FINITE NONASSOCIATIVE ALGEBRAS OBTAINED FROM SKEW
POLYNOMIALS AND POSSIBLE APPLICATIONS TO (f,0,§)-CODES

S. PUMPLUN

ABSTRACT. Let S be a unital ring, S[¢; o, ] a skew polynomial ring where o is an injective
endomorphism and § a left o-derivation, and suppose f € S[t; o, ] has degree m and an
invertible leading coefficient. Using right division by f to define the multiplication, we
obtain unital nonassociative algebras Sy on the set of skew polynomials in S[t; o, ] of
degree less than m. We study the structure of these algebras.

When S is a Galois ring and f base irreducible, these algebras yield families of finite
unital nonassociative rings A, whose set of (left or right) zero divisors has the form pA
for some prime p.

For reducible f, the Sy can be employed both to design linear (f,o,d)-codes over

unital rings and to study their behaviour.

INTRODUCTION

Let S be a unital ring. In the present paper we construct a new class of nonassociative
unital rings out of subsets of the skew polynomial ring R = S[t; 0, d] where o is an injective
endomorphism and § a left o-derivation. Given a polynomial f € R = S[t;o,d] of degree
m, whose leading coefficient is a unit, it is well-known by now (e.g., cf. [31], [26], [13] for
commutative S) that it is possible to define a right division by f: for all g(¢) € R, there exist
uniquely determined 7(t),¢(t) € R with deg(r) < m, such that g(t) = q(t) f(t) + r(t). What
is much less known is the fact that we can take the additive group {g € R|deg(g) < m} of
skew polynomials of degree less than m, i.e. the canonical representatives of the remainders
in R of right division by f, and define a nonassociative unital ring structure o on it via
goh = gh mod,f. The resulting nonassociative ring Sy, also denoted S[t; o, d]/S[t; 0,0 f,
is a unital nonassociative algebra over a commutative subring of S. If f is two-sided (also
called invariant), i.e. if S[t;o,d]f is a two-sided ideal, then S[t; o, d]/S[t; 0,0]f is the well-
known associative quotient algebra obtained by factoring out a principal two-sided ideal.
This generalizes a construction introduced by Petit for the case when S is a division ring
and thus R = S[t; o, d] left and right Euclidean [33].

The algebras Sy were previously introduced by Petit, but only for the case that S is a
division ring, hence S[t; 0, d] left and right Euclidean [33]. In that setting, they already
appeared in [12], [13], [32], and were used in space-time block coding, cf. [47], [38], [39].
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We present two possible applications: We first use our algebras to construct new families
of finite nonassociative unital rings, especially generalized nonassociative Galois rings. Gen-
eralized nonassociative Galois rings were introduced in [17] and investigated in [18], [19], [20].
They are expected to have wide-ranging applications in coding theory and cryptography [17].

As a second application, we point out the canonical connection between the algebras Sy
and cyclic (f, o, d)-codes. This connection was first mentioned in [36] for S being a division
ring. Well-known results from the literature, e.g. on the pseudo-linear map 7' [11] and on
polynomials in Ore extensions from [8] or [28], are rephrased in this setting and put into a
nonassociative context.

The paper is organized as follows. We establish our basic terminology in Section 1, define
the algebras Sy in Section 2 and investigate their basic structure in Section 3.

The matrix representing left multiplication with ¢ in Sy yields the pseudolinear transfor-
mation T associated to f defined in [8] which is discussed in Section 4. We generalize [29,
Theorem 13 (2), (3), (4)] and show that if S; has no zero divisors then T is irreducible, i.e.
{0} and S™ are the only Tj-invariant left S-submodules of S™.

In Section 5, we assume that S is a finite chain ring. If f is base irreducible then Sy is a
generalized nonassociative Galois ring. This yields new families of generalized nonassociative
Galois rings.

We consider the connection between the algebras Sy and cyclic (f, o, d)-codes, in partic-
ular skew-constacyclic codes over finite chain rings, in Section 6: We rephrase some results
(for instance from [4], [5], [8], [26], [7]), by employing the algebras Sy instead of dealing
with cosets in the quotient module S[t; o,0]/S[t; 0, 0] f. For instance, the matrix generating
a cyclic (f,0,d)-code C C S™ represents the right multiplication R, in Sy, calculated with
respect to the basis 1,¢,...,t™ ! identifying an element h = Z;’;Bl a;t* with the vector
(ag,-..,am—1), cf. [8]. This matrix generalizes the circulant matrix from [16] and is a con-
trol matrix of C. We also show how to obtain semi-multiplicative maps using their right
multiplication. This paper is the starting point for several applications of the algebras Sy to
coding theory, e.g. to coset coding, and related areas. Some are briefly explained in Section
7.

1. PRELIMINARIES

1.1. Nonassociative algebras. Let R be a unital commutative ring and let A be an R-
module. We call A an algebra over R if there exists an R-bilinear map A x A — A,
(z,y) — x -y, denoted simply by juxtaposition zy, the multiplication of A. An algebra A is
called unital if there is an element in A, denoted by 1, such that 1z = x1 = x for all x € A.
We will only consider unital algebras.

For an R-algebra A, associativity in A is measured by the associator [z,y,z] = (vy)z —
x(yz). The left nucleus of A is defined as Nuc;(A) = {x € A|[z, A, A] = 0}, the middle
nucleus as Nuc,,(A) = {z € A|[A,z, A] = 0} and the right nucleus as Nuc,(4) = {z €
A|[A, A x] = 0}. Nuci(A), Nuc,,(A) and Nuc,(A) are associative subalgebras of A. Their
intersection Nuc(A) = {z € A|[x, A, A] = [A,x, A] = [A, A, z] = 0} is the nucleus of A.

Nuc(A) is an associative subalgebra of A containing R1 and x(yz) = (zy)z whenever one
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of the elements z,y, z is in Nuc(A). The commuter of A is defined as Comm(A4) = {z €
Alzy = yx for all y € A} and the center of A is C(A) = {z € A|z € Nuc(A) and 2y =
yx for all y € A} [42].

An algebra A # 0 over a field F is called a division algebra if for any a € A, a # 0, the
left multiplication with a, L,(x) = az, and the right multiplication with a, R,(x) = za,
are bijective. A division algebra A does not have zero divisors. If A is a finite-dimensional

algebra over F', then A is a division algebra over F' if and only if A has no zero divisors.

1.2. Skew polynomial rings. Let S be a unital associative (not necessarily commutative)
ring, o a ring endomorphism of S and ¢ : S — S a (left) o-derivation, i.e. an additive map
such that
5(ab) = o(a)d(b) + d(a)b
for all a,b € S, implying 6(1) = 0. The skew polynomial ring R = S[t; 0, d] is the set of skew
polynomials
agp +ait+---+apt"

with a; € S, where addition is defined term-wise and multiplication by
ta=o(a)t+0(a) (a€bf).

