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Abstract  Worldwide, 50 million children under five are 

acutely malnourished, while 16 million amongst them suffer 

from severe wasting. Chronic malnutrition is more common 

and accounts for an estimated 159 million children, meaning 

that approximately 23.8% of all children under five 

worldwide are stunted. The proportion of stunted children 

has decreased worldwide between 1990 (39.6%) and 2014 

(23.8%), but the progress has been unequal. While Asia as a 

whole reduced stunting by half (-47.0%) between 1990 and 

2014, there are still 78 million stunted children in South Asia 

alone. Unlike Asia, the African continent has reduced 

stunting by just one quarter (24.0%). In contrast, the absolute 

number of stunted children in Africa has still increased, from 

47 million in 1990, to 58 million in 2014. Under-nutrition is 

caused by a complex web of interdependent 

environmental/climatic, agricultural and socio-economic 

factors. Climate change has recently been identified as a 

major risk factor for childhood undernutrition. However, the 

scientific evidence base for this is weak. No study has so far 

simultaneously combined of the well-known drivers of 

undernutrition with climate change while being grounded in 

one population in one-time and in one location. Such studies 

are prerequisite for the relative attribution of the various risk 

factors, including climate chance, as causes of childhood 

undernutrition. In this exploratory study, methods from 

multiple sectors were applied to 20 randomly selected 

households in Bourasso in rural Burkina Faso, where more 

than 80% of the population are subsistence farmers, i.e. live 

off their fields. Well-tested methods, such as household-level 

agricultural and nutritional surveys, anthropometric 

measurement of undernutrition with innovative methods, 

measuring household level-crop yields, were combined. This 

was done by participatory mapping of each household’s plots. 

Remote sensing algorithms were applied to RapidEye 

satellite scenes covering the study area in order to map the 

actual cultivated area and to derive qualitative harvest 

estimates for the surveyed micro-fields. Weather data were 

obtained from a research meteorological field station, about 

20 km away from Bourasso. In addition to bringing field 

methods from different sectors together through the lens of a 

household, one further advanced method was integrated: The 

linkage between each household plot limits and their 

integration into the satellite scene making it possible to 

estimate crop yields at the plot level for each household and 

linking this to the nutritional status of that specific household. 

Thus the exploratory study produced the following results: 

High-resolution remote sensing data can assist studies on 

malnutrition in Burkina Faso; RapidEye is a promising data 

source in regard to the spatial resolution for micro-field 

assessments; The strong inter-annual variation of 

malnutrition is suggestive that climate is a casual factor in the 

absence of other explanatory factors (political unrest, price 

shocks of inputs, epidemics). Population-based studies 

replicating the described multi-sectoral toolbox should be up-

scaled to larger sample sizes and longer observational time 

series. This could contribute to generating crucial climate-

health impact functions, in this case for malnutrition. 
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(MeSH D000354), Child Nutrition Science (MeSH 

D053198), Infant Nutritional Science (MeSH D053198) 

 

1. Introduction 

The commonly used term malnutrition comprises both 

over- and under-nutrition. This paper focuses on the latter. 

Under-nutrition, is customarily divided into macro- and 

micronutrient deficiencies. This paper addresses 



   
 

 

macronutrient deficiency, which can be broken down further 

into acute and chronic malnutrition: Acute malnutrition or 

‘wasting’ is measured as a deficit in weight for height (2 

standard deviations (SD) below the median), while chronic 

malnutrition or ‘stunting’ is measured as a deficit in height 

for age (2 SD below the median). In a 2016 factsheet on 

reducing child mortality, the World Health Organization 

reported that approximately 45% of all the 5.9 million deaths 

in children under five in 2015 were linked to malnutrition [1]. 

The recent global estimates of the WHO, The World Bank, 

and United Nation’s Children’s Fund, show that the global 

burden on under nourished children is rising [2].Worldwide 

7.4% (50 million) children under five are wasted, while 2.4% 

(16 million) amongst them suffer from severe wasting. 

Stunting is much more common: An estimated 159 million 

or 23.8% of all children under five children worldwide are 

stunted. The proportion of stunted children has decreased 

worldwide between 1990 (39.6%) and 2014 (23.8%), but the 

progress has been unequal [3] . While Asia as a whole 

reduced stunting by half (47.0%) between 1990 and 2014, 

there are still 78 million stunted children in South Asia alone. 

Unlike Asia, the African continent has reduced stunting by 

just one quarter (24.0%). Unfortunately, the absolute number 

of stunted children in Africa has increased, from 47 million 

in 1990, to 58 million in 2014 [3].  

Under-nutrition is caused by a complex web of 

interdependent environmental, agricultural and socio-

economic factors. Climate change has recently been 

identified as a major risk factor for childhood under-nutrition 

[4]. Fig 1 shows the major pathways leading to malnutrition, 

which are depicted in three main groups; Climate change, 

agriculture and socio-economic factors, the outcome being 

nutritional status. While this graph cannot claim to be a 

complete portrait of all known risk factors for under-nutrition, 

it does show the complexity of the interacting factors [5]. It 

calls for a holistic methodological approach in order to 

attribute the relative weights of the major risk factors, 

importantly the recently identified risk factor of climate 

change. This multi-sectoral bundle of methods captured the 

entirety of the pathway steps. 

