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In the long-standing quest to reconcile gravity with quantum mechanics, profound connections have been unveiled
between concepts traditionally pertaining to quantum information theory, such as entanglement, and constitutive fea-
tures of gravity, like holography. Developing and promoting these connections from the conceptual to the operational
level unlocks access to a powerful set of tools, which can be pivotal towards the formulation of a consistent theory
of quantum gravity. Here, we review recent progress on the role and applications of quantum informational methods,
in particular tensor networks, for quantum gravity models. We focus on spin network states dual to finite regions of
space, represented as entanglement graphs in the group field theory approach to quantum gravity, and illustrate how
techniques from random tensor networks can be exploited to investigate their holographic properties. In particular,
spin network states can be interpreted as maps from bulk to boundary, whose holographic behaviour increases with
the inhomogeneity of their geometric data (up to becoming proper quantum channels). The entanglement entropy of
boundary states, which are obtained by feeding such maps with suitable bulk states, is then proved to follow a bulk area
law, with corrections due to the entanglement of the bulk state. We further review how exceeding a certain threshold
of bulk entanglement leads to the emergence of a black hole-like region, revealing intriguing perspectives for quantum
cosmology.

I. INTRODUCTION

Holography has been a driving theme of research in quan-
tum gravity since the discovery of the Bekenstein-Hawking
area law for black hole entropy1,2 and the discussion on in-
formation loss and Hawking radiation3,4. Aspects and re-
alisations of the holographic principle, originally proposed
by ’t Hooft5 and later developed by Susskind6 and Bousso7,
have been extensively studied at both classical and quan-
tum level. Relevant instances include, out of a very wide
range of contributions, early work on the microscopic in-
terpretation of the black hole entropy8–11; on the recover-
ing of gravitational dynamics from the thermodynamics of
boundaries12,13; on the duality between the gravitational the-
ory of asymptotically anti de Sitter (AdS) spacetime and a
conformal field theory (CFT) leaving on its boundary, known
as AdS/CFT correspondence14–17 (and, within the latter, the
Ryu-Takayanagi formula18,19 relating the boundary entangle-
ment entropy to the area of a bulk surface); on holography in
loop quantum gravity20–22.

In recent years, an intriguing connection between grav-
ity, holography and quantum entanglement has come to light.
On one hand, several results point to entanglement as the
“glue” of spacetime23–25; on the other, entanglement turns out
to be intimately tied to holography in quantum many-body
systems26, and quantum spacetime can indeed be understood,
in several background-independent approaches to quantum
gravity, as a collection of (fundamental, “pre-geometric”)
quantum entities27, i.e. as a (background-independent) quan-
tum many-body system28. Understanding the origin of the
gravity/holography/entanglement threefold connection would
therefore be a major step towards the formulation of a theory
of quantum gravity29.

The main aim of this article is to review recent results30–32

that stand out for investigating holography directly at the

level of quantum gravity states, in a quasi-local context and
via a quantum information language. The focus is on fi-
nite regions of 3D quantum space modelled by spin networks,
i.e. graphs decorated by quantum geometric data (a formalism
originally proposed by Penrose33) which enter, as kinematical
states, various background-independent approaches to quan-
tum gravity34–36. Crucially, such states are understood as aris-
ing from the entanglement of the quantum entities (“atoms of
space”) composing the spacetime microstructure, in the group
field theory (GFT) framework36,37; that is, as graphs of entan-
glement. This formalism has the remarkable property of re-
alising, directly at the level of the quantum microstructure of
spacetime, the interrelation between entanglement and space
connectivity supported by several results in quantum gravity
contexts and beyond18,19,23–25,38. Moreover, as entanglement
graphs, the spin network states are put in correspondence with
tensor networks39, a quantum information language that ef-
ficiently encodes entanglement in quantum many-body sys-
tems. Such an information-theoretic perspective on spin net-
work states is then exploited to investigate the role of en-
tanglement (and quantum correlations more generally) in the
holographic features of quantum spacetime, via tensor net-
work techniques.

As further reviewed in this article, the aforementioned ap-
proach is shared by a rich body of work at the interface of
quantum gravity, quantum information and condensed matter
physics which looked at entanglement on spin networks as
a tool for probing and reconstructing geometry. It includes
the modelling of quantum black holes and the computation
of the horizon entropy40–43; the reconstruction of a notion of
distance on spin networks from entanglement44,45; the char-
acterisation of the entanglement entropy between an arbitrary
region of a spin network and its complement46–49; the use of
entanglement to glue quantum polyhedra dual to spin network
vertices50,51; the study of the holographic properties of spin
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network states51–53.
The results of Ref. 30–32 reviewed here investigate holog-

raphy in finite regions of quantum space from two different
perspectives: (i) by studying the flow of information from the
bulk to the boundary, and (ii) by analysing the information
content of the boundary, and its relationship with the bulk.
The idea behind perspective (i) is the possibility (pointed out
for the first time in Ref. 54) to interpret every spin network
state as a bulk-to-boundary map, and the holographic charac-
ter of the latter is traced back to how close it comes to be-
ing an isometry. The impact of combinatorial structure and
geometric data of spin network states (matching random ten-
sor networks) on the “isometry degree” of the corresponding
bulk-to-boundary maps is then studied, by relying on random
tensor network methods. Perspective (ii) focuses on the entan-
glement entropy content of boundary states, obtained by feed-
ing the aforementioned bulk-to-boundary maps with a bulk
input state, upon varying the latter. The result is twofold: on
one hand, a bulk area law for the boundary entropy, with cor-
rections due to the bulk entanglement; on the other, the emer-
gence of horizon-like surfaces when increasing the entangle-
ment content of the bulk.

This focused review is structured in four sections. The first
one is dedicated to the quantum gravity framework: subsec-
tions II A and II B show the logical path from a quantised, el-
ementary portion of space (a tetrahedron) to extended discrete
quantum geometries, and the dual spin network description;
subsection II C presents group field theories, quantum grav-
ity models in which spin networks can be readily understood
as graphs of entanglement, and as kinematic quantum gravity
states; finally, subsection II D illustrates the tensor network
perspective on spin network states. In section III we give an
overview of earlier results on the study of entanglement on
spin network states and its role in reconstructing geometry.
Section IV is dedicated to random tensor network techniques,
adapted to the considered quantum gravity framework; more
specifically, it shows how to compute the Rényi-2 entropy of
a certain class of spin network states via a statistical model.
Section V contains the aforementioned results on the holo-
graphic features of spin network states matching random ten-
sor networks, from the perspective of bulk-to-boundary maps
(subsection V A) and of the entanglement entropy of boundary
states (subsection V B).

II. QUANTUM GRAVITY STATES AS ENTANGLEMENT
GRAPHS

Several approaches to quantum gravity, e.g. loop quan-
tum gravity34, spinfoam models35 and group field theories36,37

(GFT), describe regions of 3D space via spin networks, graphs
decorated by quantum geometric data. We review how spin
networks can be constructed from elementary portions of
space (e.g. small tetrahedra) quantised and glued together to
form extended (discrete) spatial geometries; crucially, the glu-
ing derives from entanglement, and spin networks can thus be
regarded as the entanglement structure of many-body states
for the set of elementary tetrahedra. We then introduce group

field theories36,37, quantum gravity models where the above
picture is realised, and spin networks from many-body entan-
glement can be understood as kinematical quantum gravity
states. We conclude by reviewing recent results30 on the for-
mal correspondence between spin network states and tensor
networks.

A. Quantum tetrahedron and the dual spin network vertex

Consider an elementary portion of 3D space, a tetrahedron,
whose faces are labelled by an index i = 1,2,3,4. The (classi-
cal) geometry of the tetrahedron can be described by four vec-
tors {~Li}4

i=1, with~Li normal to the i-th face and having length
equal to the face area, which satisfy the closure constraint55:

4

∑
i=1

~Li = 0. (1)

The equivalence class of the four vectors {~Li}4
i=1 under global

rotations encodes a geometrical configuration of the tetrahe-
dron. Note that, as the vectors {~Li}4

i=1 are elements of the
su(2) Lie algebra, we can equivalently describe the geometry
of the tetrahedron via the dual SU(2) group elements {gi}4

i=1
(more precisely, via the equivalence class of {gi}4

i=1 under
global SU(2) action).