That means,
n

at"bt™ = " a(A, ; bt
3=0
(a,b € S), where the map A,, ; is defined recursively via

ANnj =000 1) +0(Ano1j-1),

with Ago = ids, A1,0 =9, A1 = 0 and so A, ; is the sum of all polynomials in ¢ and &
of degree j in o and degree n — j in ¢ ([25, p. 2] or [8, p. 4]). If § =0, then A, ; = o™.

S[t; o] = S[t; 0,0] is called a twisted polynomial ring and S[t; 0] = S[t;id, 8] a differential
polynomial ring. For ¢ = id and § = 0, we obtain the usual ring of left polynomials
S[t] = St;id, 0].

For f = ag + a1t + - - + a,t™ with a,, # 0 define deg(f) = n and deg(0) = —oo. Then
deg(gh) < deg(g) + deg(h) (with equality if h has an invertible leading coefficient, or g has
an invertible leading coefficient and o is injective, or if S is a division ring). An element
f € R is irreducible in R if it is not a unit and it has no proper factors, i.e if there do not
exist g,h € R with deg(g), deg(h) < deg(f) such that f = gh.

Suppose D is a division ring. Then R = D[t;0, 4] is a left principal ideal domain (i.e.,
every left ideal in R is of the form Rf) and there is a right division algorithm in R [25, p. 3]:
for all g, f € R, g # 0, there exist unique r,q € R, and deg(r) < deg(f), such that

g=qf +r
(cf. Jacobson [25] and Petit [33], note that Jacobson calls what we call right a left division

algorithm and vice versa.). If o is a ring automorphism then R = D[t; o, d] is a left and right
principal ideal domain (a PID) [25, p. 6] and there is also a left division algorithm in R [25,
p. 3 and Prop. 1.1.14].
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2. NONASSOCIATIVE RINGS OBTAINED FROM SKEW POLYNOMIALS RINGS

From now on, let S be a unital ring and S[t;o,d] a skew polynomial ring where o is
injective. S[t;0,0] is generally neither a left nor a right Euclidean ring (unless S is a
division ring). Nonetheless, we can still perform a left and right division by a polynomial
f € R = S[t;0,6], if f(t) = > i~ ,d;t" has an invertible leading coefficient LC(f) = d,
(this was already observed for twisted polynomial rings and special cases of S and assuming
o € Aut(9) for instance in [31, p. 391], [26, p. 4], [13, 3.1]):

Proposition 1. Let f(t) € R = S[t; 0, 9] have degree m and an invertible leading coefficient.
(i) For all g(t) € R of degree | > m, there exist uniquely determined r(t),q(t) € R with
deg(r) < deg(f), such that

9(t) = q(®)f(t) + (D).
(i) Assume o € Aut(S). Then for all g(t) € R of degree I > m, there exist uniquely
determined r(t),q(t) € R with deg(r) < deg(f), such that

g(t) = f(t)q(t) +r(t).

Proof. (i) Let f(t) = > i~ dit" and g(t) = Zé:o s;t" be two skew polynomials in R of degree
m and [. Suppose that [ > m and that the leading coefficient LC(f) = d,, of f is invertible.
Since 1 = o(d,nd;}) = o(dy,)o(d}b), we know that o(d,,) and thus o7 (d,,) is invertible for
any integer j > 0. Now

m—1

g(t) = si0" " (d DT () = g() = siot T (d T (dt™ Y dit?)
=0

= g(t) = s10' 7" (d,)

m

W ™ — Zsla (At

m—1

l—m l—m
= g(t) = 510" ( ) Q- Aimn g (de )™ = D 510! (d ) (D Aiin, (din) )
§=0 i=0 §=0

=g(t) — Slalim(d;bl)Al—m,l—m(dm)tl

l—m—1 m—1l—m
*Slglim(d:nl) Z Al—mj tj+m Z ZSZU - Al m,j( )tiJrj
j=0 i=0 j=0
=g(t) — sit!
l—-m—1 m—11l—-m
—SlUl_m(d,_nl) Z A, J+m Z ZS[U - Al m,](dj)ti—"_j.
=0 =0 5=0

Note that we used that A;_,, 1 (dm) = 07™(d,,) in the last equation. Therefore the
polynomial g(t) — s;0'=™(d,,)t!"™ f(t) has degree < [. By iterating this argument, we find
r,q € R with deg(r) < deg(f), such that

g(t) = q)f(t) +r(t).

To prove uniqueness of ¢(t) and the remainder r(t), suppose we have

gt) = q(t)f(t) +ri(t) = q2(t) £ () + r2(t).
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Then (q1(t) — g2(t))f(t) = r2(t) — r1(t). If q1(t) — g2(t) # 0 and observing that f has
invertible leading coefficient such that o(d,,)? cannot be a zero divisor for any positive j,
we conclude that the degree of the left-hand side of the equation is greater than deg(f) and
the degree of r5(t) — r1(t) is less than deg(f), thus ¢1(t) = ¢2(¢) and 71 (t) = ra(t).

(ii) The proof is along similar lines as the one of (i), using that the polynomial g(t) —
ft)o=™(s))o~™(d,;,})#'=™ has degree < [ and iterating this argument. The uniqueness of

q(t) and the remainder is proved analogously as in (i). O

In the following, we always assume that
f(t) € S[t;0,68] has degree m > 1 and an invertible leading coefficient LC(f).

Let mod, f denote the remainder of right division by f and mod;f the remainder of left
division by f. Since the remainders are uniquely determined, the skew polynomials of degree
less that m canonically represent the elements of the left S[t; o, d]-module S[t; 0, d]/S[t; 0, 6] f
and when o € Aut(S), for the right S[t; o, §]-module S[t; o,d]/fS[t; o, 0]

Definition 1. Suppose f(t) = >~ dit' € R = S[t;0,6].
(i) The additive group {g € R|deg(g) < m} together with the multiplication

goh = gh mod,f

defined for all g, h € R of degree less than m, is a unital nonassociative ring S; also denoted
by R/Rf.
(ii) Suppose o € Aut(S). Then the additive group {g € R|deg(g) < m} together with the
multiplication

g<oh = gh mod, f

defined for all g, h € R of degree less than m, is a unital nonassociative ring ;S also denoted
by R/fR.

Sy and ;S are unital algebras over Sy = {a € S|ah = ha for all h € Sy}, which is a
commutative subring of S. If S is a division ring, Definition 1 is Petit’s algebra construction
[33] and Sp is a subfield of S. In the following, we therefore call the algebras Sy Petit

algebras.

Remark 2. (i) Let g, h € R have degrees less than m. If deg(gh) < m then the multiplica-
tion go hin Sy and go h in ;S is the usual multiplication of polynomials in R.
(ii) If Rf is a two-sided ideal in R (i.e. f is two-sided, also called invariant) then Sy is the
associative quotient algebra obtained by factoring out the ideal generated by a two-sided
f e S[t;o,d].
(iii) If f € S[t;0,0] is reducible then Sy contains zero divisors: if f(t) = g(¢t)h(t) then g(t)
and h(t) are zero divisors in Sy. The argument leading up to [33, Section 2., (6)] shows
that if S is a division ring, then Sy has no zero divisors if and only if f is irreducible, which
is in turn equivalent to Sy being a right division ring (i.e., right multiplication Rj, in Sy is
bijective for all 0 # h € Sy).

