To facilitate the elaboration in this section, the discussion can be made on two mutually 

exclusive but collective comprehensive scenarios, i.e. 2
12 11 22F F F  or 2

12 11 22F F F .  Given the transverse 

isotropy, σ1-σ2 and σ1-σ3 planes are equivalent and the discussion can be made to only one of them, 

say, σ1-σ2.   

a) 2
12 11 22F F F :  This allows the failure locus in the σ1-σ2 plane to be open. 

b) 2
12 11 22F F F :  This means that the failure locus in the σ1-σ2 plane must be closed. 
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Consider scenario (a) first.  A conic section has three possibilities as sketched in Fig. 3, i.e. 

an ellipse, a parabola or a pair of hyperbolae.  Relatively, the σ1-σ2 plane is by large the best known 

aspect of the UD composites, although data sets are still wanting under many stress ratios to offer a 

complete assessment.  From what are available, there does not seem to be any evidence or any sensible 

justification remotely suggesting the likelihood of infinite strength under any stress state in the σ1-σ2 

plane.  To expect F12 to fall within scenario (a) above, i.e. to allow infinite strength at a certain stress 

ratio, one would have to justify such a possibility as his/her first formidable task.  As it is most 

unlikely to be true, it will not be explored in this paper.  Readers are reminded that the objective of 

this paper is not to draw conclusion on applicability of the Tsai-Wu criterion.  Rather it is to reveal 

all logical implications such that users could make their choice in an informed and objective manner. 

If one chooses to reject the possibility of any open failure locus in the σ1-σ2 plane, i.e. F12 falls 

within the range defined by scenario (b), then he/she will observe the logical consequence according 

to the analytic geometry.  Within this range, the following exercise can be carried out. 

The failure loci in a special plane, σ2=σ3, is examined, after introducing the intersection of this 

plane with the σ1=0 plane as a new axis 
2 32 2t     so that it is in the same scale as σ2 and σ3.  

The σ2=σ3 plane can also be called the σt-σ1 plane, as the shaded plane in Fig. 4.  The failure locus on 

this plane is analytically given as 

 2 2
11 1 22 44 12 1 1 1 22 4 4 2 2 2 1t t tF F F F F F           .   (37) 

It can be easily seen that the second invariant as a discriminator of the above conic section  

  2
11 22 44 122 4 8 0D F F F F            (38) 

given 44

22

4 0
F

F
     whilst F11, F22 and 

2
12F  are all positive.  As a result, the conic section as defined 

by (37) gives a pair of hyperbolas for any given value of F12 within the range of 2
12 11 22F F F .  If one 

plots these hyperbolas in the σt-σ1 plane for all permissible values of F12, i.e. 

11 22 12 11 22F F F F F   , a family of loci can be obtained, as shown in Figs 5(a) and (b) for S-2 

glass/Epoxy 2 and G40-800/5026, respectively, the two materials in Table 2 falling into the category 

of <0.  The loci are bounded by the limits of the range, i.e. 12 11 22F F F  , shown as red and blue 

line in Figs 5(a) and (b), respectively.  The shaded areas on the inner side of the bounds correspond 

to condition F<1, defining the safe zone of the stress states for the material, although the disconnected 

shaded part on the right in Fig. 5(b) is not accessible as loading process must start from the origin and 

any accessible state should be connected to the origin.  Despite the disparity in appearance between 

Figs. 5(a) and (b), some common observations can be made:  (1) There is an infinite number of stress 

ratios between 1 and t, at which infinite strengths can be obtained and (2) Some of such stress ratios 
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involve tensile stress in the fibre direction. 

 

 

Fig. 3  Failure loci in the σ1-σ2 plane for different ranges of F12 

 

 

 

 

 

 

 

Fig. 4  The σt-σ1 plane 

As a more conservative measure of the safe zone, one can take the darkly shaded subzone 

bounded by the dashed lines which are parallel to the asymptotes to the loci boundaries next them.  