The quantisation of the phase space of geometries of a
tetrahedron56–58 leads to the Hilbert space H = L2(G4/G),
where G = SU(2); i.e. the quantum state of geometry of
a tetrahedron is described by a wave-function f (~g), where
~g = {g1,g2,g3,g4}, that satisfies

f (~g) = f (h~g) ∀h ∈ SU(2), (2)

with h~g ..= {hg1,hg2,hg3,hg4}.
By the Peter-Weyl theorem, the wave-function f (~g) can

be decomposed into irreducible representations j ∈ N
2 of

SU(2)59:

f (~g) = ∑
~j~m~n

f
~j
~m~n

4

∏
i=1

√
2 ji +1D ji

mini(g
i) (3)

where we used a vector notation for set of variables attached to
the four faces of the tetrahedron, e.g. ~j = { j1, j2, j3, j4}; the
magnetic index mi (ni) labels a basis of the ji-representation
space V ji (its dual V ji∗); and D ji

mini(gi) is the Wigner matrix
representing the group element gi. When taking into account
the gauge symmetry (see Eq. (2)), both the expansion coef-
ficients and the Wigner matrices end up contracted with a
SU(2)-invariant tensor, i.e. an intertwiner ι , pertaining to the
Hilbert space

I
~j ..= InvSU(2)

[
V j1 ⊗ ...⊗V j4

]
(4)

and ensuring the gauge invariant recoupling of the four spins
{ ji}4

i=1. Equation (3) then becomes59

f (~g) = ∑
~j~nι

f
~j
~nι

s
~j
~nι
(~g), (5)
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FIG. 1. Spin network vertex (black) representing the tetrahedron
(grey). Every edge ei of the vertex is dual to a face of the tetrahe-
dron, carries a representation spin ji and, at the free endpoint, the
magnetic index (spin projection) ni; the intertwiner ι deriving from
the recoupling of the four spins is associated to the intersection points
of the four edges.

where

s
~j
~n,ι(~g)

..= ι~m

4

∏
i=1

√
2 ji +1D ji

mini(g
i) (6)

is the generic element of the spin network basis, and f
~j
~nι

..=

f
~j
~m~nι~m. We denote by d j

..= 2 j+1 the dimension of the repre-
sentation space V j, and by D~j the dimension of the intertwiner

space I
~j.

The spin network basis {|~j~nι〉} diagonalises the area and
volume operators60–63, and thus possesses a clear geometrical
interpretation; more specifically, the SU(2) spin ji determines
the area of the i-face of the tetrahedron, while the intertwiner
ι determines its volume.

The quantum tetrahedron can be graphically represented as
a vertex with four edges, each one identified by a colour i,
where the i-th edge (denoted by ei) is dual to the i-th face of
the tetrahedron and carries the corresponding quantum data
(see figure 1): in the group basis, the edge ei carries a group
variable gi; in the spin network basis, the edge ei carries a spin
ji and, at the free endpoint, the magnetic index ni, while the
intertwiner quantum number ι is attached to the vertex itself.
This structure is called spin network vertex.

At the level of the Hilbert space of the quantum tetrahedron,
the spin network decomposition performed via the Peter-Weyl
theorem reads

H = L2(G4/G) =
⊕
~j

(
I

~j⊗
4⊗

i=1

V ji
)
, (7)

where the intertwiner space I
~j is defined in Eq. (4).

The above construction can be easily generalised to any el-
ementary polyhedron. In particular, the quantum version of
a (d − 1)-simplex (which is the simplest possible (d − 1)-
polytope) is dual to a d-valent vertex and described by the

Hilbert space

H = L2(Gd/G) =
⊕
~j

(
I

~j⊗
d⊗

i=1

V ji
)
. (8)

In the following we take into account this generalisation and
adopt, for the ~j-spin sector, the notation

H~j
..= I

~j⊗
d⊗

i=1

V ji . (9)

Also, to clarify the role of the different degrees of freedom of
a spin network vertices, for some equations we write the basis
element |~j~nι〉 of H~j in the form

|~j~nι〉= | j1n1〉 ... | jdnd〉 |~jι〉 , (10)

i.e. as explicit tensor product of the basis states of the inter-
twiner and representation spaces: |~jι〉 ∈I

~j and | jini〉 ∈ V ji ,
respectively.

B. Gluing tetrahedra: spin networks for 3D quantum
geometries

A region of 3D space can be arbitrary well approximated
by a collection of (suitably small) polyhedra adjacent to each
other. As we are going to show, the quantum geometry of such
a discrete space can be described by a set of interconnected
spin network vertices corresponding to the single polyhedra64;
the result is a spin network graph35, i.e a graph γ dual to the
space partition and decorated by quantum geometric data, as
showed in figure 2.

More precisely, a spin network graph represents the quan-
tum version of a twisted geometry65–67. The latter is a col-
lection of polyhedra in which adjacent faces possess the same
area but have, in general, different shape and/or orientation.
That is, only “neighbouring relations” are present in a twisted
geometry: the planes of adjacent faces are not necessarily par-
allel. Twisted geometries thus differ from standard Regge tri-
angulations in which faces of neighbouring polyhedra, having
the same area, shape and orientation, perfectly adhere to each
other. In the following, we explain how spin networks can
arise from the gluing of vertices dual to polyhedra, where by
“gluing” we mean establishing an adjacency relationship be-
tween them as defined in twisted geometries.

Consider a set v = 1, ...,N of open spin network vertices
of valence d, which is described by the Hilbert space HN =
L2
(
Gd×N/GN

)
. We illustrate the gluing of vertices with an

example. Given two vertices v and w, we want to glue the
i-th edge of v (denoted by ei

v), which carries the group vari-
able gi

v, with the j-th edge of w (denoted by e j
w), which carries

g j
w. As both edges are outgoing, the resulting link from v to

w (denoted by `i j
vw) carries the group element gi

v(g
j
w)
−1. Once

connected, the two vertices are thus invariant under the simul-
taneous right action of the group on the edges ei

v and e j
w, as

gi
vh(g j

wh)−1 = gi
v(g

j
w)
−1 ∀h ∈ SU(2). Starting from the set
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FIG. 2. The quantum geometry of a simplicial complex (highlighted
in black on the left) is described by the dual spin network graph
(highlighted in black on the right). Adapted with permission from
Chirco et al., Phys. Rev. D 105(4), 046018 (2022).

of open vertices in the state ψ ∈HN , such a symmetry (that
is, the gluing of edges) can be implemented via the following
group averaging64,68:∫

dhψ(...,gi
vh, ...,g j

wh, ...) =ψγ(...,gi
v(g

j
w)
−1, ...), (11)

which in fact causes the resulting ψγ to depend on gi
v and g j

w

only through the product gi
v(g

j
w)
−1. The wave-function ψγ is

then associated to a graph γ involving the link `i j
vw. In the

group basis, the geometric data attached to a spin network
graph thus consist in a group element on every edge of the
graph, with gauge invariance at each vertex. This structure is
therefore described by the Hilbert space Hγ = L2(GL/GN),
where L is the number of links of γ35.

1. Spin networks as entanglement graphs

In the spin network basis, gluing edges corresponds to en-
tangling the degrees of freedom attached to their free ends30.
We clarify this point with the following example. Consider
the gluing of two four-valent spin network vertices described
by the wavefunction ψ:∫

dhψ(g1, . . . ,g4h,q1, . . . ,q4h)

= ψ~j~j′~n~n′ιι ′

∫
dhs

~j
~n,ι(g

1, . . . ,g4h)s
~j′

~n′,ι ′(q
1, . . . ,q4h) (12)

The integral of the spin network basis elements, which is the
factor implementing the gluing, is represented in figure 3 and
performed in the following. To simplify the notation, the label
4 is removed from all quantum numbers (e.g. j4 is denoted
just as j); we also adopt the notation n123 = {n1,n2,n3}. By
substituting to Eq. (12) the expression of Eq. (6) one obtains∫

dhψ(g1, . . . ,g4h,q1, . . . ,q4h)

= ψ~j~j′~n~n′ιι ′s
~j
n123k,ι(~g)s

~j′

n′123k′,ι ′(~q)
∫

dhD j
kn(h)D

j′

k′n′(h) (13)