However, for general rings S it can happen that Sy has zero divisors, even when f is

irreducible.
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(iv) For all invertible a € S we have Sy = S,y, so that without loss of generality it suffices
to only consider monic polynomials in the construction.

It suffices to consider the algebras Sy, since we have the following canonical anti-automorphism
(cf. [33, (1)] when S is a division ring, the proof is analogous):

Proposition 3. Let f € R = S[t;0,8] have an invertible leading coefficient and let o €
Aut(S). The canonical anti-automorphism

Y : S[t;0,8] — SP[t;o !, —6o0 Y,

n n k
DO att) =D (D Anlar))tt
k=0

k=0 i=0
between the skew polynomial rings S[t; o, 6] and S°P[t; 0L, —§oo 1] induces an anti-automorphism

between the rings
Sy = S[t;0,0]/S[t; 0,01 f
and
w(5)S = 8P[to7 =600 /U(f)SPlt;07t, ~6 00 ).

Note that if § = 0 and o € Aut(S), we have

n

(Y art’) =Y o (an)t".
k=0

k=0
3. SOME STRUCTURE THEORY

3.1. In the following, let f € R = S[t; o, ] be monic of degree m > 1 and o injective. When
S is a division ring, the structure of Sy is extensively investigated in [33]. For instance, if S
is a division ring and the Sp-algebra Sy is finite-dimensional, or free of finite rank as a right
module over its right nucleus, then Sy is a division algebra if and only if f(¢) is irreducible
33, (9)]-

Some of the results in [33] carry over to our more general setting:

Theorem 4. (i) Sy is a free left S-module of rank m with basis t° = 1,¢,... t™" 1
(i) Sy is associative if and only if f is two-sided.
(i11) If Sy is not associative then

S C Nucy(Sy), S C Nucy,(Sy)

and
{9 € R|deg(g) <m and fg € Rf} = Nuc,(Sy).
When S is a division ring, the inclusions become equalities.
(iv) We have t € Nuc,(Sf), if and only if the powers of t are associative, if and only if
™t = ™ in 5.

(v) If S is a division ring and Sy is not associative then

C(S) = S.
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(vi) Let f(t) = > dit" € S[t;o] with dy invertible. If the endomorphism L, which is
the left multiplication by t as defined in Section 1.1 is surjective then o is surjective. In
particular, if S is a division ring and [ irreducible, then Ly surjective implies o surjective.

Moreover, if o is bijective then Ly is surjective.

Proof. (i) is clear.

(ii) If f is two-sided, Sy is clearly associative. Conversely, if Sy is associative then Sy =
Nuc, (Sf) = {g € R|deg(g) < m and fg € Rf}. Thus t € Nuc,(Sy) and also S C Nuc,(Sy).
This means f(t)t € Rf(t) and for all a € S, also f(t)a = g(t)f(t) for a suitable g(t) € R.
Comparing degrees (recall we assume f to have an invertible leading coefficient) we see that
g(t) =be S, so we get f(t)t € Rf(t) and for all a € S, also f(t)a = bf(t) for a suitable
b€ R. Thus f is invariant, i.e. two-sided.

(iii) The proof of the first two inclusions and that {g € R|deg(g) < m and fg € Rf} C
Nuc,(Sy) is similar to [33, (2)] (which proves the result for S being a division ring), as this
inclusion does not need S to be a division ring. For instance, for ¢ € Nuc;(Sy) = {a €
St |la,b,c] = 0 for all b,c € Sy} we have [a,b,c] = 0 if and only if pfc = 0 for some p € R.
If a has degree 0 then p = 0 as observed in [33, (2)] so S C Nuc;(S¢). It remains to show
that Nuc,(Sy) C {g € R|deg(g) < m and fg € Rf} [10]: Let b,¢,d € R have degree less
than m. Write bc = q1f + 1, ed = qof + ro with ¢;,7; € R uniquely determined of degree
smaller than m. A straightforward calculation as in [33, (2)] shows that in Sy we thus have
(be)d = b(cd) if and only if ¢ fdmod,. f = 0 if and only if ¢, fd € Rf.

Let now d € Nuc,(Sy) and choose b,c¢ € R with invertible leading coefficient such that
deg(b)+deg(c) = m, so that deg(bc) = m. Write bc = ¢1 f+71. Then deg(q1 f) = deg(q1)+m.
But here be = ¢1 f + 71 also means deg(gq1) = 0, so g1 € S is non-zero. The leading coefficient
of be is LO(b)LC(c) and the leading coefficient of ¢ f is q;. Therefore ¢ = LC(b)o!(LC(c))
is invertible in S. Since d € Nuc,(Sy) implies ¢1 fd € Rf, this yields fd € Rf.

(iv) If ft € Rf thent € Nuc,(Sy) by (iii), hence t,...,t™~! € Nuc,(Sy), and so [t?,t/,t*] = 0
for all 7,7,k < m, meaning the powers of ¢t are associative. In particular, this implies
[t,tm~1 ¢] = 0, that is t™t = tt™. A careful analysis of the proof of [33, (5)] shows that the
other implications can be proved analogously as in [33, (5)], also when also holds when S is
not a division algebra, since we still have that we have [t!,#/,t*] = 0 for all 4, j,k < m with
i+ j < m analogously as in [33, 6].

(v) We have C(Sf) = Comm(Sy) N Nuc(Sy) = Comm(Sf) NS = S.

(vi) If dy is invertible and 6 = 0 then L, surjective implies o surjective: For u = ;" 01 u;tt €

Sy, we have (using the multiplication in Sy)

m—2 m—2 m—1
o t”l—i—o (Urm—1) E ol t”l—i—a (Um—1) E d;t’.
=0 =0 =0

Suppose L, is surjective, then given any b € S, there is u € Sy such that L;(u) = b.

Comparing the constants in this equation, we obtain that for all b € S there is u,,,—1 € S

such that o(uy,—1) = bdp, i.e. for all ¢ € S there is u,,—1 € S such that o(um,—1) = ¢ [10].
The statement that if S is a division ring and f irreducible then L; is surjective implies

o surjective is [33, Section 2., (6)] and follows as a special case now.
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If o is bijective then L; is surjective: Let g = 327" git*. Define u, 1 = 0~ (gody ') and
wi—1 =0 (g;) — um—_10"1(d;). Then L;(u) = g [10]. O

Recall that the largest subalgebra of R = S[t; 0, 6] in which Rf is a two-sided ideal is the
idealizer I(f) ={g € R| fg € Rf} of Rf. The eigenring of f is then defined as the quotient
E(f) = I(f)/Rf. The eigenring E(f) = {g € R|degg < m and fg € Rf} equals the
right nucleus Nuc,(Sy) by Theorem 4 (iii) (or see [33, (2)] if S is a division algebra) which,
as the right nucleus, is an associative subalgebra of S¢, cf. Section 1.1. More precisely,
the multiplication o in Sy makes Nuc,(Sy) into an associative algebra which equals the
associative quotient ring E(f) equipped with the canonical multiplication induced on it by
the multiplication on the ring I(f) C R. When S is a division ring, non-trivial zero divisors
in E(f) = Nuc,(Sy) correspond to factors of f:

Proposition 5. ([24, Proposition 4]) Let S be a division ring and f € R = S[t; 0, 0].