A wide range of studies have focused on elements of this 

web of causation. Such studies link infectious diseases, 

particularly malaria, pneumonia and diarrhea to under-

nutrition [6]. Other studies link decreasing crop yields, 

particularly in sub-Saharan Africa and South Asia, to climate 

change [7]. Some authors focus the relationship of 

malnutrition to socio-economic factors such as maternal 

health or lack of caloric intake other authors focus on food 

prices and the effect of policies [5, 8]. 

This study advances the empirical approach to attribute 

risk of malnutrition to climate change in two main ways: First, 

a large number of the well-known drivers of under-nutrition 

with meteorological assessment in one population at one time 

and one space were simultaneously combined. Third, ground 

the analysis at the household or micro-level was conducted. 

Such studies are believed to be a pre-requisite for the relative 

attribution of the various risk factors, including climate 

change, as causes of childhood undernutrition. 

 

Figure 1.  The connection between climate, agriculture and child malnutrition. Each arrow indicates a relationship between factors. This figure is adapted 

from 2015 publication by co-author Phalkey (2015)  

The purpose of this study is not to provide definitive answers to the respective attribution of the various risk 



   
 

 

factors including weather variability. For this, it lacks the 

sample size and the large longitudinal follow up of 

populations. Rather, the value of this study lies in the 

demonstration that such comprehensive studies can and 

should be undertaken. This approach to focus all methods 

through the prism of the household level is essential to this 

form interdisciplinary research. This is particularly true for 

the mapping of agricultural plots, and the estimation of the 

harvest from these fields through a remote sensing method. 

The study poses the following research questions: Is it 

feasible to explore the relationship between malnutrition, 

climate change, and agriculture simultaneously at the 

household level? What tools and methods are required to 

conduct such a comprehensive study? Can remote sensing be 

utilized on a subsistence farming level to extract information 

about household crops (land use, biomass, vitality, yields)?  

The focus of this approach is clearly in subsistence 

farming settings. There is no claim that the approach is valid 

in urban areas or other settings where food is largely sold and 

purchased. In such urban settings prices and markets as well 

as policy interventions such as subsidies play a dominant role. 

With this caveat in mind, it is suggested that existing 

sector-bound assessments fail to provide the necessary 

evidence base for decisions on how subsistence farming 

households can best prepare to combat the nutritional 

impacts of weather/climate variability. Therefore, there is an 

urgent need to develop integrated comprehensive assessment 

methods and tools that can investigate the impacts of 

weather/climate variability on childhood undernutrition 

mediated through crop yields simultaneously. This proof-of-

concept study aims to demonstrate how existing tools can be 

combined to achieve this.  

2. Population and Methods 

2.1. Source Population and Study Sample 

The exploratory study was conducted in Bourasso, a 

village within a district covered by a Health and 

Demographic Surveillance System (HDSS) in Burkina Faso 

in sub-Saharan Africa [9]. The village has 12,548 inhabitants, 

in the middle of “the multi-ethnic Kossi province which is 

dominated by subsistence farmers and cattle keepers [10]. 

The sample constitutes of a total of 156 individuals, 

including 29 children under the age of five living in the 20 

selected households. Two sets of households were selected, 

10 with normally nourished children and 10 with 

undernourished wasted children. The former was randomly 

selected in 2014 out of all households with children less than 

5 years of age (sample 1). As the study village was part of a 

demographic surveillance system (HDSS), its database could 

be used as a sampling frame. The latter sample was drawn in 

2015 from the register of malnourished children in the 

household of the health local dispensary (sample 2). The 

dispensary is the only health center in the village of Bourasso 

where cases of malnutrition are initially reported and first-

line nutritional rehabilitation is provided. 

2.2. Household Survey on Socioeconomic Status, 

Reported Health, and Child Nutrition 

The Nouna household panel questionnaire was applied as 

a base to all 20 households [10, 11]. It elicits socio-economic 

household characteristics, such as assets, revenue and 

expenditures, reported harvest, converted in weight units, 

reported illnesses, and health seeking behavior (see 

Appendix). 

In addition, a nutritional module was developed, which 

contained a 24-hour nutritional recall survey covering all 

foods consumed by all children under five in the 20 selected 

households. The origin of the food was distinguished, 

whether the food items were home-grown or purchased was 

captured and recorded (see Appendix). 

2.3. Anthropometric Measurements, 

Children’s height and weight were measure according to 

WHO standards. -2SD z-score was used as a cut-off for acute 

(weight/height) and chronic (height/age) malnutrition. The 

age of the children was calculated using the birth date from 

HDSS. All children who were 2 standard deviations or less, 

under the median were considered undernourished. Before 

each field visit in 2014 and 2015, the head nurse of the 

Bourasso dispensary held a training session for all field 

agents on the proper utilization of anthropometric equipment. 