The integral of the Wigner matrices, sketched in figure 3(a),
is well-known in representation theory and yields∫

dhD j
kn(h)D

j′

k′n′(h) = δ j j′ Ikk′ Inn′ (14)

n

k

g1

g2 g3

g4

h

n’

k’

q3

q2q1

q4

hන𝑑h

(a)

n

k

g1

g2 g3

g4

n’

k’

q3

q2q1

q4

(b)

FIG. 3. Gluing of two spin network vertices performed by acting on
two open edges with the same group element and integrating over the
latter. Group variables are depicted as large white disks (except for
the element h through which the group acts, highlighted in red) and
magnetic indices as small yellow disks; intertwiner tensors are in-
stead represented by green squares. The group averaging is depicted
in panel (a) and returns a pair of bivalent intertwiners contracting the
magnetic indices of the two edges, as shown in panel (b).

where Ikk′ is a bivalent intertwiner in the space V j ⊗V j at-
tached to the free ends of the to-be-glued edges:

Ikk′
..=

(−1) j+k
√

2 j+1
δk,−k′ (15)

By inserting Eq. (14) into Eq. (13) the latter becomes (see
figure 3(b))∫

dhψ(g1, . . . ,g4h,q1, . . . ,q4h)

=
(

ψ~j~j′~n~n′ιι ′δ j j′ Inn′
)

s
j j
n123k,ι(~g)s

j′ j
n′123k′,ι ′(~q)Ikk′ (16)

In the expression above, both the state coefficient and the spin
network basis elements are contracted with a bivalent inter-
twiner. Crucially, this is equivalent to projecting |ψ〉 on the
following state of V j⊗V j:

|`〉= ∑
kk′

Ikk′ |k〉 |k′〉= ∑
k

(−1) j+k
√

2 j+1
|k〉 |−k〉 (17)

which is a singlet state. The entanglement between the two
edges composing the link can be quantified via the von Neu-
mann entropy. Denoting by ρs and ρt the reduced density ma-
trices of the edges attached to the source and target vertex of
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the link `, respectively, one can easily check that

S(ρs) = S(ρt) = logd j (18)

i.e. the entanglement entropy of the two subsystems reaches
its maximum possible value: the state |`〉 is maximally entan-
gled.

Therefore, starting from a set of open spin network vertices,
the gluing of pairs of their edges is performed by entangling,
in a singlet states, the spins on the corresponding free ends.
The connectivity pattern of a set of vertices can thus be un-
derstood as an entanglement pattern among the degrees of
freedom attached to the free ends of their open edges.

Finally note that, in the spin network basis, the graph re-
sulting from the gluing of spin network vertices is decorated
as follows: every link ` carries a spin j`, and every vertex
v carries an intertwiner ιv. Open edges, when present, carry
an additional quantum number: the (non-contracted) magnetic
index at their free end (which causes the spin network to trans-
form non-trivially under gauge transformations acting on its
boundary).

2. Constructing entanglement graphs of arbitrary
connectivity

The construction of spin network states of arbitrary connec-
tivity γ from many-body states associated to N open vertices
(where N is the number of vertices in γ) has been rigorously
defined in Ref. 30. The first ingredient is a description of
the combinatorial structure of graphs in terms of individual
coloured vertices. In graph theory, the connectivity pattern of
a set of N vertices (whose edges are not distinguished by a
colour) is encoded in the adjacency matrix, i.e. a N×N sym-
metric matrix A defined as follows: the generic element Axy
takes value 1 if vertices x and y are connected, and 0 other-
wise. This encoding can be easily generalised to the case in
which edges departing from vertices are distinguished by a
colour i, as it happens with spin network vertices. Assum-
ing the absence of 1-vertex loops, the generalised adjacency
matrix takes the form

A =


0d×d A12 . . . A1N

0d×d
. . .

0d×d

 (19)

where Avw is now a d×d matrix (and 0d×d stands for the null
d×d matrix), with element (Avw)i j equal to 1 if vertices v and
w are connected along edges of colour i and j, respectively
(i.e. ei

v and e j
w are glued together), and 0 otherwise. To sim-

plify the notation, and since the edge colouring does not play
any particular role, one usually assumes that vertices can be
connected only along edges of the same colour. The matrix

Avw then takes a diagonal form:

Avw =


a1

vw 0 . . . 0

0
. . .

...
. . .

0 ad
vw

 (20)

with ai
vw equal to 1 (0) if vertices v and w are connected (not

connected) along their edges of colour i; a link formed by ei
v

and ei
w is denoted as `i

vw.
The generalised adjacency matrix defined by Eqs. (19) and

(20) thus encodes the connectivity pattern γ of a set of N ver-
tices; that is, “who is glued to whom”. The next ingredient for
the implementation of γ on a set of open vertices is the oper-
ator performing the gluing of edges, defined as follows. The
operator P`i

vw
creating the link `i

vw acts on the edges ei
v and ei

w
by projecting their state onto the subspace characterised by the
gluing symmetry (invariance under simultaneous right action
of the group):

P`i
vw

..=
∫

dhdgi
vdgi

w |gi
vh〉〈gi

v|⊗ |gi
wh〉〈gi

w| . (21)

A spin network state associated to the generic graph γ can then
be obtained from a set of open vertices in the state ψ ∈HN
by applying to the latter a set of gluing operators according to
the adjacency matrix A of γ:

|ψγ〉=

⊗
ai

vw=1

P`i
vw

 |ψ〉 . (22)

As follows from Eq. (16), in the spin network basis the gluing
operator is a projection of edge spins onto maximally entan-
gled states. The graph γ of the spin network state of Eq. (22)
is thus realised as a pattern of entanglement of a set of ver-
tices. Spin networks regarded as arising from the entangle-
ment structure of states describing a collection of spin network
vertices are also referred to as entanglement graphs.

C. Group field theories

A group field theory36,37 (GFT) is a theory of a quan-
tum field φ defined on d copies of a group manifold G. In
the GFT model of simplicial quantum gravity φ is a bosonic
field whose fundamental excitation is an elementary polyhe-
dron, specifically the (d−1)-simplex dual to the d-valent spin
network vertex introduced in section II A. The action of the
model takes the following form:

Sd [φ ] =
∫

d~gd~qφ(~g)K (gi (qi)−1)
φ(~q)

+
λ

d +1

∫ d+1

∏
i 6= j=1

dg j
i V (g j

i (g
i
j)
−1)φ(~g1)...φ(~gd+1) (23)

where~g = {g1, ...,gd}; K (gi
(
qi)−1

)
is the kinetic kernel, re-

sponsible for the gluing of polyhedra (spin network vertices)
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which gives rise to extended spatial geometries (spin network
graphs); λ is a coupling constant and V (g j

i (g
i
j)
−1) is the inter-

action kernel, which determines the interaction processes of
polyhedra that generate d-dimensional spacetime manifolds
of arbitrary topology. In particular, due to the simplicial in-
terpretation of field quanta, the Feynman amplitudes of the
theory are given by simplicial path integrals (a characteristic
shared with simplicial approaches to quantum gravity69) or,
equivalently, spin foam models35 (representing “histories” of
spin networks).

The GFT Fock space is constructed from the Hilbert space
H of the (d−1)-simplex (equivalently, the dual d-valent ver-
tex) defined in Eq. (8):

F (H ) =
⊕

N

sym

H ⊗ ...⊗H︸ ︷︷ ︸
N

 . (24)

It includes the spin network states in the form of Eq. (22),
symmetrised over the vertex labels. Crucially, the symmetry
under relabelling of vertices can be understood as a discrete
version of diffeomorphism invariance30 (which is a necessary
condition for background independence), as the vertex labels
behave like “coordinates” over the spatial manifold described
by the spin network.

Let us finally remark that spin networks arise, in this con-
text, from the entanglement properties of many-body states
describing a set of (indistinguishable) spin network vertices.
More specifically, the entanglement structure of the many-
body state can be identified with the graph formed by the
vertices. In the following, we present the correspondence be-
tween spin network states and tensor networks, a quantum in-
formation language that realises an analogous graphical en-
coding of many-body entanglement.