(i) Let uv = 0 for some non-zero u,v € E(f), then the greatest common right divisor
gerd(f,u) is a non-trivial right factor of f. (v € R is the greatest common right divisor of
f and w, written gerd(f,u) = v, if there are s,d € R such that sf + du =v.)

(ii) Let f € R be bounded (i.e., there exists 0 # f* € R such that Rf* = f*R is the largest
two-sided ideal of R contained in Rf) and o be an automorphism. Then f is irreducible if

and only if E(f) = Nuc,(Sy) has no non-trivial zero divisors.

Remark 6. Let S be a division ring.

(i) If f is irreducible then Nuc,(Sy) is an associative division algebra [24, p. 17-19].

(ii) Effective algorithms to compute Nuc,(Sy) for f € Fy(z)[t; o] and f € F,(z)[t; 8] can be
found in [22], for R = F,[t; o] in [21], [40]. Proposition 5 is also employed for linear differential
operators in [43], to factorize skew polynomials for S = F, in [21] and for S = F,(z) in [22],
[23], [24], without relating it to the algebras S, however.

Proposition 7. Let f € R = S[t;0,4].
(1) Every right divisor g of f of degree < m generates a principal left ideal in Sy.

All non-zero left ideals in Sy which contain a polynomial g of minimal degree with invert-
ible leading coefficient are principal ideal generated by g, and g is a right divisor of f in R.
(i) Each principal left ideal generated by a right divisor of f is an S-module which is iso-
morphic to a submodule of S™.

(i) If f is irreducible, then S; has no non-trivial principal left ideals which contain a

polynomial of minimal degree with invertible leading coefficient.

The proof is straightforward. If there is no polynomial g of minimal degree with invertible
leading coefficient in a non-zero left ideal, then the ideal need not be principal, see [26,

Theorem 4.1] for examples.

Theorem 8. Let f € R = S[t;0].
(i) The commuter Comm(Sy) = {g € Sy |gh = hg for all h € Sy} contains the set

m—1
{Z a;it' | a; € Fix(o) and ca; = a;0'(c) for all c € S}.
=0
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If t is left-invertible in Sy and S a division ring, the two sets are equal.
(i) Fix(o) N C(S) C So = Comm(Sy) NS. If t is left-invertible and S a division ring, the

two sets are equal.

Proof. (i) and (iii) are straightforward calculations; both generalize [33, (14), (15)].
(ii) follows from (i): So = {a € S|ah = ha for all h € Sy} = Comm(S;) NS and Fix(o) N
C(S) € Comm(Sy) NS = Sy. If t is left-invertible, the two sets are equal. O

Remark 9. For f(t) = >.I"d;t" € S[t;o] monic, t is left-invertible if and only if dy is
left-invertible. One direction is a simple degree argument (suppose there are g, h € Sy with
gt = hf+1, then compare the constant terms of both sides). Conversely, if dy is left-invertible
then ¢ is left-invertible (say, hodg = 1, choose h = —hg and define g(t) = 2?51 hd; 1t to
get gt = hf +1). Thus if f is irreducible (hence dg # 0) and S a division ring then ¢ is
always left-invertible and Sy = Fix(o) N Comm(S).

3.2. When S is an integral domain. In this section, let S be a commutative integral
domain with quotient field K, f be monic and o injective as before. Then o and § canonical

extend to o and § to K via

for all a,b € S, b #0.

Proposition 10. Let S be an integral domain with quotient field K, f € S[t;0,0] and let
Sy = S[t;0,6]/S[t:0,6]f.

(i) Sy @ K = Kt;0,0]/K[t;0,6|f again is a Petit algebra.

(1) If f is irreducible in K|t;0,6|, then Sy has no zero divisors.

Proof. (i): The isomorphism is clear by [33, 3].

(ii): By (i), we have S; ® K =& K|t;0,0]/K|t;0,0]f. Since f(t) is irreducible in K[t; o, d]
and K is field, K[t;0,0]/K]t;0,d]f is a Petit algebra such that Ry, is bijective and Ly, is
injective, for all 0 # h € Sy [33, Section 2., (6)]. This implies that it does not have any zero
divisors, and so neither does Sy = S[t;0,0]/S[t;0,6]f. O

Example 11. Nonassociative cyclic division algebras were introduced by Sandler [41] and
studied in [44] (to be precise, [44] looks at their opposite algebras). We generalize their
definition (see [32] for the associative set-up):

Let S/Sp be an extension of commutative rings, o € Aut(S) and G = (o) a finite cyclic
group of order m acting on S such that the action is trivial on Sy. For any ¢ € S, the gen-
eralized (associative or nonassociative) cyclic algebra A = (S/So,0,¢) is the m-dimensional
S-module A = S @ St ® St2 @ --- ® St™~! where multiplication is given by the following
relations for all a,b € S,0 < 4, j, < m, which then are extended linearly to all elements of A:

ac’(b)titI ifi+j<m,

(at)(pt) =4 L
act(b)tHD=me if i 4§ > m,



10 S. PUMPLUN

If 0 € Aut(S), then (5/Sp,0,¢) = Sy for f(t) = t™ —c € S[t;0] and Sy = Fix(o). If
c € 8\ Sy, the algebra (5/50, o, ¢) has nucleus S and center Sy.

Suppose Sy and S are integral domains with quotient fields F' and K. Canonically extend
o to an automorphism ¢ : K — K, then if m is prime, (5/Sy, 0, ¢) = S has no zero divisors
for any choice of ¢ € S\ Sy (since then (K/F,o,c) always is a nonassociative cyclic division
algebra and contains Sy).

Generalized associative cyclic algebras are used in [13], generalized nonassociative cyclic

algebras in [35].

4. PSEUDOLINEAR MAPS

Let o be injective and f = Y d;t' € S[t;0,6] be a monic skew polynomial of degree
m > 1. By Theorem 4, Sy is a free left S-module with S-basis 1,¢,...,t™ . We identify
an element h € Sy, h(t) = 2261 a;t* with the vector (ag,...,amn_1) € S™.

Right multiplication with 0 # h € Sy in Sy, Ry : Sy — Sf, p — ph, is an S-module endo-
morphism [33]. After expressing Ry, in matrix form with respect to the S-basis 1,¢,...,t™m !
of Sy, the map

v : Sy — Endg(Sf),h— Ry
induces an injective S-linear map

v : Sy — Mat,(S),h — Ry — Y.