To measure height, the same stadiometer from the CSPS was 

utilized by the field agents. To measure height, the child was 

asked to stand up straight on a flat platform barefoot and the 

indicator was slid along the side of a vertical bar all the way 

to the top of the child’s head. For the weight measurement, a 

child weight balance and trouser sack was hung from a tree. 

The child was placed in the bag and suspended until the 

weight was read off the display 

2.4. Household Survey on Agricultural and Field Maps 

The agricultural module elicited information on household 

agricultural assets including agricultural tools, income from 

agricultural sales, income from other sources, loans, and 

household expenditures for food and non-food items (see 

Appendix 1), reported yield from preceding years, number 

and size of plots (Fig. 5). 

The agricultural survey comprised questions regarding 

two periods in the agricultural calendar: First during planting 

season (pre-harvest), and second after the harvest (post-

harvest). The interviews concerned the number and types of 

crops the household had sown and harvested on each of their 

plots. The data collected on household crops spanned over 

two years: 2014, 2015. 

Once this data was collected, the mapping of the 

households’ fields was carried out with the farmer, the 



   

 

 

household head, and a GPS expert. A GPS tool, Garmin Etrex 

10, was used to delineate the contours of each plot polygon. 

A trained field person walked with each household head 

around the limits of each of his fields and generated the 

geographic coordinates of each corner of the polygons. This 

information was used to add an additional layer to the 

existing geographic information system of the village. The 

household plots could therefore be overlaid with the remotely 

sensed scenes of cultivation area around the village to 

identify the exact field polygons within the scenes (Fig. 5). It 

was thus feasible to reconcile the remotely sensed yield 

estimate with the type of crop grown for each field for each 

of the 20 households. 

2.4 Remote Sensing and Crop Harvest 

Crop yields are influenced by biotic and abiotic factors that 

determine the crop growth during the whole growing period. 

These factors include parameters such as temperature, 

rainfall, soil type, crop stress caused by pathogens or insects 

etc., but also management practices. The combined impact of 

these factors has a direct influence on plant vitality. Remote 

sensing techniques are appropriate tools to measure relevant 

crop parameters (leaf area index, nitrogen status, biomass etc.) 

and can reflect the crop growth heterogeneity within fields 

[12, 13]. Most crop types show a relationship between these 

crop parameters and yield, which allows the use of multi-

temporal satellite data to establish regression models for 

yield estimation. Such remote sensing based approaches for 

yield estimation are already well developed [14, 15]. Low-

resolution satellite data with large area coverage are often 

used to assess and predict yield anomalies on a regional level 

(e.g. the service of the Famine Early Warning System 

(FEWS). However, studies on malnutrition at household-

level require information of yields of the respective micro-

fields. Current satellite sensors offer high-resolution data that 

for the first time allow monitoring of crop parameters over 

the growing period in small spatial units. 

The RapidEye satellite constellation is a very promising 

data source for such small-scale agricultural monitoring, 

since it provides data with a spatial resolution of 6.5m with 

very short revisiting periods. In addition, RapidEye has a red-

edge band that is particularly suitable for crop monitoring. 

RapidEye data has already been used for yield estimation of 

different crops in previous studies [16, 17] . In this study, the 

acquisition of RapidEye images was tasked with the 

minimum requirement to capture at least two dates in the 

growing season. Due to persistent cloud cover in the planned 

acquisition period (late dry season), images could only be 

acquired within a short period, i.e. on 10 September 2014 and 

21 September 2014 (Fig. 2). The RapidEye satellite was used 

covered an area of 3500km
2
 around Nouna, including the 

agricultural fields of the 20 selected households and their 

agricultural fields. 

 

Figure 2.  Two RapidEye images (R:5, G:4, B:3) from 10.09.2014 and 21.09.2014 showing an overlay of some agricultural fields on the RapidEye 

image.  

 

 



   

 

 

Site-specific yield estimations via remote sensing require 

different consecutive steps of image analysis. First, the actual 

cultivated area is identified, before crop types are further 

differentiated via classification of typical phonologies in the 

second step. The information on crop type is an important 

parameter, since yield models are calibrated to crop-specific 

characteristics. As a last step, crop-specific regression 

models are applied to the remote sensing-based time series of 

crop parameters. Every step requires multi-temporal remote 

sensing data that cover the whole growing period. Since only 

two RapidEye scenes were available that cover a short period, 

setting up robust regression models for a quantitative yield 

estimation was not possible. Instead, a qualitative yield 

estimation for the surveyed micro-fields was realized in this 

feasibility study by using bi-temporal vegetation indices such 

as the Normalized Difference Vegetation Index (NDVI) and 

the Normalized Difference Red Edge Index (NDRE). The 

NDVI is related to crop parameters such as leaf area index, 

biomass and fractional vegetation cover, whereas the NDRE 

characterizes the chlorophyll/nitrogen status of crop canopies. 