D. The tensor network perspective

Consider a many-body system composed of N d-
dimensional spins s1, ...,sN . A generic state for the system,

|Ψ〉= ∑
s1...sN

Cs1...sN |s1...sN〉 (25)

is described by dN complex coefficients Cs1...sN . The computa-
tional cost of this description can however be reduced by con-
sidering a tensor network decomposition39 of the state. It con-
sists in replacing the tensor Cs1...sN with a collection of smaller
tensors T si

i interconnected via auxiliary indices ~ai = a1
i , ...,a

r
i

(for simplicity, we assume each one having dimension D):

Cs1...sN = TrN
[
T s1

1 ...T sN
N

]
=
(
T s1

1

)~a1 ...
(
T sN

N

) ~aN
∏

(Avw)i j=1
δai

pa j
q

(26)

where TrN symbolises the trace over the auxiliary indices per-
formed according to a combinatorial pattern N of the phys-
ical spins, A is the adjacency matrix describing the network

N and repeated indices are summed over. Note that the num-
ber of parameters needed to describe the tensor network has
a polynomial scaling in the system size N, instead of a expo-
nential one39; in the case we considered, it is given by NdDr.

Spin networks regarded as entanglement graphs (according
to the discussion of section II B) formally correspond30 to a
particular class of tensor networks, called projected entangled
pair states70,71 (PEPS). A PEPS is a collection of maximally
entangled states |φ〉 = ∑

D
a=1 |a〉 |a〉 of pairs of auxiliary sys-

tems projected locally onto physical systems s1, ...,sN , with
the entangled pairs corresponding to the links of the resulting
network N . Let |φ`〉 be the maximally entangled state corre-
sponding to link ` of N , and let Qi be the operator at site i
projecting the auxiliary systems onto the physical one si; then

|Ψ〉= Q1⊗Q2⊗ ...⊗QN
⊗
`

|φ`〉

= ∑
s1...sN

TrN
[
T 1

s1
...T N

sN

]
|s1...sN〉 (27)

where the tensor T si
i has elements

(
T si

i

)a1
i a2

i ... =

〈si|Qi |a1
i a2

i ...〉. The network N thus corresponds to
the pattern of entanglement of the physical spins s1, ...,sN ;
in particular, the connectivity of N is realised by pairs of
auxiliary degrees of freedom in a maximally entangled state.

Similarly, spin networks can be understood as arising from
the entanglement structure of a many-body system, as ex-
plained in section II B. The degrees of freedom encoding the
connectivity of the spin network are the ones living in the rep-
resentation spaces attached to the edge free-ends. Specifically,
a pair of edges ei

v and ei
w is glued into a link `i

vw when the spins
living on V jiv and V jiw are in a singlet states. The spin network
counterpart to the link state |φ`〉 is thus the one of Eq. (17),
that we rewrite here for clarity:

|`i
vw〉 ..=

1√
d j

∑
k
(−1) j+k |k〉 |−k〉 ∈V jiv ⊗V jiw (28)

where ji
v = ji

w = j.
Therefore, tensor networks and (completely generic) spin

networks have in common the interpretation of links of the
graph/network as maximally entangled pairs of systems (aux-
iliary degrees of freedom for the first, edge-spins for the lat-
ter). However, the spin network wave-function ψγ is not, in
general, a tensor network; that is, it does not necessarily fac-
torise over single-vertex tensors.

Nevertheless, spin network states obtained from the gluing
of open vertices in the factorised state

ψ
~j1...~jN
~n1...~nN ι1...ιN

= ( f1)
~j1
~n1ι1

...( fN)
~jN
~nN ιN

(29)

do formally correspond to tensor networks. In particular, they
can be understood as PEPS, as the gluing procedure is effec-
tively a projection of link states onto single-vertex states:

|ψγ〉=

(⊗
`∈γ

〈`|

)⊗
v
| fv〉 (30)
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where ` is a short notation for the generic link `i
vw, |`〉 is the

link state defined in Eq. (28) and f ∈H~j is a fixed-spins vertex
state.

Note that, when regarding Eq. (30) as a tensor network, the
spins j on the graph γ correspond to “bond dimensions” of
the tensor network indices. However, in the spin network for-
malism the spins are not fixed parameters (as are the tensor
network bond dimensions), but dynamical variables. There-
fore, only the “fixed-spins case” given by Eq. (30) formally
corresponds to an ordinary tensor network. The generalised
case with link and vertex wave-functions spreading over all
possible spins thus qualifies as a superposition of tensor net-
works. Furthermore, given the bosonic nature of the discrete
entities the individual tensors are associated to, spin networks
obtained from factorised many-body states correspond to (su-
perpositions of) symmetric tensor networks (for more details,
see Ref. 30).

III. ENTANGLEMENT AND CORRELATIONS ON SPIN
NETWORKS TO PROBE AND RECONSTRUCT
GEOMETRY

In this section we give an overview of a series of works
on the study of correlations and entanglement entropy on spin
networks which, in the spirit of the results presented in part V,
are based on the interplay between quantum gravity and quan-
tum information and/or condensed matter physics. The results
are grouped by theme and presented in mainly chronological
order.

A. On the horizon surface: correlations and bulk entropy

We start with early results on spin networks describing fi-
nite regions of 3D space bounded by a causal horizon. On one
hand, these results deal with the computation of the horizon
entropy and the recognition of correlations between horizon
subregions as responsible for corrections to the entropy area
law40; on the other, they concern the introduction of the con-
cept of bulk entropy and its relationship with the boundary
area41.

Black point model for the computation of the horizon en-
tropy In Ref. 40 Livine and Terno modelled the horizon of a
static black hole (at the kinematic level) as a two-sphere made
by 2n elementary patches, each one punctured by an edge car-
rying the spin 1

2 (the argument is as follows: since any repre-
sentation space V j can be decomposed into the symmetrised
product of 2 j spin- 1

2 representations, the spin- 1
2 patch can be

considered as the “elementary patch”). We denote by R the
black hole region, so that its boundary ∂R corresponds to the
horizon two-sphere. The Hilbert space H∂R describing the set
of boundary edges can be decomposed as

H∂R =
2n⊗

V
1
2 ∼=

n⊕
j=0

V j⊗D j
n (31)

where D j
n is the degeneracy space of states with spin j. The

gauge-invariant subspace associated to the horizon is then
given by the intertwiner space

H
(0)

∂R = InvSU(2)

[
2n⊗

V
1
2

]
∼= D0

n (32)

where the superscript (0) is used to denote the presence
of gauge-invariance. In this description the bulk is thus
coarse-grained to a single point (hence the name “black point
model”), as depicted in figure 4(a). The assumption that the
surface is a causal horizon implies complete ignorance of the
bulk geometry, and the boundary state is therefore given by

ρ =
1
N ∑

r
|ιr〉〈ιr| (33)

where {|ιr〉} is a basis of the intertwiner space H 0
∂R and N

the dimension of the latter. Note that the Boltzmann entropy
of such state coincides with its von Neumann entropy, both
being equal to logN. The intertwiner-space dimension N is
computed via random walk techniques, and the result for the
entropy in the asymptotic limit n→ ∞ is an area law with a
logarithmic correction. The latter is shown to be given by the
total amount of correlations between two halves of the horizon
surface. Let us show the methodology, as this will be useful
for subsequent discussion and for comparing the results pre-
sented in part V to the loop quantum gravity literature.
Consider the splitting of the boundary into a set ∂A of 2k
qubits and a complementary set ∂B of 2(n− k) qubits (see
figure 4(a)). Then

H∂R = H∂A⊗H∂B (34)

where H∂A = (V
1
2 )⊗2k and H∂B = (V

1
2 )⊗2(n−k) (note that

such a factorisation does not hold for the gauge-invariant sub-
space H

(0)
∂R , see the discussion on Ref. 44). When decompos-

ing each subspace into a direct sum over irreducible represen-
tations j, e.g. H∂A =

⊕
j=0 V j

∂A⊗D j
∂A, the intertwiner states

of H
(0)

∂R ⊂ H∂R turn out to be singlet states on V j
∂A ⊗V j

∂B
with extra indices a j and b j labelling basis of the degeneracy
spaces D j

∂A and D j
∂B, respectively. This corresponds to un-

folding the intertwiner as illustrated in figure 4(c). The hori-
zon state then becomes the following:

ρ =
1
N

k

∑
j

∑
a jb j

| j,a j,b j〉〈 j,a j,b j| (35)

It is found that, for 2k = n (symmetric splitting of the horizon
surface), the mutual information Iρ(∂A : ∂B), amounting to
three times the entanglement between ∂A and ∂B (quantified
e.g. by the entanglement of formation), equals the logarithmic
correction to the horizon entropy.
A possible relationship of the entanglement between ∂A and
∂B (for ∂A� ∂B) with the evaporation process is also sug-
gested, as the case j = 0 corresponds to the detachment of the
surface patch ∂A from the rest of the horizon.
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FIG. 4. Studying correlations between parts of the boundary (a) and
between disjoint bulk regions (b). Both settings are equivalent to an
intertwiner of the spins ∂A∪∂B, which can be unfolded as depicted
in (c): two vertices corresponding to the subsystems ∂A and ∂B are
connected by a “fictitious link” representing the correlations between
them. For j = 0 the two subsystems are uncorrelated.