Left multiplication Lj, : Sy — Sy, p — hp is an Sp-module endomorphism. If we
consider Sy as a right Nuc, (S¢)-module then Ly is a Nuc,(Sf)-module endomorphism.

For a two-sided f, «y is the right regular representation and X is the left regular represen-
tation of the associative algebra S.

If S is a commutative ring and det(y(h)) = detY = 0, then h is a right zero divisor in
S¢. Moreover, Sy is a division algebra if and only if y(k) is an invertible matrix for every

nonzero h € Sy.

Remark 12. (i) In [16], where S is a finite field and f(t) =t" —a, 6 =0, v(h) =Y is the
circulant matriz M.

(ii) If S is not commutative, but contains a suitable commutative subring, it is still possible
to define a matrix representing left or right multiplication in the Sy-algebra S; where the
entries of the matrix lie in a commutative subring of S which strictly contains Sy and
which displays the same behaviour as above. This is a particularity of Petit’s algebras, and
not always possible for nonassociative algebras in general. It reflects the fact that the left
nucleus of Sy always contains S (and thus is rather ‘large’) and that also the right nucleus
may contain S or subalgebras of S, depending on the f used in the construction.

For instance, this is the case (and was used when designing fast-decodable space-time
block codes, e.g. in [38], [39], [37]) when S is a cyclic division algebra S = (K/F,p,c)
of degree n and f(t) = t"™ — d € S[t;o], with o suitably chosen. The m X m matrix
~v(h) =Y consequently has its entries in (K/F, p,c). We can then substitute each entry in
the matrix, which has the form o*(x) for some = € (K/F, p, c), perhaps timed with the scalar

d, with an n x n matrix: take the matrix of the right regular representation of x over K in
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(K/F,p,c), apply o’ to each of its entries and using scalar multiplication by d if applicable.
We obtain an mn X mn matrix X with entries in the field K, which still represents right
multiplication with an element in Sy, but now written with respect to the canonical K-basis
L...,ety ety .. e™ 1M=L of Sp o 1le,...,e" ! being the canonical basis of (K/F, p,c).
Again det X = 0 implies that h is a zero divisor in Sy, and were Sy is a division algebra if
and only if X is invertible for every non-zero h € Sy. The interested reader is referred to
[47], [38], [39], [37] for the details which would be beyond the scope of this paper.

Let
0 1 0 0
0 0 1 0
Cr = :
0 0O 0 0 1
—do —dy o —=dma

be the companion matriz of f. Then
Tp:S™ — S™, Ty(at,...,am) = (0(a1),...,0(am))Cr + (6(a1),...,0(am))

is a (o, ¢)-pseudolinear transformation on the left S-module S™, i.e. an additive map such
that

Ty(ah) = o(a)Ty(h) + 6(a)
for all @ € S, h € S™. Ty is called the pseudolinear transformation associated to f [8]

and we can translate some results on T (e.g., see [28]) to our nonassociative context. For
h =", a;t" € S[t;0,6] we define

WTy) = a;T}.
=0

Theorem 13. (i) The pseudolinear transformation Ty is the left multiplication Ly : Sy —
St ho— th with t in Sy, calculated with respect to the basis 1,t,...,t™™1, identifying an

element h = Zgol a;t" with the vector (ag,...,am—1):
Li(h) =Ty(h)
forall h € Sy.

(ii) We have Li(h) = Ly (h) for all h € Sy.
(i11) Left multiplication Lj, with h € Sy is given by

Ly =h(Ty) =Y a;T},
i=0
or equivalently by
n
Ly =h(L) =) aiLy,
i=0

when calculated with respect to the basis 1,t,...,t™ "L, identifying an element h = Z?:o a;t?
with the vector (ai, ..., an).
(iv) If St has no zero divisors then Ty is irreducible, i.e. {0} and S™ are the only Ty-

invariant left S-submodules of S™.
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Proof. This is proved for instance in [29, Theorem 13 (2), (3), (4)] for § = 0, f irreducible
and S a finite field. The proofs generalize easily and mostly verbatim to our more general

setting. (]
From Theorem 4 (vi) together with Theorem 13 (i) we obtain:

Corollary 14. Let f(t) = Y.~ dit' € S[t; 0] with dy invertible. If o is not surjective then
the pseudolinear transformation Ty is not surjective. In particular, if S is a division ring,
f irreducible and o is not surjective then Ty is not surjective.

Moreover, if o is bijective then T is surjective.

Remark 15. (i) From Theorem 13 we obtain [8, Lemma 2], since pg = 0 in Sy is equivalent
to L,(q) = p(Ty) = 0. Note that

n

T7(ah) = Ajn(a)Ti(h)
i=0
for all a € S, h € S™ [8], so Ly is usually not (o, §)-pseudolinear anymore.

(ii) Right multiplication with  in Sy induces the injective S-linear map
v : 85 — Mat,,(S), h— R,—Y.

f is two-sided is equivalent to  being the right regular representation of Sy. In that case,
v is an injective ring homomorphism. In particular, (1) and (3) in [16, Theorem 6.6] hold
in our general setting (i.e., for any choice of f) if and only if Sy is associative: both reflect
the fact that then v : Sy — Mat,,(5) is the right regular representation of Sy.

(iii) Suppose f = h'g = gh. Right multiplication in Sy induces the left S-module endo-
morphisms Ry, and R,;. We have g € ker(Ry,) = {u € R|deg(u) < m and uh € Rf} and
h € ker(Ry) = {u € R|deg(u) < m and ug € Rf}, cf. [28, Lemma 3] or [16, Theorem 6.6].
If f is two-sided, ker(R,) = S¢h and ker(Ry) = Syg.

(iv) Suppose f = h'g = gh. Left multiplication in Sy induces the right Sp-module endo-
morphisms Ly and L,. We have g € ker(Ly/) = {u € R|deg(u) < m and hu € Rf} and
h € ker(L,) = {u € R|deg(u) < m and gu € Rf}. If f is two-sided, ker(Ly/) = ¢Sy and
ker(Ly) = 1'Sy.

Furthermore, (iii) and (iv) tie in with or generalize (4), (5) in [16, Theorem 6.6].

5. FINITE NONASSOCIATIVE RINGS OBTAINED FROM SKEW POLYNOMIALS OVER FINITE
CHAIN-RINGS

5.1. Finite Chain Rings (cf. for instance [31]). When S is a finite ring, Sy is a finite
unital nonassociative ring with |S|™ elements and a finite unital nonassociative algebra over
the finite subring Sy of S. E.g., if S is a finite field and f irreducible, then S is a finite
unital nonassociative division ring, also called a semifield [29]. We will look at the special
case where S is a finite chain ring. Lately, these rings gained substantial momentum in
coding theory, see for instance [3], [4], [7], [11], [14], [15], [27], [30].