These two indices from each RapidEye observation date 

(including minimum and maximum values) and their changes 

between the observations were used to qualitatively predict 

yield relative to each crop in the surveyed micro-fields. A 

quantitative yield estimation (e.g. in t/ha) would require more 

satellite observations as well as more in-situ yield samples 

per micro-field. 

The remote sensing based approach is highly dependent on 

reference data that is required for the calibration and 

validation of the models. Therefore, some spatially explicit 

field information on micro-field delineation, crop type, 

ground cover and yield (if available) is fundamental. In the 

best case, these data are collected regularly over the growing 

period in some pilot sites. The more accurate and precise the 

reference data, the lower the uncertainty of the yield 

estimations. 

(ii) Validation (“ground-truthing”) of crops grown in 

households’ fields. To collect this agricultural data, 

households were visited twice, first before, and second 

immediately after the harvest. The pre-harvest visit was in 

August 2014, during the planting season, when farmers were 

preparing their fields by clearing (manually or through 

controlled burning) and begin to plant their crops. At this 

time, the head of each household provided information about 

which crops would be planted and how many fields the 

households own. Following this initial interview, the 

household head accompanied the field agent to every field 

mentioned. Upon arrival at each field, the clear delimitation 

of the field was discussed, and then the parameter of the field 

was measured with a GPS tool, recording the GPS 

coordinates and the surface area of the field (Fig. 4). This 

process was replicated for every single field. During the pre-

harvest questionnaires, the ten households reported 64 

different fields. Upon the follow up visit during the post-

harvest period, four fields were added to the count, raising 

the total to 68 (Fig. 5). The post-harvest season is between 

October and December, when households are harvesting 

crops and when agricultural yields were recorded. 

(iii) Reported Harvest. Farmers were asked to estimate the 

weight of their harvest. They did so in local terms (e-g- “a 

closed donkey cart full of maize”), which were converted 

into kilograms with the help of local agricultural extension 

workers. 

(iv) Measurement local rainfall. The HDSS has 10 

meteorological measurement stations; the nearest one for 

Bourasso (22 km) is in the district capital of Nouna. Standard 

WMO equipment was used. The metrological parameters 

were automatically recorded daily on a memory chip and 

read out every month. For the purpose of this study the 

rainfall data was aggregated to monthly averages (Fig. 3) 

between 2013 and 2014. The rainfall pattern and amount in 

these two years were chosen, as they drove the harvest, which 

in turn influenced child nutrition in the subsequent years of 

2014 and 2015. The field methods are summarized in Table 

1. 

3. Results 

3.1. Rainfall Pattern 

Figure 3 illustrates the monthly cumulative rainfall 

collected in nearby Nouna in 2013 and 2014. The total 

rainfall in 2013 was 614.2 millimeters and 679.8 millimeters 

in 2014. However, in addition to the cumulative amount of 

rainfall, the distribution of rain is also important for 

agriculture. Figure 3 shows that in 2013, the rains stopped 

prematurely in September, which is very unfavorable for the 

maturation of the crops. In addition there is a significant peak 

in August in 2013, while the rainfall pattern in 2014 is more 

evenly distributed and lasts, as usual, through October. 

 

 

 

 

 

 

 

 

 

 



   
 

 

Table 1.  Overview of field methods in both samples and type of collected data 

 

 

Figure 3.  Recorded rainfall in the district capital of Nouna situated 22km from the village of Bourasso. The figure displays the monthly cumulative rainfall 

for the years 2013 and 2014 in millimeters. 



   

 

 

 

Figure 4.  Weigh-for-Height expressed in z-score. Both sample one’s (randomly sampled and normally nourished children) and sample two’s (dispensary-

registered sampled and under nourished children) z-scores are expressed in their change from the year 2014 and 2015. *The z-score of child 15 could not 

be not calculated due to an incomplete data. 

3.2. Household Socioeconomic Status 

The two household samples ranged in household size, 

from 3 to 23 members. The average household size for 

sample 1 was 7 members per household and the average for 

households in sample 2 was slightly higher, 9 members per 

household. The total household monetary revenue of sample 

1 was 12,103,000 francs CFA (20,867.24 US dollars) and 

that of sample 2 was 2,208,900 francs CFA (3,799.31 US 

dollars). All but one household’s financial revenue was from 

the sale of part of their agricultural products. Household 

number 12 of sample 2 reported having regular income 

outside of selling their agricultural products. Although 

average annual income of households in sample 1, 2,086.24 

USD, (302.42 USD per capita), is approximately 5.5 times 

higher than that of households in sample 2, 401.53 USD, 

(46.15 USD per capita), the average yearly spending of 

households in sample 1 (965.24 USD) is also 5.6 times higher 

than that of the households in sample 2 (172.30 USD). On 

average, the households in sample 1, who had healthier 

children, had higher spending but also higher revenue than 

the households in sample 2.  

