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Abstract 

Despite over thirty years of work, microwave pre-treatment processes for beneficiation of ores have not 
progressed much further than laboratory testing. In this paper we present a scaleable pilot-scale system for the 
microwave treatment of ores capable of operating at throughputs of up to 150tph. This has been achieved by 
confining the electric field produced from two 100kW generators operating at 896MHz in a gravity fed vertical flow 
system using circular choking structures yielding power densities of at least 6x108 W/m3 in the heated mineral phases. 
Measured S11 scattering parameters for a quartzite ore (-3.69±0.4dB) in the as-built applicator correlated well with 
the simulation (-3.25dB), thereby validating our design approach. We then show that by fully integrating the applicator 
with a materials handling system based on the concept of mass flow, we achieve a reliable, continuous process. The 
system was used to treat a range of porphyry copper ores. 
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1 Introduction 

Microwave treatment of metalliferous ores has long been investigated as a means to enhance the recovery 
of valuable minerals and reduce the comminution resistance of ores (Chen et al., 1984; Walkiewicz et al., 1988; 
Walkiewicz et al., 1989). The underpinning mechanism and textural characteristics of amenable ores has been 
described by Batchelor et al. (2015).  Selective heating of microwave-absorbent sulphides and metal oxides deported 
in a microwave-transparent gangue matrix results in differential thermal expansion of the heated phase, yielding 
micro-fracture around grain margins (Batchelor et al., 2015; Jones et al., 2005, 2007; Kingman et al., 2004a; Kingman 
et al., 2004b; Kingman et al., 2000a). Subsequent downstream processing may then yield higher recovery of valuable 
mineral sulphides and/or lower specific comminution energy, compared to non-microwave treated ore. 

While the mechanistic principles are well established, the scientific and engineering challenges of developing 
a commercial scale system are immense. Typical throughputs of a large copper mine can be in excess of 5,000 tph 
of milled ore (Brininstool, 2015) and a microwave based treatment system would need to handle equivalent 
throughputs. This is at least an order of magnitude higher than any other microwave process ever built. 

The following paper details the design, commissioning and operation of a system which was the culmination 
of over fifteen years of research and development activity. This resulted in a high power microwave treatment 
process, capable of operating continuously at throughputs of up to 150tph, but crucially, scaleable up to several 
thousand tonnes per hour. 

1.1 Microwave Processing of Ores – Technology Development Timeline 

In Figure 1, the key early activities which underpinned the development of the pilot-scale system are 
presented. The earliest work investigated heating rates of different minerals in kitchen microwaves (Chen et al., 
1984), supported  by measurements of their dielectric properties. The early to mid 90’s saw higher power tests 
conducted in larger industrial multimode cavities. (Standish and Worner, 1991; Yixin and Chunpeng, 1996).  The 
large number of propagating modes characteristic of these types of applicator makes characterising the interaction 
between the applied microwave energy and the material very difficult, even using the power of modern high 
performance computers. Whilst the mechanistic principals were beginning to be understood (Kingman et al., 2000a), 
it was found that reductions in energy inputs (from >>10kWh/t to <5kWh/t) and residence times (to yield higher 
throughputs) were required to realise an economically viable process (Kingman and Rowson, 1998). 

 

Figure 1: Early development of microwave processes for the treatment of ores 

Focussed work using single mode cavities, post- 2000 resulted in reductions in the energy required, greater 
understanding of the breakage mechanism and also characterisation of the electromagnetic properties of such 
cavities (Kingman et al., 2004c; Kingman et al., 2000b; Robinson et al., 2010a). This yielded important information 
regarding the spatial distribution and intensity of electromagnetic energy within them. This enabled optimisation of 
their configuration, such that a well-defined area of high electric field was supported, sufficient to realise the power 
densities required.  The first continuous belt-based processing systems were trialled under the AMIRA P879a 
programme around 2006 and were capable of processing ore at throughputs of 10 – 20tph and applied powers up to 
30kW. Key learning outputs from this work were: the importance of integrating the materials handling system with 
the microwave cavity for process stability; and the design of choking structures. These were necessary to confine 
the electric field within the applicator in open-ended processing systems to prevent gradual warming of the load to 
optimise the thermal shock based fracture mechanism and achieve compliance with safety standards.  