A finite unital commutative ring R # {0} is called a finite chain ring, if its ideals are

linearly ordered by inclusion.
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Every ideal of a finite chain ring is principal and its maximal ideal is unique. In particular,
R is a local ring and the residue field K = R/(7), where « is a generator of its maximal

ideal m, is a finite field. The ideals (y*) = 4*R of R form the proper chain

R=1)2®20)2- 201 =(0).

The integer e is called the nilpotency index of R. If K has ¢ elements, then |R| = ¢¢. If
m:8 — K =R/(y), x — T = zmod~ is the canonical projection, a monic polynomial
f € RJt] is called base irreducible if f is irreducible in K.

Let R and S be two finite chain rings such that R C S and 1z = 15 Then S is an extension
of R denoted S/R. If m is the maximal ideal of R and M the one of S, then S/R is called
separable if mS = M. The Galois group of S/R is the group G of all automorphisms of
S which are the identity when restricted to R. A separable extension S/R is called Galois
if S¢ = {s € S|7(s) = sforallT € G} = R. This is equivalent to S = R[z]/(f(x)),
where (f(z)) is the ideal generated by a monic basic irreducible polynomial f(x) € R[z] [31,
Theorem XIV.8], [48, Section 4]. From now on, a separable extension S/R of finite chain
rings is understood to be a separable Galois extension.

The Galois group G of a separable extension S/ R is isomorphic to the Galois group of the
extension Fyn /F,, where Fpn = S/M, F, = R/m. G is cyclic with generator o(a) = a? for
a suitable primitive element a € S, and {a,o(a),...,0" 1(a)} is a free R-basis of S. Since

S is also an unramified extension of R, M = Sm = Sp, and
S=(1)28p2---25p"=(0).
The automorphism groups of S are known [1, 2].

Example 16. (i) The integer residue ring Z,. and the ring F,» [u]/(u¢) are finite chain rings
of characteristic p, the later has nilpotency index e and residue field F».

(ii) A finite unital ring R is called a Galois ring if it is commutative, and its zero-divisors
A(R) have the form pR for some prime p. (p) = Rp is the unique maximal ideal of R. Given
a prime p and positive integers e, n, denote by G(p¢,n) the Galois ring of characteristic
p® and cardinality p®" which is unique up to isomorphism. Its residue field (also called
top-factor) G(p¢,n) = G(p°,n)/pG(p®,n) is the finite field Fyn.

5.2. Skew-polynomials and Petit’s algebras over finite chain rings. Let S be a
finite chain ring with residue class field K = S/(y) and ¢ € Aut(S), ¢ a left o-derivation.
Consider the skew polynomial ring R = S[t;0,d]. Whenever S is a finite chain ring, we

suppose o((7)) = (v) and §((7)) C (7). Then the automorphism o induces an automorphism

7:K— K, () =0(x)

with ¢ = @ o w, and analogously § a left G-derivation ¢ : K — K. There is the canonical

surjective ring homomorphism
n n
~:S[t;0,8] — K[t;5,0], g(t) = Zaiti —g(t) = Zaﬁti.
i=0 i=0

We call f base irreducible if f is irreducible in K[t; 7, ] and regular if f # 0. Obviously, if f
is irreducible in K[t;7,0] then f is irreducible in S[t; o, 8]. Since Sy 2 S, for all invertible
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a € S, without loss of generality we consider only monic f in this section. From now on let
f € R= S[t;0,d] be monic of degree m > 1.

Lemma 17. Suppose S is a finite chain ring with cardinality q¢. Then

Sy = S[t;0,6]/S[t; 0,0]f

is a monassociative finite ring with ¢°™ elements and S5 = K[t;5,0]/K[t;5,0|f has ¢™
elements.

snm

In particular, if S = G(p®,n) then Sy has p elements and ST has p™™ elements.

Proof. The residue class field K has ¢ elements if |S| = ¢°. Since Sy is a left S-module with

basis ¢/, 0 < i < m — 1, it has ¢°™ elements, analogously, 57 has ¢ elements. O
From Remark 6, Proposition 5, [33, (9)] and [33, (7)] we get (as all polynomials in

K = K|t; 5] are bounded for a finite field K, and K[t;7, 6] = K|[t; 0’| for a suitable o'):

Corollary 18. Suppose S is a finite chain ring.

(i) Sy is a unital nonassociative algebra with finitely many elements over the subring So =

{a € S|ah = ha for all h € Sy} of S.

(i) S7 = K[t;7, 0|/ fKt;7,0] is a semifield if and only if f is base irreducible, if and only

if Nuc,.(S%) has no zero divisors.

(#3) If 6 = 0 then Fix(o) C Sp.

From now on we assume that v € Fix(o) N Const(d). Then Sy is a two-sided ideal in S;.
The canonical surjective ring homomorphism ~ : S[t; o, 6] — K|[t; 7, ] induces the surjec-

tive homomorphism of nonassociative rings

g(t) —g(t)
which has as kernel the two-sided ideal 7.Sy.

This induces an isomorphism of nonassociative rings:
(1) Sy/vS; = K[t;7,8]/K[t;7,0]f = S5,
g9(t) +755 = g(t).

5.3. Generalized Galois rings. A generalized Galois ring (GGR) is a finite nonassocia-
tive unital ring A such that the set of its (left or right) zero divisors A(A) has the form
pA for some prime p. A(A) is a two-sided ideal and the quotient A = A/pA is a semifield
of characteristic p, called the top-factor of A. The characteristic of A is p°. There is a

canonical epimorphism
A— A=A/pA, aw— a=a-+pA.

A generalized Galois ring A of characteristic p* is a lifting of the semifield A of characteristic

p* if C(A) = C(A)/pC(A) =2 C(A) (cf. [17]).
A finite unital ring A is a GGR if and only if there is a prime p and a positive integer s
such that char(A4) = p® and A = A/pA is a semifield [17, Theorem 1].
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Let S = G(p°®,n) be a Galois ring and let f € R = S[t; 0, d] be monic of degree m > 1 as
before.
Let A= Sy = S[t;0,0]/S[t;0,6]f, then by (1) there is the canonical isomorphism

A/pA = K[t;7,0]/K[t;7,0]f = S7.
Thus all base irreducible such f € S[t; 0, ] yield generalized Galois rings Sy:

Theorem 19. Let S be a Galois ring and let f(t) € S[t;0,d] be base irreducible. Then the

finite nonassociative ring
Sy = S[t;0,0]/S[t; 0, 0] f

is a GGR with p*™™ elements. If Sy is not associative it is a lifting of its top-factor since
So/pSO = FiX(E).

Proof. If f is irreducible, then St = K[t;7, 0]/K[t;7,0]f is a semifield. By (1), we have
S? = A/pA = A, so that A is a semifield. Thus Sy is a GGR with p®™™ elements by Lemma
17 and [17, Theorem 1].