Bulk-topology contribution to the boundary entropy In
Ref. 41 Livine and Terno generalised the computation of the
horizon entropy performed in Ref. 40 by taking into account
the non-trivial structure of the bulk graph. In particular, they
promoted the boundary state counting of Ref. 40 to a bulk state
counting performed by gauge-fixing the holonomies on inter-
nal loops to avoid over-estimating the number of states seen
by an external observer (it is showed that, because of gauge
invariance, the bulk degrees of freedom are truly carried by in-
ternal loops). The horizon entropy (evaluated as the logarithm
of the number of states supported by a bulk flower-graph with
fixed boundary conditions) then turned out to depend on the
topology of the graph through its number of loops.

B. Distance from entanglement

Correlations between disjoint regions of a spin network
In Ref. 44 Livine and Terno explored the correlations in-
duced between two disjoint regions A and B of a spin net-
work from the “outside geometry” R (i.e. the region of the
spin network complementary to A∪B, see figure 4(b)). Since
∂A∪∂B= ∂R, the gauge invariant state induced on the bound-
ary of the two regions can be regarded as the result of coarse-
graining R to a single intertwiner, as in the model of the pre-
vious paragraph. The presence of correlations between A and
B can then be traced back to the fact that, because of the re-
quirement of gauge invariance of ∂R, the Hilbert space H

(0)
∂R

is not isomorphic to H
(0)

∂A ⊗H
(0)

∂B . The intertwiner on ∂R can
in fact be unfolded into two vertices connected by a “fictitious
link” as in figure 4(c), and H

(0)
∂A ⊗H

(0)
∂B is recovered as the

subspace with internal link labelled by the trivial representa-
tion j = 0 (which effectively corresponds to the absence of
connection). The internal link thus encodes the entanglement

between regions A and B, induced from the complementary
region R. This entanglement is then related to a notion of dis-
tance between parts of the spin network, building on the idea
that, in absence of a background geometry, such a notion can
only be defined in term of correlations between the quantum
degrees of freedom, and is expected to be induced from the
algebraic and combinatorial structure of the “outside geome-
try”.
In the same spirit, Ref. 45 by Feller and Livine shows how
a notion of distance can be reconstructed from spin network
states whose correlations map onto the standard Ising model.
Let us finally mention that, as opposed to Ref. 44, the more re-
cent Ref. 49 by Livine identifies the link entanglement of the
unfolded intertwiner as unphysical, as deriving from looking
at non-gauge invariant states.

C. Entanglement entropy and holographic spin networks

Gauge-invariant degrees of freedom are non-local: the
Hilbert space of a spin network graph Hγ , indeed, does not
factorise into the tensor product of Hilbert spaces describing
the subgraphs into which γ can be split. We mentioned that
in Ref. 40 and Ref. 44 this issue is overcome by embedding
the intertwiner space into the tensor product of Hilbert spaces
which are not gauge-invariant (each one being the tensor prod-
uct of representations attached to a subset of boundary edges
and to a “fictitious” internal-link). Likewise, in Ref. 46 and
Ref. 47 Donnelly showed how the entanglement entropy be-
tween an arbitrary region R of a spin network graph and its
complement R can be computed by embedding Hγ into an
extended Hilbert space that factorises over R and R, with the
gauge symmetry broken at the interface of the two regions.
More specifically, Ref. 46 takes the complete graph in a spin
network basis state: the reduced density matrix ρR is therefore
completely mixed, and the entropy given by

S(ρR) = ∑
e∈∂R

(2 je +1) (36)

An explanation of the agreement with the result obtained from
the isolated horizon framework in the limit of a large number
of punctures is then provided: the spin network states rep-
resenting the purification of ρR in the two frameworks have
a Schmidt decomposition of the same rank (note that the re-
sult holds only asymptotically: the isolated-horizon entropy
is less than Eq. (36), as it includes the gauge-invariance con-
straint on the boundary ∂R). Reference 47, instead, takes the
whole graph in a completely generic state. The entropy of re-
gion R then turns out to be given by the sum of three positive
terms: the Shannon entropy of the distribution of boundary
representations, the weighted average of log(2 j+ 1) over all
boundary representations j, and a term representing non-local
correlations.

An alternative definition of entanglement entropy of regions
of a spin network, similarly derived from the embedding of
the Hilbert space of gauge-invariant states into an extended
Hilbert space, is provided in Ref. 48, and relies on an exten-
sion procedure that is based on the excitation content of the
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theory instead of the underlying graph.
The computation of the entanglement entropy of spin net-

work states and the study of a holographic regime via models
and techniques from condensed matter physics is the method-
ology underlying the results on random spin networks to
which this review is dedicated. It has been adopted in ear-
lier work: in Ref. 52 Feller and Livine introduced a class of
states inspired by the Kitaev’s toric code model which satisfy
an area law for entanglement entropy and whose correlation
functions between distant spins are non-trivial.

We close this subsection with a general result on bound-
aries in quantum gravity: in Ref. 72 Bianchi et al. showed
that boundary states associated to finite portions of spacetime,
representing local gravitational processes with certain initial
and final data, are mixed, pointing out that such a feature can
be regarded as the consequence of tracing over the correla-
tions between the region and its exterior.

D. Gluing adjacent faces with entanglement

One of the main points of this review concerns the role of
entanglement in the connectivity of space. Here we recall re-
cent results by Bianchi and collaborators on entanglement as a
tool for gluing (in the sense specified below) elementary por-
tions of space (spin network vertices). Crucially, this will al-
low us to differentiate between the various notions of gluing of
spin network vertices, and to clarify which degrees of freedom
are involved in the corresponding entangling procedures. The
variety we refer to stems from the distinction between vec-
tor geometries, which are defined below, and twisted geome-
tries, of which tensor networks provide a quantum version. In
fact, as explained in section II B, a spin network describes a
quantum twisted geometry in which “neighbouring relations”
of quantum polyhedra are codified by links: two intertwin-
ers connected by a link ` represent neighbouring polyhedra,
whose adjacent faces have equal area (determined by the spin
j`) but different shape and/or orientation, in general. Note that
the absence of correlation between the polyhedra of a twisted
geometry is translated, at the quantum level of the spin net-
work, to the un-entangled nature of the intertwiner degrees of
freedom (i.e. the quantum geometry of neighbouring polyhe-
dra has uncorrelated fluctuations). In a vector geometry the
normals to the adjacent faces of neighbouring polyhedra are
instead anti-parallel, i.e. the two faces adhere to each other,
despite the possibly different shape.

In Ref. 50 it was shown that a quantum version of vector
geometries can be obtained from a spin network graph by
entangling the intertwiner degrees of freedom. They intro-
duced a class of states, called Bell-network states, constructed
by creating between intertwiners at nearest-neighbour nodes
the analogous of the spin-spin correlations of a Bell singlet
states. These correlations ensure that the normals to the adja-
cent faces of the corresponding quantum polyhedra are always
back-to-back, i.e. that the face planes are parallel. Then, ex-
actly as a Bell singlet state can be understood as a uniform
superposition of back-to-back spins over all space directions,
a Bell-network state at fixed spins represents a uniform super-

position over all vector geometries. In Ref. 51 it was further
shown that the entanglement entropy of Bell-network states
obeys an area law.

IV. RANDOM SPIN NETWORKS AND DUAL
STATISTICAL MODELS

So far we introduced the spin network formalism (shared by
several approaches to quantum gravity) to describe regions of
quantum space(time), and pointed out that entanglement plays
a crucial role in this description: it is at the origin of space
connectivity. When facing the problem of extracting contin-
uum gravitational physics from such a fundamental descrip-
tion, a crucial issue to be dealt with is the interplay between
quantum correlations among the geometric data and global
kinematic (and possibly dynamic) geometric features of the
spacetime regions considered. Entanglement entropy turned
out to be a key tool in this regard18,19,24,25,73.