The work which directly supported the development and evaluation of the pilot-scale system is outlined in 
Figure 2. This began around 2010 with the development of a vertically aligned capsule which held ore fragments in 
place as a packed bed. This was moved though the applicator using a belt and pulley system and was effectively a 
pseudo vertical flow configuration. The key development arising from this work was the design of innovative circular 
choking structures through which the capsule moved. These confined the electric field in a relatively small zone 
centred on an open ended applicator. This minimised heat conduction of the heated phases to the bulk ore, thereby 
maximising stress in the ore matrix and yielding fracture at reasonably low energy inputs. If the circular chokes were 
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not incorporated into the system, then there would exist a gradient in electric field intensity both above and below the 
vertically aligned applicator, which would introduce a gradual warming of the load at it passed through. Heat 
conduction to the bulk ore would then lessen the stresses generated through the differential thermal expansion of 
heated phases confined within a relatively non-heated bulk ore matrix. A detailed account of the mechanistic aspects 
and ore textures susceptible to such a process has been reported by Batchelor et al. (2015). 

 

Figure 2: Key activities in the development and evaluation of the pilot-scale system 

The design and testing of these choking structures was considered in detail in Katrib et al. (2017). The pre-
piloting system was crucial in validating the performance of the circular choking structures, particularly with respect 
to confinement of the electric field in an essentially open-ended system, in order to meet health and safety and 
electromagnetic compatibility regulations.  

1.2 Aims and objectives 

The aim of this work was to design and demonstrate the viability of a pilot-scale system that can be then be 
further scaled to a commercially relevant system for deployment at a mine site. Specific objectives for the pilot scale 
system were to: 

 Demonstrate that metallurgical effects observed in pre-piloting batch scale testing could be re-produced in 
continuously flowing ore at pilot scale.  

 Evaluate the impact on the system performance and process stability of feed ore presentation in the 
applicator. Specifically aspects such as particle size; shape; moisture content; voidage; mineralogy and ore 
texture  

 Assess engineering issues such as wear and reliability of the system components 

 Produce statistically large volume test samples for subsequent use in proposition analysis 

The evaluation of the pilot-scale system addressed the key questions around electromagnetic engineering, 
materials handling design and optimisation, operability, sample generation / value quantification and techno-
economic analysis. 

2 Design Philosophy of the Pilot-Scale System 

The engineering vision of the pilot-scale system was rooted in the concept of frequency scaling using a single 
mode cavity surrounding a vertically aligned tube used in pre-piloting studies as described in section 1.1.  Based on 
flowing ore down a tube passing through an applicator section, the maximum throughput is defined by the cross-
sectional area at the bottom of the converging hopper geometry above the inner cylindrical processing tube. It is 
assumed the hopper outlet and cylindrical processing tube are the same diameter. The maximum throughput is 
further defined by the flow properties of the handled ore and the system geometry. 

In a single mode system which supports an area of well-defined electric field, in order to maximise the 
treatment efficiency, the tube should span as close to the full width of the applicator as possible. It then follows that 
the size of the applicator section then defines the width of the process tube and thereby the throughput. The applicator 
dimensions are fixed by the frequency of the applied microwave energy. Only specific frequencies are allowed for 
use and are defined in the Industrial, Scientific and Medical (ISM) bands. For a single mode applicator system based 
on the use of microwave energy at a frequency of 433MHz, the maximum theoretical throughput would be 1000tph, 
as waveguide at this frequency has an internal width of 584mm. The dependency of throughput on process tube 
diameter is show in Figure 3. 

The maximum throughput is non-linear with increasing flow path diameter, due to basic area principles but 
also due to reduced solids flow rate for large particles compared to the flow area.  Given that flow properties of ore 
do not scale, and the requirement to handle large particles in the pilot system, the 100tph pilot scale actually proved 

http://doi.org/10.1016/j.mineng.2017.03.0


Minerals Engineering 109 (2017) 169-83 

4 

http://doi.org/10.1016/j.mineng.2017.03.006 

more challenging with-respect-to solids handling issues than would be a larger 1000tph system.  To minimize these 
challenges, the large particles (>50mm) were screened from the bulk feed for the pilot scale work (Figure 3).  This 
enabled the solids throughput rate to be maximized to best couple with the microwave processing requirements. 