3.3. Anthropometric Measurements 

In 2014, 15/17 (88%) children were well nourished, while 

2/17 were borderline malnourished (at the -2SD cut-off). In 

2015, all but 2/17 children had either improved or maintained 

their nutritional status, shown in the upward movement of the 

lines in figure 4. Only 2/17 children had a lower z-score than 

in 2014, but these children were still above the mean in 2015. 

Of the 11 children, who were undernourished in 2014 all had 

improved their nutritional status anywhere from 1 to 4 SD 

standard deviations by 2015. These changes are plausible 

given the difference in rainfall amount and distributions 

between the years 2013, influencing the sample measured in 

2014 before the harvest, and the improvement as a 

consequence of the “normal” rainfall pattern in 2014, 

impacting on child nutrition in the subsequent year 2015. 

3.4. Reported Feeding Practices 

It is important to note that the collection of the nutritional 

data proved difficult with regards to the household and 

primary care givers understanding of malnutrition. 

Malnutrition is not well understood, or recognized in the 

study village of Bourassa. The word malnutrition does not 

directly translate in the local language Bwamou, used for the 

questionnaires and interviews. Therefore, the best 

approximation of malnutrition employed was (“domouni 

bana” or “biro vanmou”), which loosely translates to “the 

sickness related to food”. Therefore, before any data on 

nutrition and anthropometry could be collected, a lengthy 

explanation of the relationship between nutrition and child 

health had to be covered in each household by the enquirers 

prior to data collection. 

The 24-hour nutritional recall survey was administered to 

all 29 children from the 2 samples. The data for child number 

15 was excluded because it was incomplete and it was 

removed from the anthropometric data set. Furthermore, four 

of the remaining 28 children were exclusively breastfed, so 

the nutritional data depicted below also excludes these 4 

children, leaving 23 children in the final analysis. 

Of the total 132 food items, consumed by the 23 children, 

which derived directly from their household’s agricultural 

field. The pattern is typical for the area. The meals contained 

for the most part a cereal starch made of either millet or maize 

accompanied by a sauce. In addition to this core meal 

children consumed few food items. These food items were 

purchased outside the home. The food items purchased by 



   
 

 

households for the consumption of the children included 

flour-based snacks (sweet cakes, sweet breads, beignets and 

biscuits), fresh fruits, eggs, meat, fish, rice, beans and 

spaghetti. All but two households, both in sample 1, did not 

report purchasing food for their children under five. 

3.5. Household Agriculture and Field Maps 

Across the 20 households, 6 main crops were cultivated 

over the three relevant years 2013, 2014 and 2015: 

Millet/sorghum and maize as staple cereals, peanuts, beans, 

cowpeas as leguminous and sesame as a cash crop. 

Millet/sorghum was cultivated by all 20 households in 2013, 

19/20 households in 2014 and by 19/20 households in 2015. 

Maize was cultivated by 16/20 households in 2013, 17/20 

households in 2014 and by 18/20 households in 2015. 

Peanuts were cultivated 3/20 households in 2013, 3/20 

households in 2014 and 5/20 households in 2015. Cowpeas 

were cultivated by 12/20 households in 2013, 6/20 

households in 2014 and, by 1/20 household in 2015. Beans 

were cultivated by 6/20 households in 2013, 10/20 

households in 2014 and, by 16/20 households in 

2015.Sesame was cultivated by all 20 households during all 

three years. There were no obvious differences in the crop 

distribution between the two samples studied. 

Furthermore, it is important to note that many of the crops 

were planted in association with other crops. ‘Intercropping’ 

is a well know practice, in which farmers plant two crops in 

a mixed manner, either through random mixing, or 

alternating rows of crops [18]. 17 of the 68 harvested fields 

contained two or more crops on the same field. Crop 

associations occurred between all 6 primary crops: millet, 

maize, sesame, cowpeas, beans and peanuts. 

Of the 20 households in sample 1 and sample 2, all 20 

households cultivated sesame in the years 2013, 2014, and 

2015. Of the remaining 5 primary crops, their planting 

frequencies were in the descending order of, millet, maize, 

beans, cowpeas and lastly peanuts.Peanuts were the most 

infrequently planted crop over the three year period.  

There were three others crops, which were of minor 

prevalence in the fields of the 20 households. These crops 

were: Cotton, cultivated by just 3 different families in 2015 

Peas, cultivated by 2 different families, once in 2013 and 

once in 2014, and lastly Acah, cultivated by one family 

during all three years.  

The 10 households constituting sample 1 were interviewed 

in 2014 on farming practices. They provided the following 

information, 6/10 households used improved seed varieties 

or “fast-growing” seeds for maize, millet, cowpeas, and 

sesame. The remaining four households did not use any 

improved seed varieties. 3/10 household heads considered 

their harvest yields satisfactory, enabling them to feed their 

family in the subsequent year. The 7/10 farmers who 

classified their crop yield as unsatisfactory mentioned the 

following as primary causes for their harvest short falls: Low 

rainfall, changing rainfall, and consumption of crops by 

animals or destruction of crops by “harsh sun”. In the case of 

sesame, 6/10 households who grew sesame referred to the 

recent appearance of a crop pest, which led to “sesame 

diseases”.  