The computation of the entanglement entropy of spin net-
work states can be highly simplified by the use of random
tensor network techniques. This clearly requires to restrict
the attention to spin network states given by (superpositions
of) random tensor networks. We introduce such a class of
states in section IV A, and dedicate section IV B to illustrate
how random tensor network techniques can be used to trans-
late their Rényi entropies into partition functions of a classical
Ising model.

A. Random spin networks

Consider the class of states (introduced in section II D)
which are obtainable from the gluing of a set of vertices each
one described by a state fv:

|ψγ〉=

(⊗
`∈γ

〈`|

)⊗
v
| fv〉

=
⊕
~jγ

∑
~nγ~ιγ

( f1)
~j1
~n1ι1

...( fN)
~jN
~nN ιN ∏

ai
vw=1

Ini
vni

w

 |~jγ ~nγ ~ιγ〉

(37)

where ~jγ , ~nγ and ~ιγ are, respectively, spins, magnetic indices
and intertwiners attached to the graph γ , and I is the bivalent
intertwiner introduced in Eq. (15). A coarse graining of these
states is then implemented via uniform randomisation over the
geometric data. The randomisation is performed on each ver-
tex separately. This is a necessary requirement for the entropy
calculation to be mapped into the evaluation of the free en-
ergy of a statistical model (see below). It is also assumed that
the spin network states are peaked on specific values ~jγ of
the edge spins. This assumption allows us to work in a fixed
spin-sector and thus largely simplifies the calculation. The



10

(a) (b)

s

s

(c)

s

ss

ss

(d)

FIG. 5. Illustration of the replica trick in Eq. (40). In (a) the state ρ ∈
HR⊗HR: the black disks refer to the subsystems described by HR
(top) and by HR (bottom), the white disks to the dual components.
In (b) the l.h.s. of Eq. (40): the trace over R (dashed green line)
yields ρR; the latter is then multiplied by itself (connection of internal
disks) and traced over (dashed red line). In (c) the r.h.s. of Eq. (40):
two copies of ρR are considered; the swap operator, whose action
is denoted by a square, causes the trace to be performed across the
two spaces. In (d) the factorization of the swap operator S for the
single vertex on the intertwiner (large square in the center) and on
each individual edge (small squares)

attention is therefore restricted to states of the form

( f1)
~j1
~n1ι1

...( fN)
~jN
~nN ιN ∏

ai
vw=1

Ini
vni

w
=..

(
ψ
~jγ
γ

)
~nγ~ιγ

(38)

where each tensor ( f )
~j
~nι

is picked randomly from its Hilbert
space H~j (defined in Eq. (9)) according to the uniform proba-
bility distribution. In the following we omit from the r.h.s. of
Eq. (38) the explicit reference to the edge spins ~jγ ; therefore,
unless otherwise stated, |ψγ〉 refers to the fixed-spin state of
Eq. (38).

B. Rényi entropy from Ising partition function

As pointed out in section IV A, our main focus is on finite
regions of quantum space described by spin networks cor-
responding to random tensor networks. In the following we
show that the entanglement content of these states can be con-
veniently computed via the Rényi entropies.

Given the spin network state |ψγ〉 of Eq. (38), consider
the reduced state associated to a region R of the graph γ:
ρR = TrR[ρ], where ρ = |ψγ〉〈ψγ | and TrR is the trace over
all degrees of freedom (magnetic indices and/or intertwiners)
of the region R complementary to R. The Rényi-2 entropy of

ρR is a measure of entanglement given by

S2(ρR) ..= logTr(ρ2
R) (39)

The computation of this is quantity is performed via the
replica trick, which is based on the possibility to express the
trace of a reduced density matrix ρR as a trace over two copies
of the density matrix ρ associated to the entire system (here
we assumed ρ to be normalised, i.e. Tr(ρ) = 1):

Tr(ρ2
R) = Tr [(ρ⊗ρ)SR] (40)

where the operator SR, called swap operator, acts on the two
copies of the Hilbert space HR associated to R as follows:

SR |r〉⊗ |r′〉= |r′〉⊗ |r〉 (41)

with |r〉 and |r′〉 elements of an orthonormal basis of HR. An
illustration of the replica trick of Eq. (40) is given in figure 5.

By applying the replica trick, the Rényi-2 entropy of the re-
gion R of the spin network described by the state ρ = |ψγ〉〈ψγ |
can be written as

S2(ρR) =− log
(

Z1

Z0

)
,

Z1
..= Tr [(ρ⊗ρ)SR] ,

Z0
..= Tr [ρ⊗ρ] ,

(42)

where the presence of the denominator takes into account the
possible non-normalisation of ρ , and where the swap operator
SR acts on two copies of the Hilbert space

HR =

(⊗
v∈R

I
~jv

)
⊗

(⊗
e∈R

V je

)
, (43)

associated to the spin network region R.
Note that Z1 and Z0 are quadratic functions of the random

vertex states ρv
..= | fv〉〈 fv|, and their average is therefore eas-

ier to compute than the average of the entropy. This leads to
the proposal74 of expanding the latter in powers of the fluc-
tuations δZ1 = Z1 − Z1 and δZ0 = Z0 − Z0 (the overline is
used to denote average value under randomisation of the ver-
tex states):

S2(ρR) =− log
(

Z1

Z0

)
+

∞

∑
n=1

(−1)n−1

n

(
δZn

0

Z0
n −

δZn
1

Z1
n

)
(44)

In Ref. 74 Hayden et al. showed that for large enough bond
dimensions, which in the present framework correspond to the
edge spins, the fluctuations are suppressed, i.e.

S2(ρR)'− log
(

Z1

Z0

)
, (45)

where ' refers to asymptotic equality as the edge spins go to
infinity. In particular they proved that, for a tensor network
with homogeneous bond dimensions equal to D, given an ar-
bitrary small parameter δ > 0 it holds

|S2(ρR)−S2(ρR)|< δ (46)
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with probability P(δ ) = 1− Dc
D , where Dc is a critical bond

dimension depending on δ and on the number N of vertices as
Dc ∝ δ−2ecN , with c a constant factor.

Thanks to Eq. (45) the computation of the average entropy
can thus be traced back to the computation of the average
quantities Z1 and Z0. Let us focus on Z1, as Z0 is simply given
by the latter upon reducing the swap operator to the identity
operator. The quantity Z1 can be written as31

Z1 = Tr

[(⊗
`

ρ
⊗2
`

)(⊗
v

ρ
⊗2
v

)
SR

]
, (47)

where ρ`
..= |`〉〈`| and ρv

..= | fv〉〈 fv|. For each vertex v, the
average over the two copies of the state ρv can be computed
via the Schur’s lemma75, which yields

ρ
⊗2
v =

I+Sv

Dv(Dv +1)
, (48)

where Dv is the dimension of the vertex Hilbert space H~jv
(see Eq. (9)) and Sv is the swap operator on H~jv

⊗H~jv
. This

is a crucial step since it brings out, as we are going to explain,
two-level variables (one for each vertex) corresponding to the
spins of a Ising model living on the graph γ . Note in fact that,
once Eq. (48) is inserted into Eq. (47), the latter can be written
as

Z1 = C ∑
~σ

Tr

[(⊗
`

ρ
⊗2
`

)(⊗
v

S
1−σv

2
v

)
SR

]
, (49)

where σv = ±1 is a two-level variable associated to vertex v,
~σ = {σ1, ...,σN} and

C ..= ∏
v

1
Dv(Dv +1)

(50)

is a constant factor. That is, Z1 has been written as a sum
of 2N terms involving the identity (I) or the swap operator
(Sv) for each of the N vertices, and the variable σv encodes
the presence of one or the other (I for σv = +1 and Sv for
σv =−1) in every term of the sum.