In order to define a clear route to scale-up, a 1000tph single mode microwave system was designed. The 
design approach was then validated by scaling back the throughput to the next ISM band of 896MHz, corresponding 
to a system throughput of 100tph (higher wavelength – smaller applicator). Technical risks could then be minimised, 
development costs could be managed to within acceptable limits and it also allowed the system to be situated close 
to University of Nottingham, rather than on a mine site.  However, it must be emphasised that the design of both the 
1000tph and 100tph systems was essentially the same – a single mode applicator through which ore is continuously 
flowed down though an inner processing tube, in which required electric field confinement was achieved by circular 
choking structures. 

 

Figure 3: Dependency of throughput on process tube diameter for a vertical flow system 

Critical to the success of the pilot-scale system was the integration of a continuous vertical flow microwave 
applicator, based on the use of corrugated circular chokes to confine the field (Katrib et al., 2017), with a materials 
handling system to yield a continuous flow process to treat porphyry copper ores. 

3 Basis of Design 

The performance of any microwave-based processing system (particularly continuous processes) is 
dependent on the integration of a suitably designed applicator with a competent and robust materials handling 
system. This is critical because the handling system presents the process material to the applicator such that the 
energy can be reliably and stably transferred to it. Therefore, it is then a cornerstone of the successful scale-up of 
any microwave based process. 

A range of different concepts were evaluated during the design phase of the system for transporting material 
through the microwave applicator including free fall, vibratory feeders,  belt conveyors and packed beds. These were 
evaluated against the following criteria: footprint; materials of construction; material velocity and residence time 
control (to control delivered energy dose to the ore); voidage (to prevent arcing) and dust control (to protect the 
microwave and sensor systems). 
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A packed bed mass flow concept was judged to be the most suitable materials handling option for the system. 
It is similar to a free fall concept, except that  the process material completely fills a tube or other handling system. 
Typically the material is held in place and is common in distillation and separation processes. By arranging the tube 
vertically, it can be filled from the top and the process material can be gravity fed through the tube by carrying away 
the material at the bottom using a conventional feeder. Providing that the appropriate material is selected for the 
tube, which is microwave transparent and exhibits the necessary mechanical robustness, this concept has stand-out 
advantages over those previously described. The voiding inherent to a free fall system is removed because the ore 
is essentially mechanically locked together. This also allows close control of residence time and energy dose. It is 
also scaleable because the essential design of the tube would not change to accommodate larger throughputs. As 
the system is enclosed, dust issues are also removed. By having the applicator aligned vertically, it also realises the 
smallest footprint of the systems considered. In terms of scalability, system performance and technical simplicity, a 
packed bed concept using a vertically aligned tube was taken forward in the design of the pilot scale system. The 
basis of design is shown in Table 1. 

The proposed location of the pilot-scale system was to be close to the University of Nottingham in an 
industrial unit.  Therefore, specifically for this system, its location imposed constraints in terms of plant foot print and 
height, which then fed into the BoD and would not be associated with a typical mine site.  In addition, space available 
for storage of feedstock material was limited, which also imposed a constriction on the amount of feedstock that could 
be stored on site. 

Single-mode microwave applicators are characterised by supporting a well-defined area of electric field, 
associated with the propagation of the first order mode at the frequency of the applied energy. However, such an 
applicator will be rendered ineffective if the energy delivered to it does not meet the requirements of the process. 
Currently the highest power microwave generators available commercially are 100kW systems operating at 896MHz 
in UK (915/922MHz in other regions of the world). The applicator is configured around a vertically aligned tube 
passing through the centre of the single mode applicator, the cross-sectional area of this tube then defines the system 
throughput. The waveguide used for transmitting the microwave energy at this frequency to the applicator is WR975 
having dimensions 248 by 124 mm (width by height). To ensure that the maximum amount of material could be 
microwave-treated as it passes down through the system, the internal pipe spans the maximum width of the 
waveguide applicator. This is a TE10n single mode cavity supporting a well-defined area of high electric field. Allowing 
for fabrication and structural redundancy of the applicator as a whole, the internal diameter of the inner pipe is 199mm 
(having a wall thickness of 6 mm). The volume of the cavity is 0.015m3, so 100kW of applied microwave power 
realises an electric field strength of 6.6x106W/m3 in the bulk ore, which corresponds to between 6.6x107 (for 10% 
heated phases) and 6.6x108W/m3 (for 1% heated phases), dependant on their abundance.  