These two dashed lines can be expressed as  
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(a) 

(b) 

Fig. 5  The envelope of failure loci in the σt-σ1 plane for all permissible values of F12 if the failure  
loci in the σ1-σ2 and σ1-σ3 planes remain closed (a) S-2 glass/Epoxy 2 and (b) G40-800/5026 (Blue 

and red correspond to the extremes of the range 12 11 22F F F   while yellow to the case of original 

Tsai-Wu criterion) 
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To summarise the observation over the case of <0, it is clear that any choice of the value of 

F12 will lead to a scenario of infinite strength under stress states other than triaxial compression, which 

are hard to defend.  If the value of F12 is chosen so that 2
12 11 22F F F , the failure loci in the σ1-σ2 plane 

will be open, either as a parabola or hyperbola.  Alternatively, if 2
12 11 22F F F , to keep the failure locus 

closed in the σ1-σ2 plane, i.e. the ellipse as shown in Fig.3, infinite strengths are inevitable under 

triaxial stresses at infinite number of stress ratios, e.g. at 
* *
1 1

1 2 3 * *
2 2

: : 1 1 : 1: 1
4

t c

t c

    
 

 
      

 
, where 

the stress along fibres is tensile while the transverse stresses are compressive, as shown in Fig. 5(a) 

and (b).  The dilemma arrived in the case of <0 is a logical consequence of the use of a single 

quadratic failure function and the transverse isotropy of the material.  The position cannot be altered 

in presence of these two assumptions, which challenges directly the applicability of the Tsai-Wu 

criterion to this category of materials. 

 
7 Concluding remarks 

In this paper, the quadratic failure function as proposed by Tsai and Wu [4] has been subjected 

to a systematic re-examination from the mathematical perspective guide by the principles of analytic 

geometry in the context of transversely isotropic materials such as UD composites.  It has been first 

argued that the failure envelope in the stress space cannot be kept closed for all materials and it is 

therefore more appropriate to manage the opening than prohibiting it.  A non-dimensional parameter 

 
* *
2 2

2*
23

4 t c 



   has been introduced which is completely determined by materials’ conventional 

strength properties.  The sense of this parameter divides all UD composites into two categories, i.e. 

δ≥0 and δ<0.  For the former category, allowing infinite strength under a certain triaxial compressive 

stress ratio provides a condition for the unique determination of the interactive coefficient F12, as well 

as the associated stress ratio, in a rational manner.  This helps to eliminate the empiricism associated 

with this coefficient as a longstanding issue of the Tsai-Wu criterion.  The obtained rational 

expression of F12 can be considered as a corrected form from that in the original Tsai-Wu criterion.  

It has also been shown that such rationalised Tsai-Wu criterion is also capable of reproducing the von 

Mises criterion for isotropic materials of equal tensile and compressive strengths.  As the 

rationalisation is based on the assumption of the existence of much higher strength under a specific 

triaxial compressive stress state than its strengths under uniaxial loading conditions or pure shear in 

the material’s principal axes, and hence approximated as infinite, its validation could only come from 

the experimental evidences observed under triaxial compression at an appropriate stress ratios, 

usually, with much lower transverse stresses than the longitudinal one.  Hydrostatic stress is not the 
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right one for this purpose, in general.  Experimental data from triaxial compression tests over a 

reasonable range of different stress ratios are scarce in the literature [2].  No solid understanding will 

be truly established without such experimental data.  Readers are reminded of the role of experiments 

by Bridgman [35] at high hydrostatic pressures on metals which laid the foundation for the systematic 

theory of plasticity [36].  It is hoped that some experimentalists would be incentivised to fill this gap 

to pave the way to the establishment of the next generation of composites failure criteria of higher 

level of fidelity. 

For the category of δ<0, if one chose to apply the Tsai-Wu criterion, it has been established 

in this paper that any value of F12 would imply features hard to defend, either to allow the failure 

locus in the σ1-σ2 plane to be open, i.e. allowing infinite strength under an in-plane stress state, or to 

allow a range of triaxial stress states to exhibit infinite strength, including some involving tension in 

the fibre direction.  

Although the discussions in the present paper are made in the context of transversely isotropic 

materials as a special case of general orthotropic or completely anisotropic materials, logic dictates 

that the similar behaviours, if not more serious, can be expected for general orthotropic or completely 

anisotropic materials, at least for some of them.  In this sense, whilst restricted to the UD composites, 

as a type of for transversely isotropic materials, a degree of generality of the considerations put 

forward in this paper should preserve for general orthotropic or completely anisotropic materials. 
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Table 1 Previous studies on the determination of the interactive term F12 in the Tsai-Wu failure criterion 

Author (year) Method Lay-up and loading Remarks 

Tsai and Wu 
(1971) 

They noted that F12 could be determined 
using infinite number of combined 
stresses, mentioned five cases: 
(a) Biaxial tension 
(b) Tension of off-axis 45 lamina 
(c) Compression of off-axis 45 lamina 
(d) Positive shear 
(e) Negative shear 

(a) 1=2=P (P: tensile stress) 
(b) 1=2=6=T/2 (T: tensile strength of the 45 lamina) 
(c) Off-axis compression of 45 lamina:  
 1=2=6= -T’/2 (T’: compressive strength of -45lamina) 
(d) 1= -2= V (V: positive shear strength of 45lamina) 
(e) 1= -2= -V’ (V’: negative shear strength of 45 lamina) 

See also the work of Narayanaswami 
and Adelman (1977) 

Wu (1972) Biaxial loading of a lamina 0 lamina under various 1 versus 2 loadings  Large scatter, F12 close to 0. 