Given the form of the vertex Hilbert space H~jv
, the swap

operator Sv factorises as follows:

Sv =
d⊗

i=0

Si
v, (51)

i.e. into a swap operator S0
v for (the double copy of) the in-

tertwiner Hilbert space I
~jv and a swap operator Si

v for (the
double copy of) the representation space V jiv on each edge ei

v,
as shown in figure 5(d). Crucially, the same applies to the
swap operator SR:

SR =

⊗
ei

v∈R

Si
v

(⊗
v∈R

S0
v

)
. (52)

Consequently, to every open edge ei
v of the graph γ one can at-

tach a two-level variable µ i
v =±1 (also called pinning spin74)

encoding whether (µ i
v = −1) or not (µ i

v = +1) an additional
swap operator acts on (the double copy of) its Hibert space;
that is, whether or not it belongs to region R. The same holds
true for the intertwiner on each vertex v of the graph, for which
the two-level variable νv =±1 is introduced.

By performing the trace in Eq.(49) one finally obtains that
the quantity Z1 corresponds to the partition function of a clas-
sical Ising model:

Z1 = ∑
~σ

e−A1(~σ)
(53)

with A1(~σ) the Ising action

A1 (~σ) = ∑
`i

vw∈γ

1−σvσw

2
logd jivw

+ ∑
ei

v∈∂γ

1−σvµ i
v

2
logd jiv

+∑
v

1−σvνv

2
logD~jv

+ const , (54)

where d j is the dimension of the representation space V j,
and D~j the dimension of the intertwiner space I

~j (see sec-
tion II A). Note that the Ising model is defined on the graph
γ: Eq. (54) involves interactions between nearest neighbours
Ising spins, where the adjacency relationship is determined by
γ (two Ising spins interact only if the corresponding vertices
are connected by a link); every Ising spin also interacts with
the pinning spins located at its vertex (e.g. the Ising spin σv
of a vertex v on the boundary interacts with the pinning field
νv on the intertwiner of v and with the pinning field µ i

v on the
open edge ei

v of v).
As far as Z0 is concerned, we pointed out that it corresponds

to Z1 with R = /0 (in fact S /0 = I). Therefore it holds that Z0 =
∑~σ e−A0(~σ), where A0 is given by Eq. (54) with all pinning
spins equal to +1:

A0 (~σ) = ∑
`i

vw∈γ

1−σvσw

2
logd jivw

+ ∑
ei

v∈∂γ

1−σv

2
logd jiv

+∑
v

1−σv

2
logD~jv

+ const . (55)

Note also that, since Z0 and Z1 enter S2(ρR) only via their
ratio, in the computation of the entropy the constant factor in
Eq. (54) and Eq. (55) is irrelevant; we therefore omit it in the
following.

To study the properties of the partition function Z1 it is use-
ful to rewrite the Ising action A1(~σ) in the form A1(~σ) =
βH1(~σ), where β ..= d j with j the average spin on γ , and

H1 (~σ) = ∑
`i

vw∈γ

1−σvσw

2

logd jivw

β
+ ∑

ei
v∈∂γ

1−σvµ i
v

2

logd jiv
β

+∑
v

1−σvνv

2

logD~jv

β
.

(56)

The parameter β then plays the role of inverse temperature of
the Ising model. As we are working in the high spins regime,
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the partition function Z1 is dominated by the lowest energy
configuration:

Z1 ' e−β min~σ H1(~σ). (57)

The same applies to Z0 and, since min~σ H0 = 0 (where H0 is
given by Eq. (56) with µ i

v = νv =+1 ∀v,ei
v ∈ γ), it holds that

Z0 ' e−β min~σ H0(~σ) = 1. (58)

Therefore, the average entropy can be finally computed via
the following formula:

S2(ρR)'− log
(

Z1

Z0

)
' β min

~σ
H1 (~σ) , (59)

with β the average dimension of the edge spins and H1(~σ) the
Ising-like Hamiltonian defined in Eq. (56).

V. HOLOGRAPHIC ENTANGLEMENT IN SPIN
NETWORK STATES

We present recent works that explored the connection be-
tween holographic features of regions of quantum space and
entanglement of their quantum geometric data, for spin net-
work states obtainable from the gluing of random vertex
states.

A. Bulk-to-boundary quantum channels: isometric mapping
of quantum-geometric data

Reference 31 analysed the flow of information from the
bulk to the boundary of regions of quantum space described
by the class of spin network states defined in Eq. (38), to deter-
mine under which conditions such a flow can be holographic.

Let us start by providing the definitions of bulk and bound-
ary of a spin network, as given in Ref. 31. Consider a spin
network with combinatorial pattern γ and edge spins ~jγ . The
boundary consists in the set of open edges of γ (denoted by
∂γ) decorated by the respective spins, and is described by the
Hilbert space

H∂γ
..=
⊗
e∈∂γ

V je ; (60)

let |n〉 ..=
⊗

e∈∂γ | jene〉 be the basis element of the boundary
space H∂γ . The bulk is the set of vertices of γ (denoted by
γ̇) together with the intertwiners attached to them, and is de-
scribed by the Hilbert space

Hγ̇
..=
⊗

v
I

~jv ; (61)

let |ι〉 ..=
⊗

v |~jvιv〉 be the basis element of the bulk space Hγ̇ .
The flow of information from the bulk to the boundary is

identified with the bulk-to-boundary map that every spin net-
work state implicitly defines once regarding the bulk space as

Λ

FIG. 6. Relationship between a spin network state ργ and the cor-
responding bulk-to-boundary superoperator Λ; |ω〉 is a maximally
entangled state of two bulk copies.

input and the boundary space as output. More specifically,
every spin network state of the form

|φγ〉= ∑
nι

(
φγ

)
nι
|n〉 |ι〉 , (62)

(to simplify the notation, we omitted the edge spins, as they
are fixed) can be regarded as a map M from the bulk to the
boundary Hilbert space, having components

〈n|M |ι〉=
(
φγ

)
nι
. (63)

The map M associated to |φγ〉 therefore acts on a generic bulk
state |ζ 〉 ∈Hγ̇ as follows:

M |φγ〉= 〈ζ |φγ〉 (64)

i.e. by evaluating the spin network state on |ζ 〉 or, in tensor
network language, by feeding the bulk input with |ζ 〉 (see fig-
ure 7).

The reduced (and normalised) bulk state takes the form

ργ̇
..=

1
Dγ̇

Tr∂γ

[
ργ

]
=

1
Dγ̇

∑
ιι ′

(
M †M

)
ι ′ι |ι〉〈ι

′|
(65)

where ργ = |φγ〉〈φγ | and Dγ̇ is the dimension of the bulk
Hilbert space Hγ̇ . It follows from Eq. (65) that if the reduced
bulk state is maximally mixed, namely ργ̇ =

I
Dγ̇

, the map M is

an isometry, i.e. M †M = I. Moreover, the corresponding su-
peroperator on the space of bulk operators, Λ(·) ..= M ·M †,
is a completely positive trace preserving (CPTP) map, with
Choi-Jamiołkowski state

J(Λ) = Λ⊗ I
(
|ω〉〈ω|

Dγ̇

)
=

ργ

Dγ̇

(66)

where

|ω〉= ∑
ι

|ι〉⊗ |ι〉 (67)

is a maximally entangled state of two copies of the bulk (see
figure 6).

Reference 31 studied the bulk-to-boundary map M of a
spin network state of the form of Eq. (38), to analyse the re-
lationship between the combinatorial structure and geomet-
ric data of a spin network on the one hand, and the isometric
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character of the corresponding map on the other. The latter is
quantified via the Rényi-2 entropy of the reduced bulk state
(see Eq. (65)). Thanks to the random nature of the vertex ten-
sors, the entropy is computed via an Ising partition function,
according to the technique illustrated in section IV B. In par-
ticular,

S2(ργ̇) = β min
~σ

H1 (~σ) (68)

with H1 (~σ) the Ising-like Hamiltonian

H1 (~σ) = ∑
`i

vw∈γ

1−σvσw

2

logd jivw

β
+ ∑

ei
v∈∂γ

1−σv

2

logd jiv
β

+∑
v

1+σv

2

logD~jv

β
.

(69)

It is found that spin network graphs made of four-valent ver-
tices (dual to 3D spatial geometries) with an homogeneous
assignment of edge spins does not realise an isometric map-
ping of data from the bulk to boundary. Coherently, increas-
ing the inhomogeneity of the spins assigned to a spin network
with four-valent vertices increases the “isometry degree” of
the corresponding bulk-to-boundary map.