To ensure the material flowed through the system without blocking, the width of the inner pipe has to be at 
least five particle diameters, based on established bulk solids handling theory (Jenike, 1964). The coarsest single 
size particles which could be processed without blocking in the applicator and available from the mine site were in 
the size class -50.8+25.4mm. Coarser particles up to 76.2mm could potentially be flowed if run in lean phase with 
fines. Based on a bulk density of 1250 – 1700kg/m3 (voidage 35 – 55%) and a maximum particle velocity of 2m/s, 
then yields the maximum throughput of the system at 100tph with an operational capacity of two minutes. While the 
system is continuous, it does not have a recycle capability and has a maximum storage capacity of only ~6t, therefore, 
total capacity and hence running time is limited by that of the out-feed hoppers downstream of the applicator. Given 
the semi-batch nature of the operation of the system, microwave start was required to be <1s. This is important as 
any ramping of the microwave power when the ore is in transport through the applicator, will result in a blend of 
material which has received a variable dose of microwave energy. By applying the power fully and near 
instantaneously, this then allows the system to generate the maximum amount of microwave-treated material. This 
also provides a clear demarcation between untreated and microwave-treated material, thus ensuring that the ore has 
been treated in the applicator at the defined energy dose. 

The applicator was designed using average bulk dielectric properties of a quartzite ore previously described 
(Katrib et al., 2017) and used on both the Phase I and II test programmes (defined as Ore 1 herein). Of the ores 
supplied to the test programme, this quartzite had the lowest dielectric loss. That is, the lowest proportion of 
microwave energy absorbent phases. As such, when the applicator is filled with this ore, it will exhibit the lowest 
degree of wave attenuation. The strength of electric field propagating out of the open-ended applicator is then 
greatest for this ore.  By designing the choking structures against this ‘worst case’ ore, system compliance was 
ensured against European Union (EU) Directive 89/336/EEC (Directive, 1989) with regard to Electromagnetic 
Compatibility (EMC) and Occupational Health and Safety Exposure (OHS) Limits. These being an average -32dB 
measured at 10m from source and 5mW/cm2 respectively. A further sensitivity analysis was also performed for each 
of the other ores to be tested to ensure that the safety and technical performance of the applicator and chokes were 
not changed despite a small variation in the bulk dielectric properties of the different ore types. The bulk measured 
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dielectric properties for the ore type 1, 2 and 3 in the -50.8 +25.4 mm size class processed in the pilot plant are 
presented in Table 2. 

Table 1 

Basis of Design for the pilot-scale system 

Parameter Aspect Requirement Notes 

Design Scope 
and Operability 

System Size Max Footprint 540m2, Height <10m 
Restriction imposed by plant 
location 

Capacity 
6 tonnes (4 × 1.5t discharge bulk 
bags) 

Per run (up to 3 runs per day) 

Throughput 10 – 150 tonnes per hour 
To inform design of 1000tph 
system 

Service & Operability 
Modular design of applicator to replace 
liners and maintainance requirements 

 

Microwave 
System 

Power & Frequency 2 × 100kW at 896 ± 10MHz  

Power Density ≥ 6 ×106W/m3 In the bulk ore 

Energy Dose 0.1 – 20 kWh/t 
Dependant on applied power and 
throughput  

Start up/Shut down <1s  

Material velocity through 
heated zone 

0.2 – 2.0 ms-1  

Voidage 35 – 55%  

Applicator internal diameter  0.2m Vertically aligned tube 

Health and Safety / 
Electromagnetic 
CompatabilityCompliance 
(EMC) 

<5mW/cm2* EMC with European Legislation* 

Feed 
Ore 

Particle size Range 0 – 75mm Nominal 25 – 50mm 

Content of heated phases 1 - 10% by weight  

Bulk density 1250 – 1700kg/m3  

Bulk dielectric properties ε' ~3.2 ε” 0.18 Values used in applicator design 

Note: * - Occupational Health and Safety Limit. Electromagnetic Compatability (EMC) requirements defined in European Union Council Directive 
89/336/EEC. International Commission on Non-Ionizing Radiation Protection (ICNIRP) limits at 896MHz are 2.24mW/ cm2. 