Every left o-derivation of a finite field is inner, so that there are a suitable y and ]? €
Kly; 7] such that 57 = K(y; 7]/ Kly; 7]f. The second assertion is now proved using the fact
that S is a semifield over Fix(c) by Theorem 8 (ii) and that C(A) = C(A4)/pC(A) = C(A)

O

Corollary 20. Let S/Sy be a Galois extension of Galois rings with Galois group Gal(S/Sp) =
(o) of order m and let F denote the residue field of So, char(F) = p. Choose f(t) =
t™ 4+ ph(t) —d € R = S[t;o] with d € S\ Sy invertible and h(t) € S[t; o] of degree < m.

(i) If the elements 1,d, ... ,3m are linearly independent over F', then St is a GGR which is
a lifting of its top-factor.

(ii) For every prime m, Sy is a GGR which is a lifting of its top-factor.

Proof. K/F is a Galois extension with Galois group Gal(K/F) = () of order m. We have
f(t) =t™ — d. With the assumptions in (i) resp. (ii), S7 is a nonassociative cyclic division
algebra over F' [44] and thus the finite nonassociative ring Sy is a GGR by [17, Theorem
1]. It is straightforward to see that Fix(c) = Fix(7) using isomorphism (1) and that S is
a lifting of its top-factor by Theorem 4. O

Note that although the top-factor in Corollary 20 is a nonassociative cyclic algebra, it is
unlikely that the algebra Sy is isomorphic to a generalized nonassociative cyclic algebra as

defined in Example 11 unless A = 0.

6. LINEAR CODES

6.1. Cyclic (f,0,d)-codes. A linear code of length m over S is a submodule of the S-
module S™. From now on, let f € S[t; o, d] be a monic polynomial of degree m > 1.
A cyclic (f,0,8)-code C C S™ is a subset of S™ consisting of the vectors (ag, ..., @m—1)
m—1

obtained from elements h = Y /" " a;t" in a left principal ideal ¢Sy = S[t;0,68]g/S[t; 0, 6] f
of Sy, with g a monic right divisor of f.
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A code C over S is called o-constacyclic if 6 = 0 and there is a non-zero d € S such that
(agy- .. am—1) € C = (o(am-1)d,o(ag),...,0(am—2)) €C.

If d = 1, the code is called o-cyclic.
[8, Theorem 1], the first three equivalences of [8, Theorem 2] and [8, Corollary 1] translate

to our set-up as follows (the first equivalences in [8, Theorem 2| are now trivial):

Theorem 21. Let g = Z;o g;t* be a monic polynomial which is a right divisor of f.

(1) The cyclic (f,0,0)-code C C S™ corresponding to the principal ideal gSy is a free left
S-module of dimension m — degg.

(i) If (ag,...,am—1) € C then Li(ag,...,am—-1) €C.

113) The matriz generating C represents the right multiplication R, with g in S¢, calculated
9 !
m—

with respect to the basis 1,t,...,t™ 1, identifying elements h = Zizol a;t* with the vectors

(CLO7 .. .,am,l).

Note that (iii) is a straightforward consequence from the fact that the k-th row of the
matrix generating C is given by left multiplication of g with ¢* in S t, 1.e. by

Ly (9) = Li (g)-

In particular, when 6 = 0 and f(t) = t™ — d, for any p € S, the matrix representing right

m—1
Lt

multiplication R, with respect to the basis 1,t, .. is the circulant matrix defined in

[16, Definition 3.1], see also Section 4.

Theorem 22. Let g =Y., g;t" be a monic polynomial which is a right divisor of f, such
that f = gh = h'g for two monic polynomials h,h' € S[t;o0,0]. Let C be the cyclic (f,0,9)-
code corresponding to g and ¢ = Z?Z)l cit' € S[t;0,8]. Then the following are equivalent:
(i) (coy.--yem-1) €C.

(i) c(t)h(t) =0 in Sy.

(#ii) Le.(h) = ch =0, resp. Ry(c) = he = 0.

This is already part of [8, Theorem 2] and generalizes [13, Proposition 1]: it shows that
sometimes h is a parity check polynomial for C also when f is not two-sided. Note that
when we only have hg = f, h monic, and C is the code generated by g then if ch =0 in Sy,
¢ is a codeword of C.

Corollary 23. Let g = Z::o git" be a monic polynomial which is a right divisor of f, such
that f = gh = h'g for two monic polynomials h,h' € Sy. Let C be the cyclic (f,o,0)-code
corresponding to g. Then the matriz representing right multiplication Ry, with h in Sy with
respect to the basis 1,t,...,t™ "1 is a control matriz of the cyclic (f,o,8)-code corresponding
to g.

Proof. The matrix H with ith row the vector representing
Lyi-1(h) = tiilh,

1 < ¢ < m, is the matrix representing right multiplication Ry, (p) = ph with h in Sy with
respect to the basis 1,¢,...,t™1 since t*"1h = R, (t*~!) is the ith row. O



FINITE NONASSOCIATIVE ALGEBRAS OBTAINED FROM SKEW POLYNOMIALS 17

For a linear code C of length m we denote by C(t) the set of skew polynomials a(t) =
Z;’;Bl a;t* € Sy associated to the codewords (ag, ..., a,) € C.
As a consequence of Proposition 7 and Theorem 21 we obtain a description of o-constacyclic

codes in terms of left ideals of Sy, generalizing [26, Theorem 2.2]:

Corollary 24. Let f = t™ —d € S[t;o], d € S invertible, and C a linear code over S of
length m.

(1) Every left ideal of Sy with f = t™ —d € S[t;o] generated by a monic right divisor g of
f in S[t; o] yields a o-constacyclic code of length m and dimension m — degg.

(i) If C is a o-constacyclic code then the skew polynomials in the set C(t) of elements a(t)
obtained from (ao,...,am—1) € C form a left ideal of Sy with f =t —d € S[t; o].

Proof. (i) follows from Theorem 21.

(ii) The argument is analogous to the proof of [6, Theorem 1]. O

For any monic f € S[t; 0, d], representing the right multiplication R, in Sy by the matrix

Y calculated with respect to the S-basis 1,t,...,t™ ! gives the injective S-linear map
v : 85 — Mat,,(S), h— R, —Y.

For algebras Sy which are not associative, this is not a regular representation of the algebra.

However, we can prove some weaker results for special choices of f:

Lemma 25. Suppose that f(t) = t™ —dy € S[t;o,0] or f(t) = t* — dit — dy € S[t;0,4].
Then the product of the m x m matrices representing Rq, 0 # d € S C Sf, and R, for
any 0 # g € Sy, is the matriz representing Rqg, i.e. the matriz representing the right
multiplication with dg in Sy.

The proofs are straightforward but tedious calculations [10]. The case where f(t) =
t"™ —dy € S[t;o] and S is a cyclic Galois extension of degree m over a field F' with o
generating its automorphism group is already treated in [45], its proof holds analogously
when S is a commutative ring with an automorphism o of order m.

When S is a commutative unital ring, we define a map M : Sy — S by
M (h) = det(v(h))

for all h € Sy. Note that this is analogous to the definition of the reduced norm of an
associative central simple algebra.