Let us close this section by commenting on the compari-
son of this work with Ref. 54, where the idea of interpreting
spin network states as maps from the bulk to the boundary
first appeared. In Ref. 54, Chen and Livine pointed out that
spin network wavefunctions with support on an open graph
can be regarded as linear forms on the boundary Hilbert space
(the space of spin states living on the open edges of the spin
network), and that coarse-graining the bulk, i.e. integrating
over the bulk holonomies, then induces a probability distribu-
tion for the boundary degrees of freedom. Based on that, they
proved the following: any boundary density matrix can be ob-
tained, via the bulk-to-boundary coarse-graining procedure,
from a pure bulk state with support on a graph composed of
a single vertex connecting all boundary edges to a single bulk
loop. A crucial difference between the map of Ref. 54 and
M is that the latter does not perform a coarse graining of the
bulk (intended as tracing out the bulk holonomies); instead, it
evaluates the (pure) spin network state on a given bulk config-
uration (specifically, a given state for the intertwiner degrees
of freedom), thereby yielding a boundary state. Consequently,
the latter is a pure state if the bulk input state is pure. By
contrast, the boundary density matrix resulting from the bulk-
to-boundary coarse-graining of Ref. 54 applied to a pure spin
network state is typically mixed.

B. Holographic states and black hole modelling

As illustrated in section V A, Ref. 31 investigated hologra-
phy on spin network states having the form of Eq. (38), re-
garding them as maps from the bulk to the boundary. Inspired
by similar questions, Ref. 32 studied the same class of states
from a different perspective: it analysed the boundary states
returned by the bulk-to-boundary map, on varying the bulk

f1

f2

f3

f4fN

ζ

η

A

FIG. 7. Spin network state given by the gluing (symbolised by the
dotted lines) of random vertex tensors f ∈H~j (the green disks). ζ is
the input state for the bulk degrees of freedom (intertwiners), graphi-
cally depicted as black input lines; η is the output state for the bound-
ary edges, depicted as output lines. The boundary entanglement en-
tropy is computed for a set A of the latter, shown in red.

input state. That is,

|η〉= M |ζ 〉
= 〈ζ |ψγ〉,

(70)

where M is the bulk-to-boundary map corresponding to the
spin network state (and random tensor network) |ψγ〉, defined
in Eq. (38); |ζ 〉 ∈Hγ̇ is the input bulk state and |η〉 ∈H∂γ

the output boundary state. In particular, it focused on the en-
tanglement content of a portion A of the output boundary state
(see figure 7). Again, given the random character of the state,
the entanglement measure considered is the Rényi-2 entropy,
computed via the Ising model. The result is the following:

S2(ηA) = β min
~σ

H1 (~σ) (71)

where

H1 (~σ) = ∑
`i

vw∈γ

1−σvσw

2

logd jivw

β
+ ∑

ei
v∈∂γ

1−σvµ i
v

2

logd jiv
β

+
1
β

S2(ζ↓)

(72)

with ζ↓ the bulk state reduced to the region with Ising spins
pointed down. From Eq. (72) one can note that every mis-
alignment between the Ising spins σv and σw on a link `i

vw car-
ries a contribution to the entropy equal to

(
logd jivw

)
/β , i.e. to

(the logarithm of) the dimension of that link, normalised by β

(the average value that quantity can take). The same holds
for the pinning spin µ i

v and the Ising spin σv on a bound-
ary edge ei

v. As a result, the first two terms of the r.h.s. of
Eq. (72) provide the “area” of the Ising domain wall, i.e. the
surface separating the spin-down region (externally bounded
by A) from the spin-up region, where the area is given by a
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weighted sum of the links crossing it (with weights propor-
tional to the logarithm of the link dimensions). Let Σ(~σ) be
the aforementioned surface for the Ising configuration ~σ , and

|Σ(~σ) | ..= ∑
`i

vw∈γ

1−σvσw

2

logd jivw

β
+ ∑

ei
v∈∂γ

1−σvµ i
v

2

logd jiv
β

(73)
its area, as defined above. The Ising Hamiltonian of Eq. (72)
can then be written as follows:

H1 (~σ) = |Σ(~σ) |+ 1
β

S2(ζ↓). (74)

Combining Eq. (71) with Eq. (74) one then finds that, for
S2(ζ↓) � βΣ(~σ), the Rényi-2 entropy follows an area law
with a small correction deriving from the bulk entanglement
(see figure 8):

S2(ηA) = β

(
min
~σ
|Σ(~σ)|

)
+S2(ζ↓). (75)

For S2(ζ↓) = O(βΣ(~σ)), instead, the Rényi-2 entropy follows
an “area+volume law”:

S2(ηA) = β min
~σ
{|Σ(~σ)|+ 1

β
S2(ζ↓)}. (76)

In fact, S2(ηA) depends to a comparable extent on the entan-
glement content of the surface Σ(~σ) (link entanglement) and
of the spin-down region bounded by it (intertwiner entangle-
ment in ζ ).

In Ref. 32 it was also showed that increasing the entangle-
ment content of a region of the bulk can turn the boundary
of that region into a horizon-like surface (see figure 9), as the
Ising domain wall which determines the entropy cannot access
it. Notably, this result can be regarded as a realisation of the
proposal made by Krasnov and Rovelli in Ref. 21 of defining
a quantum black hole as the part of a spin network that does
not influence observables at infinity.

VI. DISCUSSION

We reviewed very recent work that contributes to the re-
search effort which looks at holography not as an asymp-
totic global property (as it was originally conceived), but as
a quasi-local property entering the description of finite spatial
boundaries (spacetime corners). The main novelty of the il-
lustrated approach is the use of spin network states formally
corresponding to (generalised) random tensor networks. The
defining feature of this class of states is the randomness of
the wavefunctions associated to the individual spin network
vertices, which has the remarkable property of mapping the
correlations of the spin network states to that of a classical
Ising model living on the same graph. This enables to inves-
tigate the entanglement content of the spin network by rely-
ing on standard condensed matter and quantum information
techniques. Moreover, the randomization over vertex wave-
functions can be understood as a local coarse graining on the

A

FIG. 8. Area law for the Rényi-2 entropy of a portion A of the bound-
ary of the spin network state in Eq. (70). The dotted red line repre-
sents the Ising domain wall Σ(~σ).

A

FIG. 9. Emergence of a horizon-like surface in the bulk: when the
entanglement entropy of the intertwiners in a region of the graph (the
blue disk) exceeds a certain threshold, that region becomes inacces-
sible to the Ising domain wall Σ(~σ) (represented by the dotted red
line).

vertex data and thus makes this type of states of immediate
interest for GFT cosmology76–79.

Reference 31 specifically studied the flow of informa-
tion from the bulk to the boundary through the Choi-
Jamiołkowski duality, computing the Rényi entropy of the
Choi-Jamiołkowski state through a random tensor technique
that traces it back to the evaluation of Ising partition functions.
The result is a positive correlation between the inhomogene-
ity of the edge spins and the “isometry degree” of the bulk-to-
boundary map. The same technique is applied in Ref. 32 to
the computation of the Rényi entropy of boundary states, and
leads to the derivation of (an analogue of) the Ryu-Takayanagi
formula18,19. Interestingly, Ref. 32 also showed that the pres-
ence of a bulk region with high entanglement entropy can turn
the boundary of that region into a horizon-like surface, hereby
offering a concrete example of the definition of quantum black
holes given in Ref. 21, with a picture that recalls the “quantum
graphity” of Ref. 80.

The illustrated work paves the way to an extensive ap-
plication of quantum information tools to the study of the
spacetime microstructure and the modelling of quantum black
holes. In particular, the superposition of graphs (which is nec-
essary to bring the analysis at the dynamical level) may be im-
plemented by enriching the spin network structure with data



15

encoding the amount of link-entanglement between vertices,
and using such data to manipulate the combinatorial structure
of the graph, analogously to what has been done for random
tensor networks81. As far as an information-theoretic charac-
terisation of black hole horizons is concerned, the illustrated
techniques are for example expected to enable the derivation
of a “threshold condition” for the emergence of horizon-like
surfaces in finite regions of quantum space, analogously to the
one obtained from the typicality approach to the study of the
local behavior of spin networks82.

While the present article covered only a particular cor-
ner of the burgeoning field at the crossroads between quan-
tum information and gravity, it is hoped our focused review
might inspire further research and continue to motivate fruitful
cross-fertilisation of methods and concepts between these two
cutting-edge areas of theoretical physics, ultimately leading
to their unification or confluence within a more fundamental
theory yet to be discovered.
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