Table 2 

Dielectric properties and density data of the ores processed through the pilot plant 

Ore Type Dielectric Constant (ε’) Loss Factor (ε”) Bulk Density (kg/m3) 

1 3.2 ± 0.04 0.18 ± 0.03 1,470 

2 3.6 ± 0.08 0.60 ±  0.13 1,640 

3 3.2 ± 0.05 0.17  ±  0.01 1,460 

 

Another key consideration in the specification of the system is upper limit on the treatment energy required. 
The process would be uneconomical if more energy is required in the pre-treatment of the ore then is saved in 
downstream processing. Preliminary value analysis shows that treatment energies above 2kWh/t may not be 
economical for a host mine site. However, this value is highly dependent on a range of factors including (but certainly 
not limited to) plant location, utilities and capital expenditure costs, labour costs and commodity prices. The apron 
feeder was capable of feeding 10-150t/h and the microwave generator capable of supplying 10-100kW (both limited 
by a 10% turndown ratio). Therefore, doses in the range of 0.1-20kWh/t were achievable in the system. 

The initial system had a maximum throughput of 100tph, through a single applicator and 100kW generator 
at a frequency of 896MHz. This system was then used to generate microwave treated ore samples under the Phase 
I commissioning programme. The system was then modified by adding a second applicator in series with the first, 
running off a second 100kW generator and increasing the throughput of the system to 150tph by optimising the 
materials handling system. The addition of a second applicator in series with the first was undertaken to improve the 
homogeneity of the electric field distribution through the cross-sectional area of the applicator. This Phase II work 
programme was then used to generate treated ore samples under an optimised treatment regime for subsequent 
metallurgical analysis. A detailed analysis of the ore samples generated from the Phase I and II programmes is 
reported in the second part of this paper (Batchelor et al., 2017). 
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3.1 General System Overview 

In the present configuration, ore is held in a specifically designed mass flow hopper at the top of the 
microwave applicator and choke arrangement held in a vertical position. This hopper is supplied with ore by a material 
transport system comprising of bulk in-feed hoppers and associated conveyors. The hopper and associated 
equipment has been designed to achieve mass-flow of material to avoid segregation and to ensure that a consistent 
packed bed of material could flow at the fastest possible velocity with minimal voidage to maximise throughput. 
Material held in the hopper above the applicator is drawn down a tube through the upper choking sections, passing 
through a box section of waveguide into which the microwave power is applied, before moving out of the applicator 
after passing through the lower choking sections. The material flows down the inner processing tube as a packed 
bed controlled by an apron feeder at the bottom of the system. As this conveyor runs, it draws material out from the 
base of the tube drawing material downwards. The throughput of the system is then controlled by the speed of the 
apron/belt feeder. The general arrangement of the system is shown in Figure 4. 

Phase I 
Single Applicator Configuration 

(1x 100kW, 100tph) 

Phase II 
Dual Applicator Configuration 

(2x 100kW, 150tph) 

 

 

Figure 4: Vertical flow configuration of the 100tph single applicator (left) and 150tph dual applicator systems (right) 

The pilot plant layout is illustrated in Figure 5 and the treatment sequence was as follows. Feed material was 
loaded from bulk bags into feed bins A01-A04 by jib crane J01. Separate feed materials (i.e. primer, ore sample or 
ore fines) could be charged into separate feed bins where necessary. A fine primer material was loaded first in the 
treatment sequence to protect the quartz tube lining the applicator from the impact of falling ore fragments. The 
primer was comprised of <5mm low purity silica sand, which was similar in dielectric properties to the non-sulphide 
gange minerals in the ore sample. The materials were then charged or blended onto conveyor C05 by feeding at 
different rates from feed bin discharge conveyors C01-C04. The primer or ore/fines material was carried to bin A05 
by bucket elevator E01 and transfer conveyor C06. Bin A05 is the mass flow hopper used to feed the microwave 
applicator tube AT01. The bin contained level sensors to prevent over-filling at high level, to initiate microwave 
shutdown procedures at low level and to start/stop the feed system to maintain the level between the low and high 
levels during continuous runs. Apron feeder FD01 controlled the throughput and microwave generators M01 and 
M02 provided microwave power, the combination of which controls the microwave treatment energy dose. FD01 
discharges material to slewing conveyor C08 which swings between four discharge bulk bags DB01-DB04 over the 
course of the run. 