The reported results of the 2014 harvest of the sample 1 

households showed that even with the devastating effects of 

the sesame pest, sesame was the crop with the largest 

production in the 10 households at 15,635 total kilograms. 

This was followed by a total reported millet/sorghum 

production of 12,117.5 kilograms, maize at 7463.1 kilograms, 

cowpeas at 2624.4 kilogram, beans at 107.4 kilograms then 

lastly peanuts at a total of 47.5 kilograms. The above 

measured outputs can be further examined at the household 

level, with household 7 displaying the highest total crop 

production of 7,588.7 kilograms and household 4 with a 

significantly smaller total production of 973.1 kilograms. 

In the same interview with the households of sample 1 in 

2014, 4/10 households reported that they had the capacity to 

keep grains from the previous two years in storage. 5/10 

households reported keeping grains in their granary from the 

previous year, and the remaining households had no stores 

left from the previous year. Households sold substantial 

amounts of their harvest to generate cash for non-food 

expenditures: 4/10 reported that they sold about half of their 

harvest; 3/10 sold a third and 2/10 sold about one fifth. One 

household did not wish to disclose their crop sales.  

Although the proportion of grains sold by households 

varied, the reasons for selling crops were similar. Households 

sold grain for two reasons; first they sold when in need of 

immediate cash and secondly, they sold grains when prices 

on the market were attractive. All households unanimously 

described the use of a stall tactic for the sale of crops; The 

longer households could delay the sale of crops, the higher 

the price they would receive.. This strategy was only 

abandoned in cases of immediate cash need, such as for 

health care. 

One agricultural feature all households shared, was the 

existence of a small land plot close to the concession, referred 

to as a “women’s garden” or a “family garden”. It is planted 

and entirely cared for by the women of the household. The 

vegetables and spices harvested from this land plot were 

exclusively for household food preparation, providing the 

sauce accompanying the main cereal staple, “tô” in the local 

language. Although the shape and extent of these ‘women 

gardens’ varied, their existence to provide the household with 

small quantities of vegetables and spices such as, tomatoes, 

hot pepper, okra, sorrel, and other consumable plants was 

similar. ‘Tô’ and sauce constituted the majority of all meals 

for children above the age of approximately 1 year. ‘Tô’ is 

the traditional carbohydrate base of the average meal in 

Burkina Faso. It is most often made of ground maize or millet 

flour. The flour is mixed, stirred, and beaten over low heat 

during a two-stage process with water, making it simple and 

affordable. ‘Tô’ is eaten in combination with a variety of 

sauces. The sauces are named after their primary ingredient, 

which is the plant ripe for harvesting in the family garden. 

The most common sauces between the months of July and 



   

 

 

November, listed in no specific order, are okra, baobab, 

hibiscus, and sorrel.  

The inventory of all fields of sample 1 were established. 

There were 68 total fields between the 10 households, with 

household 10 having the most fields 12, and households 3 

and 4 being tied with the least number of fields 3. That is 3 

fields below the average of 6 fields per household. These 68 

fields are displayed in figure 5. 

The GPS based mapping carried out while walking around 

each field with the household head was integrated in the 

Geographic Information System of the HDSS. The ten 

households surveyed reported a total of 68 fields, which were 

plotted with GIS Maps. Figure 5 shows a part of this GIS map. 

3.4. Remote Sensing and Crop Harvest Results 

The RapidEye image from September 21st, 2014 was first 

used to classify the land use by a supervised object-based 

classification approach using eCognition (Trimble, 

Germany). The objective was to quantify the actual 

cultivated area of the total agricultural area as depicted in 

Figure 6. Agriculture is the dominant land use in the study 

area (ca. 67% of the study area with a total size of 23,360 ha) 

46% of which was cultivated in September 2014. This basic 

information about current land use could be used to 

empirically estimate the harvest levels at a regional scale 

using statistics collected during field surveys such as 

percentages of crop types and average yield values. However, 

studies ata household level require a more detailed spatial 

analysis, which is described below. 

 

Figure 5.  Field maps and superposition with a remotely sensed scene. The left panel illustrates polygon overlays of the households’ agricultural fields on 

the existing GIS system of the health and demographic surveillance system. The green polygons represent individual agricultural fields surface areas. The 

black squares show the 10 selected households of sample 1. The red cross represents the local health post, which serves the village of Bourasso. The right 

most panel illustrates the selected cluster of polygons from the middle panel integrated in the satellite scene. 



   
 

 

 

Figure 6.  Derived land cover/use map with the actual cultivated area for September 2014. The bottom right cluster of households (red dots) represent the 

village of Bourasso from the superposed households layer on the GIS of HDSS. 