We recall the following: Let A be an algebra over a ring Sy and D a subalgebra of A,
both free of finite rank as Sy-modules. Then a map M : A — D of degree n is called left

semi-multiplicative if
M(az) = M(a)M(z) for all a € D,z € A.

Furthermore, a map M : A — D has degree n over Sy if M(av) = a™M (v) for all a € Sy,
v € A and if the map M : A x --- x A+ D defined by

M(vi,..vn) = Y (=1 M (v, 4 wy)

1<ip << <n
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(I <1 < n)is an n-linear map over Sy, i.e., M : A x --- x A — D (n-copies) is an

So-multilinear map where M (v1,...,v,) is invariant under all permutations of its variables.

Corollary 26. Suppose S is a commutative unital ring and both S and the algebra S are free
of finite rank as So-module. For f(t) =t™ —dy € S[t;0,6) or f(t) = t*> —dit —dy € S[t;0,6],
the map

M:S;— S, M(h)=det(y(h)),

is left semi-linear of degree m.

This is a direct consequence of Lemma 25. For properties of left semi-linear maps, espe-
cially for those of lower degree, the reader is referred to [45], [46].

Example 27. Let K/F' be a cyclic Galois extension of degree m with reduced norm N, p
and reduced trace Tx/p, Gal(K/F) =< o > and f(t) =t" —d € K[t;o]. Then M : Sy — S
is a left semi-multiplicative map of degree m. If a € K is considered as an element of Sy
then M(a) = Ng,p(a). In particular, for m = 3 and h = hg + hqt + hat?, we have

M(h) = Nk, p(ho) + dNg p(h1) + d* N p(ha) — dTx s (hohihs)
145].

Remark 28. We point out that if S = (K/F, g, c) is a suitable cyclic division algebra with
norm Ng/p, we can describe the right multiplication with h by an mn x mn matrix X (h)

with entries in K as described in Remark 12 (ii), and define a map
M:S8; — S, M(h)=det(Ry) =det(X(h))

which is also left-semilinear for suitable f(t) = t™ — d (cf. [37, Remark 19] where we
look at the matrix representing left multiplication instead, since we are dealing with the
opposite algebra there). Again the map M can be seen as a generalization of the norm of

an associative central simple algebra and
M(x) = Ngys,(Ns/r(2))
for all z € S for suitably chosen Sp-algebras Sy, for details see [37].

6.2. Codes over finite chain rings. Let S be a finite chain ring and ¢ an automorphism
of S. The S[t; o]-module S[t; o]/S[t; o]f is increasingly favored for linear code constructions
over S, with f a monic polynomial of degree m (usually f(t) =t™ — d), cf. for instance [4],
[7], [26]. For code constructions, we generally look at reducible skew polynomials f.

We take the setup discussed in [4], [7], [26], where the S[t;o]-module S[t;0]/S[t; 0] f
is employed for linear code constructions, and discuss on some examples how the results
mentioned previously fit into our view of equipping S[t; o]/S[t; o]f with a nonassociative
algebra structure:

e In [26, Theorem 2.2], it is shown that a code of length n is o-constacyclic if and
only if the skew polynomial representation associated to it is a left ideal in S, again
assuming Sy to be associative, i.e. f(t) =t" —d € S[t; 0] with d € S invertible, to

be two-sided, and S to be a finite chain ring.
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e In [7, Proposition 2.1], it is shown that any right divisor g(¢) of f(t) = t™—d € S[t; 0]
generates a principal left ideal in Sy, provided that f is a monic two-sided element
and assuming S is a Galois ring. The codewords associated with the elements in the
ideal Rg form a code of length m and dimension m — degg. This also holds in the
nonassociative setting, so we can drop the assumption in [7, Proposition 2.1] that f
needs to be a monic central element, see Corollary 24.

e In [4, Theorem 2] (or similarly in [26, 3.1]), it is shown that if a skew-linear code C
is associated with a principal left ideal, then C is an S-free module if and only if g
is a right divisor of f(¢) =¢™ — 1, again assuming S to be Galois, and f two-sided.
This is generalized in Proposition 7, resp. Corollary 24.

e For f(t) = t™ —d € Fy[t; 0], the (o,d)-circulant matric MJ in [16] is the matrix
representing R, in the algebra Sy calculated with respect to the basis 1,¢, ... L
Therefore [16, Theorem 3.6] states that for associative algebras Sy, right multipli-
cation gives the right regular representation of the algebra, so that the product of
the matrix representing Ry, and the one representing R,, for any 0 # h € Sy,
0 # g € Sy, is the matrix representing R4 in Sy. The fact that v is injective and
additive is observed in [16, Remark 3.2 (a)].

Lemma 25 and the fact that v is S-linear imply [16, Remark 3.2 (b)].

Moreover, the matrix equation in [16, Theorem 5.6 (1)] can be read as follows: if
t" — a = hg and ¢ = 7(a, g), then the matrix representing the right multiplication
with the element g(t) € R, in the algebra Sy where f(t) =t" — a € F,[t; 0], equals
the transpose of the matrix representing the right multiplication with an element
g*(t) € Sy, where fi(t) = t" —c! € F,[t; 0]. This suggests an isomorphism between
S, =TFq[t; 0] /Fylt; o] f1 and the opposite algebra of Sy = Fy[t; 0] /Fy[t; ol f.

7. CONCLUSION AND FURTHER WORK

This paper proposes a more general way of looking at cyclic (f, o, d)-codes using nonas-
sociative algebras, and unifies different ways of designing cyclic linear (f,o,d)-codes in a
general, nonassociative theory. Connections between the algebras and some fast-decodable
space-time block code designs are pointed out along the way.

It is well known that for any f € R = S[t;0,6], R/Rf is an R-module with the module
structure given by the multiplication g(h + Rf) = gh + Rf = r + Rf if r is the reminder
of gh after right dividing by f. This is exactly the multiplication which makes the additive
group {g € R|deg(g) < m} into a nonassociative algebra when f has an invertible leading
coefficient. Thus one might argue that the introduction of the nonassociative point of view
we suggested here seems to make things only more complicated that actually needed and
not necessarily better.

The full benefits of this approach for coding theory might only become visible once more
work has been done in this direction. Using the nonassociative Petit algebras Sy over
number fields allows us for instance to show how certain cyclic (f,o,d)-codes over finite
rings canonically induce a Z-lattice in RY. The observations in [13, Section 5.2, 5.3] hold
analogously for our nonassociative algebras and explain the potential of the algebras Sy for
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coset coding in space-time block coding, in particular for wiretap coding, cf. [35]. Previous
results for lattices obtained from o-constacyclic codes related to associative cyclic algebras
by Ducoat and Oggier [13] are obtained as special cases.

We also canonically obtain coset codes from orders in nonassociative algebras over number
fields which are used for fast-decodable space-time block codes [34]. Again, previous results
for coset codes related to associative cyclic algebras Sy by Oggier and Sethuraman [32] are
obtained as special cases.
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