Applicator
TE10n Single Mode Cavity

(WR975 Waveguide)

Upper Choke Sections

Feed Hopper

Apron Feeder

Direction of Ore Flow

Processing Tube
(UHMW-PE)

Lower Choke Sections

4
m

Applicator Tube
(Quartz)

100kW

Applicator 2
TE10n Single Mode Cavity

(WR975 Waveguide)

Applicator 1
TE10n Single Mode Cavity

(WR975 Waveguide)

Upper Choke Sections

Lower Choke Sections

Centre Choke Sections4
m

100kW

100kW
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Figure 5: Pilot plant layout 

4 Applicator and Choking Structures for a 100tph Continuous System 

Katrib et al. (2017) described continuous flow circular cavity designs to process copper ore at a frequency of 
896MHz. The use of corrugated circular chokes for field confinement is critical, as it minimises the propagation of an 
electric field strength gradient either side of the applicator. This gradient would then lead to incremental warming of 
the ore, as it moves through the applicator and an inevitable loss of energy through heat transfer to the bulk rock 
matrix (Bradshaw et al., 2007). By confining the field using the choking structures, the ore remains close to ambient 
temperatures until it enters the applicator. Subsequent rapid heating of the susceptible phases confined by the 
comparatively cold matrix, then results in uneven thermal expansion. This uneven thermal expansion produces 
differential stress around the phase boundaries within the ore and leads to fracturing. In addition to optimising the 
breakage process, the confining chokes when coupled with resistive chokes filled with carbon foam also serve to 
achieve compliance with both United Kingdom (UK) Environmental Health and Safety Legislation (EHS) and 
Electromagnetic Compatibility (EMC) Legislation (British Standard, 2010). In addition to providing the necessary 
system performance, the optimised choking structures also importantly serve to minimise plant height and footprint - 
factors which are a major capital cost driver.  

Two distinct types of choking structures are used in the applicator. The first are the concentric rings of 
variable geometry immediately above and below the single mode cavity. These so called reactive chokes reflect the 
escaping power back into the applicator and serve to increase the efficiency of the process. They are a series of pure 
capacitive steps and confine the field of the first propagating modes from the cavity. The response of the chokes 
depends on the geometry (tube diameter), homogeneity and dielectric properties of the load (the material in the 
applicator). The tube diameter and the dielectric properties will dictate how many modes (energy carried by the 
electromagnetic radiation) will propagate. Each choking structure either side of the applicator has been shown to 
have an attenuation of -30dB to a distance of 40cm away from the applicator. In addition to these reactive chokes, 
the system also incorporates resistive chokes to achieve compliance with EMC legislation. These are comprised of 
dense carbon foam wrapped around the inner process tube which further attenuate the residual energy. Considered 
together the action of the reactive and resistive chokes serve to achieve a total attenuation of -120dB, or a reduction 
of 1x1012 times when the discharge power is compared to the input power. This effectively means that for an input 
power of 100kW, the outputted power from either outlet of the choking structures is one million times less than the 
equivalent  signal strength of a mobile phone. The reactive and resistive chokes incorporated together with the single 
mode cavity are shown in Figure 6. 

INFEED

OUTFEED

J01

C01-C04

A01-A04

DB01-DB04

C08

M01-M02

AT01

FD01

A05
C06

E01

C05
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Figure 6: Reactive and resistive choking structures developed to confine the electric field in the single mode cavity                                           
whilst allowing ore to flow continuously 

Careful consideration was also given to material selection for the inner pipes. In the TE10n cavity section a 
quartz liner was used having a total length of 1147mm, 6mm wall thickness and 199mm internal diameter. The 
reasons for selecting this material were three-fold: it allowed visualisation of bulk material flow during processing; 
was dielectrically stable with temperature; and had dielectric properties similar to the bulk ore non-heating gangue 
material, thereby allowing the microwave energy to be transmitted through it without significant reflections occurring. 
Above and below the quartz liner, the remainder of the process tube was made from Ultra-High Molecular Weight 
Polyethylene (UHMW-PE). The degree of electric field attenuation in these sections of the applicator is such that the 
process tube is much less susceptible to potential thermal effects. UHMW-PE was selected as despite having a lower 
melting point, it exhibited greater mechanical robustness. This tubing ran through the remaining reactive chokes and 
the resistive chokes to the discharge chute of the in-feed hopper and the out-feed transition to the apron feeder above 
and below the applicator respectively. Over the course of the Phase I and II test programme, over 900 tonnes of 
material was processed through the system with only light scoring of the inner components. 