   

 

 

 

Figure 7.  A RapidEye scene subset with the in-field delineated millet (MIL) and sesame (SES) micro-fields (black outline). The figure also displaces 

broad categories of yields ranging from high to low. 

Qualitative yield predictions that reflect broad categories 

of harvest (high, medium, low) could be conducted with the 

use of the vegetation indices and their changes between the 

two observation dates. Figure 7 shows a RapidEye subset 

with the delineated micro-fields (black outline) from the field 

survey. The reference data in this area covered fields 

cultivated with sesame and millet, for which different 

qualitative harvest predictions were performed based on the 

RapidEye images (overlaid and color-scaled per crop type). 

This assessment shows that the RapidEye-based yield 

predictions reflect small-scale variations within the micro-

fields. The results suggest that the farmers did not cultivate 

the whole delineated reference fields equally, but rather left 

some parts uncultivated. For instance, the red parts of the 

sesame fields as well as the blue parts of the millet fields 

shown in Figure 7, indicate that there was no cultivation at 

this time. This is an example, of when a satellite-based 

approach can reveal uncertainties of in-field assessments on 

field delineation. 

4. Discussion 

Numerous studies in Sub-Saharan Africa have been 

conducted using GIS. The majority of these studies used GIS 

to track the spread of vectors or diseases such malaria [19]. 

A number of studies have gone further by using remote 

sensing to highlight the importance of analyzing and 

projecting changing environmental patterns which effect the 

health of humans, such as droughts and famines. Many 

studies have coupled climate projections with food relevant 

warning systems, such as drought warnings for food security, 

especially in the horn of Africa [20, 21, 22].  

The studies in low-income countries attempting to 

incorporate an inter-sectoral breadth of methods applied 

simultaneously at the household level and while also 

capturing a large number of the known key influences in 

depth, in addition to capturing weather variability, are few 

but varied (23, 24). They range from studies that worked to 

associate climate variables to nutrition through empirical 



   
 

 

data to studies based purely on modeling nationally 

aggregated data [24]. A 2011 study validated global food 

models by utilizing national food availability and 

undernutrition data to forecast future estimation on stunting 

across the globe using modeling [24]. Another Kenyan study 

was conducted using multi-level regression models and did 

not provide the depth of detail on household agricultural and 

child food intake as this study [22]. 

One of the publications thematically closest to this study 

is the 2014 article entitled “Environmental risk factors and 

child nutritional status and survival in a context of climate 

variability and change”,investigated a data set derived from 

GIS points, demographic health system data and a climate 

proxy. This study was paired with Advanced Very High 

Resolution Radiometer (AVHRR) satellite remote sensing 

data [24].  

In this study, apart from bringing field methods from 

different sectors together through the lens of a households, 

one key method was further advanced and integrated: The 

link between each household plot limits and their integration 

into the satellite scene making it henceforth possible to 

quantify crop yields at the plot level for each household and 

linking this to the nutritional status of that specific household. 

GIS maps of the households’ agricultural fields could be 

constructed through participatory mapping. It was possible to 

convert reported yields of the six primary crops from local 

measurements to standardized kilograms. These reported 

yields could then be connected to the corresponding house, 

fields and children. 

Lastly, this pilot study on how high-resolution remote 

sensing data can assist studies on malnutrition in Burkina 

Faso showed that RapidEye is a promising data source in 

regard to the spatial resolution for micro-field assessments. 

Longer time series with regular intervals over the growing 

season would allow more detailed assessments of crop types 

and yield estimation. 

This feasibility study showed promising results on the use 

of high-resolution satellite data for field studies on 

household/micro-field level through the visualization and 

calculation of biomass diversity, land utilization, crop try 

differentiation, and yield densities. However, some key 

questions still require further research. For example, it must 

be clarified which crop types can be differentiated (e.g. pea, 

cowpeas, peanuts) suitably for yield estimation using 

regression models. In addition, the minimum number and 

optimal interval of required satellite image acquisitions for 

yield estimations must be assessed in order to suggest an 

approach with minimal data costs. Therefore, the effect of 

reducing the number of scenes on the accuracy of the yield 

models should be analyzed in the future. The two Sentinel-2 

satellites with up to 10m spatial resolution are a promising 

source of additional data. Sentinel-2 has the required spectral 

characteristics (10 spectral bands with 10-20m spatial 

resolution) to monitor crop parameters and the data is free of 

cost. The short repetition cycle of 5 days increases the 

probability of acquiring cloud-free images. This will be 

fundamental for quantifying and monitoring annual crop 

yields (food and cash) of sampled households via satellite 

imaging. 

The strong inter-annual variation of malnutrition is 

suggestive of climate as cause in the absence of other 

explanatory factors (political unrest, price shocks of inputs, 

epidemics). Belesova et al. (2017) found a similar 

relationship between the amount and distribution of rainfall, 

harvest yields and childhood malnutrition[27]. However, this 

conclusion must await final judgment based on a larger scale 

and longer-term study. Such a study would also allow the 

attribution of the causes of undernutrition to climate change 

and the large number of known non-climatic factors, such as 

concurrent infectious diseases, market prices, family 

composition and more. 