Clouston and Lam 
(2001) 

Probabilistic approach 15 laminates under compression Large scatter in results (c.a. 15%) 

DeTeresa and 
Larsen (2001) 

Assuming infinite strength under 
hydrostatic compression  

Hydrostatic pressure 
1=2=3= -Phyd 

ଵଶܨ =  ଵଵ/4ܨ−

DeTeresa and 
Larsen (2001) 

Assuming infinite strength under equal 
biaxial transverse compression 

Equal biaxial compression 
2=3 = -Pbia 

ଶଷܨ =  ଶଶܨ−

Hansen (1992) Experimental 10° Off-Axis Strength  

Hansen (1992) and 
Hansen et al (1993) 

Experimental Modified uniaxial strain test For 1 > 2 and 2 > 1   

Evans and Zhang 
(1987) 

Combined experimental and analytical Uniaxial strain tests on unidirectional lamina for both  2=0 and 
1=0 

Focussed on in-plane formulation. 
F12 given in terms of lamina failure 
strains and moduli of the lamina 

Pipe and Cole 
(1973) 

Combined testing and analysis Tension and compression of off-axis coupons with various ply 
angles: 15, 30, 45 and 60  

Boron/epoxy materials.  Large 
variation of F12 for tension tests and 
acceptable variation for compression 
tests.  

Kallas and Hahn 
(1990) 

Testing and analysis Diametral compression Valid for F23 
ଶଷܨ =  ଶଶ/2ܨ−
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Narayanaswami 
and Adelman 
(1977) 

Experimental 

Off-axis tension : 1=2=6=T/2 
Off-axis compression: 1=2=6= -C/2 
Positive shear: 1= -2=V, 6=0 
Negative shear: 1= -2=V’, 6=0 
Biaxial tension: 1=2=P, 6=0 
Biaxial compression: 1= -2=P’, 6=0 

They suggested setting F12=0. 
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Table 2 UD composite properties and the results from the present formulation 

Data from WWFE I II III 

Material 
AS4 

3501-6 
T300 

BSL914C 
E-glass 
LY556 

E-Glass 
MY750 

IM7 
8551-7 

T300 
PR-319 

A-S 
Epoxy 1 

S-2 glass 
Epoxy 2 

G40-800 
5026 

*
1t  (MPa) 1950 1500 1140 1280 2560 1378 1990 1700 2750 

*
1c  (MPa) 1480 900 570 800 1590 950 1500 1150 1700 

*
2 t  (MPa) 48 27 35 40 681 40 38 56.52 703 

*
2c  (MPa) 200 200 114 145 185 125 150 180 210 

*
23  (MPa) 554 N/Available 505 506 57 45 50 40 57 

 0.8264 N/Available 2.404 1.680 0.1280 1.531 1.720 -2.356 -0.5245 

k 0.9091 N/Available 1.550 1.296 0.3578 1.237 1.311 N/Applicable N/Applicable 

r 15.76 N/Available 19.79 17.22 6.437 20.02 30.01 N/Applicable N/Applicable 

Present F12 (10-6) 
(1/MPa2) 

-2.731 N/Available -15.23 -8.409 -0.7906 -7.647 -5.027 N/Applicable N/Applicable 

Tsai-Wu’s F12 (10-6) 
(1/MPa2) 

-3.004 -5.856 -9.820 -6.488 -2.210 -6.180 -3.833 -3.546 -1.907 

 

                                                           
1 Average taken from *

2 73t   and 
*
3 63t  MPa in direction 2 and 3, respectively 

2 Average taken from *
2 63t   and *

3 50t  MPa in direction 2 and 3, respectively 

3 Average taken from *
2 75t   and *

3 65t  MPa in direction 2 and 3, respectively 
4 From WWFE-III [3] 
5 From WWFE-III [3] 
6 From WWFE-II [2] 