4.1 Characterisation and Validation of Single Applicator System Performance 

The electromagnetic field confinement of the choking structures in the as built applicator was evaluated by 
measuring the scattering parameters (S11 reflection coefficient) of ores used in the test programme as a function of 
moving the sliding short position. The S11 reflection coefficient describes the ratio of reflected signal intensity to that 
of the incident signal. The microwave in-feed waveguide was decoupled from the system and replaced with a WR975 
co-axial to waveguide transition, in turn connected to a Vector Network Analyser (VNA). Experimental measurement 
of S11 was undertaken in the frequency range of 866 – 933MHz, corresponding to the magnetron frequency variation. 
This variation arises from the physical change in magneton component dimensions during operation. Three ores 
were used in the applicator field confinement validation process. Two size fractions of each ore were evaluated (-
50.8+25.4 mm and -12.7+6.35 mm), in addition to a blend. Each blend was comprised of the following three fractions: 
35% -50.8+25.4mm; 32.5% -25.4+12.7mm; and 32.5% -12.7+6.35mm 

The modal mineralogy of these ores is described previously in Batchelor et al. (2015). The applicator column 
was filled with one of the size classes of the ores defined in Batchelor et al. (2017). Then the position of the sliding 
short was changed in 10mm increments between 160 and 380mm and the S11 measurements recorded at each 
position. Measurements were repeated five times by slowly jogging the feed conveyor to move the blended ore down 
through the applicator column after each completed set.  

In-Feed

Out-Feed

Absorbent (Resistive) Chokes

Quartz Tube

UHMW-PE Tube

TE10n Single Mode Applicator

Reflective Chokes
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4.2 Validation of EHS and EMC Compliance 

Before the applicator was installed in the plant, the attenuation performance was measured and compared 
to that of the simulation to ensure compliance with the required OHS and EMC legislation. The central portion of the 
applicator – defined as the single mode cavity and the first five reactive choking corrugations either side of it (including 
quartz liner) was filled with Ore 1, then WR975 round to rectangular transitions attached to either end. Three co-axial 
to WR975 waveguide transitions were then attached to the infeed and outlet of the applicator and the microwave in-
feed section of the applicator with a Vector Network Analyser. A sliding short was conneted to the microwave out-
feed section of the applicator. The three port scattering parameters S21, S31, S23 were then measured. The S21 and 
S31 parameters could be directly correlated with the confinement field attenuation the system produces. 

The attenuation is around 10dB greater at the centre frequency of 896MHz. The field confinement is therefore 
better in the as built applicator, than that predicted by simulation and more than exceeds that required for compliance 
with EHS and EMC legislation (British Standard, 2010). 

4.3 Optimum Short Position 

The applicator waveguide section itself is terminated using a moveable sliding short. By moving the position 
of this short, the position of the incident and reflected waves can be superimposed on each other to adjust the position 
of the area of highest electric field intensity (the ‘hot spot’). This then serves to optimise the material treatment 
efficiency. As a function of sliding short position (as per the experimental measurement), the average power density 
was calculated within the quartz liner of the applicator for each of the ores. This analysis allowed the determination 
the optimum short positon for the operation of the plant. It showed that the applicator exhibits a non-uniform power 
density through its cross-sectional area. To determine the optimum sliding short positon, the Power Uniformity Index 
(PUI) (Tiwari et al., 2011) was calculated (Eq. 1): 

𝑃𝑈𝐼 =

1
𝑉𝑣𝑜𝑙

 ∫ 𝑉𝑣𝑜𝑙𝑠𝑞𝑟𝑡((𝑄 −  𝑄𝑎𝑣)2)𝑑𝑉𝑣𝑜𝑙

𝑄𝑎𝑣

 
1 

Where: PUI is Power Uniformity Index, Vvol is material volume in m3; Q integral of the power density in Wm-3 
and Qav (Wm-3) is the defined as the volume integral of the power density divided by the material volume as per Eq. 
2: 

𝑄𝑎𝑣 =  
1

𝑉𝑣𝑜𝑙

 ∫ 𝑉𝑣𝑜𝑙 𝑄𝑑𝑣𝑣𝑜𝑙 2 

The lower the value of PUI, the more uniform the power density through the volume of the applicator. If PUI 
is zero then there is no variation in power density in the calculated volume of the load. An example PUI evaluation 
for Ore 1 is presented in Figure 7. 