5. Strengths and limitations 

In the scope of this small-scale study, a plethora of 

methods were applied, which constructed a holistic view of 

the environmental, nutritional and health factors affecting 

study participants. Through the powerful combination of 

household-level agricultural, nutritional and anthropometric 

surveys, weather data, participatory mapping, and the use of 

innovative remote sensing RapidEye satellite imaging much, 

from the environmental construct of the study villages’ land, 

to details of the nutritional construct of children daily meals 

could be observed and examined. The ability to cover such a 

breath of aspects capturing a wide range of influential factors 

while keeping the focus centrally on the nutrition status of 

children under five was both a challenge for the pilot study 

but ultimately constituted a major strength. The success of 

this toolbox is important, as this is the kind of approach, 

holistic yet specific, which is essential when researching the 

effect of climate change and climate variability on nutrition 

and on the health of humans.  

In identifying the strength of the pilot, it is equally 

important to note that by design, the samples explored in the 

study represented few children: 29 in 20 households. These 

numbers, although appropriate for an exploratory study, fall 

short of providing numbers large enough for statistically 

significant inferences. Furthermore, this proposed 

methodological toolkit was adapted for a subsistence-

farming context. Any extrapolation to other settings, such as 

urban populations would have to be done with great care. 

Harvest estimates from analyzing the satellite scenes were 

only possible in broad categories and not in kilograms or 

tonnes per field. This was due to the limited number of 

sequential satellite images. Another limitation was the fact 

the RapidEye data used in this feasibility study only covered 

a short period of the growing season (11 days in September, 

2014). A robust quantitative yield modeling was therefore 

not possible, due to insufficient time series on crop 

parameters and due to the low number of surveyed fields. 

Only qualitative yield predictions could be done with the use 



   

 

 

of the collected reference data. The availability of new 

satellite systems such as Sentinel-2 with short repetition 

cycles will increase the probability to use a time series of 

satellite images of around 5 sequential scenes. A limitation 

of the remote sensing approach will be in case of 

intercropping, which complicates the quantitative yield 

estimation, and requires further research.  

Finally, for practical reasons, all study components applied 

of in 2014 could not be applied in the following year. 

Conclusions 

This study demonstrates that simultaneous application of 

all the above methods in the context of one relevant area and 

population is feasible (proof of concept). Although this was 

not the primary objective of this study, with a pilot consisting 

of a small sample size, insights could be gleaned in the strong 

link between weather variability and malnutrition. Proper up 

scaling of the proposed “toolkit” would provide statistically 

robust answers regarding the relative contribution of weather 

variability/climate change to childhood malnutrition. 

6. Recommendations 

With the advent of the Sentinel-2 satellite images which 

are free of charge, the main disadvantage of the RapidEye 

scenes, which was their considerable costs, will be 

eliminated. Daily weather data can be retrieved from various 

websites at no cost for most villages and towns in low and 

middle-income countries, where the network of 

meteorological stations may not be dense enough. 

This method toolkit is therefore not only innovative in its 

combination, powerful in its value for characterizing and 

projecting health impacts from climate change, it is also 

affordable for most research projects and countries for that 

matter (e.g. As sentinel sites). One important extension of 

this toolkit would be the inclusion of micronutrient 

deficiency. 

Population-based studies replicating the described multi-

sectoral toolbox should be upscaled by using larger sample 

sizes and longer observational time series. There are many 

populations under long–term health surveillance, some 3, 5 

million in over 45 individual sites in more than 20 countries, 

which have observation lengths of an average of 20 years 

(INDEPTH). Such long-term time series have the potential to 

generate crucial climate-health impact functions, in this case 

for malnutrition, but also for most of the other 50+ climate-

sensitive diseases. This will be the basis for integrating health 

into climate models. Empirically based projections of health 

impacts from climate change in 2030, 2050 and 2100 (the 

main policy-relevant time horizons) could finally be seen. By 

the same token, the effect of adaptation behavior and policies, 

such as fast response early warning systems could be 

analyzed at the district, province, and national levels. 

Burkina Faso’s 2015 National Climate Change Adaptation 

Plan (NAP) cited ensuring sustainable food and nutrition 

security as one of its medium term goals, but did not 

explicitly describe and project the degree to which climate 

change will affect malnutrition and food security, especially 

of vulnerable groups such as women and children [29]. The 

launch a properly dimensioned (s.a.) longitudinal 

climate/nutrition study including the sectors and variables 

connected in this study would make the next NAP more 

quantitatively specific in terms of the climate impact on 

childhood undernutrition in Burkina Faso. Studies of this 

kind could lead to better attribution and quantification of 

malnutrition from climate change, and hence evidence-based 

surveillance and early warning systems, which would trigger 

adaptation strategies, which in turn could shield children 

from the added adverse impact of climate change on their 

nutritional status. 
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