Considering Ore 1 (Figure 7) the variation in PUI as a function of short position is similar for the -
50.8+25.4mm and bended size fractions. A lower value of PUI is found for the -12.7+6.35mm size class. It is 
suggested that by reducing the size of the material, the copper sulphides are more uniformly distributed with the bulk, 
coupled with better packing within the applicator and therefore higher bulk density results in a more homogenous 
load. The optimum short position was therefore 270mm and was used during the production of the sighter test 
samples. The S11 attenuation for the blended ores was compared to the simulated values to validate the system 
performance and are presented in Table 3. 

It can be seen from Table 3 that the experimentally derived value of S11 of the Ore 1 is in excellent agreement 
with that derived from the simulation. For Ore 2 and 3 a larger degree of variance is observed. It is suggested that 
this is due to the higher proportion of microwave absorbent phases in these ores (Batchelor et al., 2017), which may 
be contained in as little as 30% ore the particles. (John et al., 2015). Due to the random distribution of the particles 
in the applicator, the distribution if heated phases is very different on each repeat measurement of the scatting 
parameters, because the ore is replaced with new material each time by jogging the apron feeder. This leads to 
dielectric spatial inhomogeneity of the load, which manifests itself as the increased standard distribution of the S11 
parameter derived from the experimental measurement for 2 and 3. 
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Figure 7: Example PUI analysis as a function of sliding short position for the Ore 1 

Table 3 

Experimental vs simulated S11 scattering parameters for the three ore blends 

Ore Type 
(Blended) 

S11 (dB)  

Experimental Value Simulation 

1 -3.7 ± 0.40 -3.25 

2 -11.3 ± 2.9 -7.13 

3 -9.6 ± 2.0 -6.83 

 

5 Integration of Materials Handling with Electromagnetic Design 

In microwave based systems one of the key challenges is the reliable delivery of power to the process 
material. This is dependent on the effective integration of the materials handling system with the applicator (Bradshaw 
et al., 2007; Buttress et al., 2016; Robinson et al., 2010b; Shang et al., 2006). The presentation of the process 
material in the applicator is critical to matching the impedance of the load to the transmission line so that power 
transfer can be optimised and the propensity for the system to generate process arcs in certain systems minimised. 
Arcing occurs when the electric field strength exceeds the breakdown voltage of air in the applicator itself and is 
particularly prevalent in ore systems where sharp edges on the rocks lead to severe electric field concentrations. 

In the present system, based on a column of ore moving down through the applicator as a packed bed, the 
prevention of blockages was also a fundamental consideration in the design of the bulk solids handling systems used 
in the plant. Blockages in the lower area of the process tube could result in a stationary load in the applicator, which 
if occurring during processing, could result in thermal runaway as the heated phases of the ore become progressively 
more microwave absorbent as their temperature increases. An absence of material in the applicator occurring as a 
result of a blockage above it would result in high reflected powers and the possibility of damaging the generator 
magnetron. 

To address these issues, bulk solids storage and handling theory first developed by Jenike and Johanson 
(Jenike, 1955; Jenike, 1961) was used in the design of the hopper and material interfaces between the applicator in- 
and out-feed sections. This was supported by multiple redundancies configured into the control system to action an 
immediate shutdown of the plant if such a situation occurred.  
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The following sections describe the design of these materials handling components and their integration to 
provide effective material transport though the applicator. 

5.1 Feed Hopper 

The applicator feed hopper was designed to achieve mass flow as it is discharged. That is, that all the 
material is in motion as it moves out of the hopper (Jenike, 1964). This behaviour eliminates the formation of stagnant 
regions in the hopper and affords a “first-in, first-out” flow sequence, which provides a constant solids stress at the 
outlet and a more uniform velocity profile during operation. This is critical because if the bulk material is a blend of 
particle size fractions and the hopper itself does not exhibit mass flow properties, then discharge of the material can 
exhibit a range of non-uniform flow phenomena. For example funnel flow, which is characterised by stationary 
material around the outer edges of the hopper and preferential discharge of material in the centre above the outlet. 
This can often lead to particle segregation on discharge and the formation of a stable rathole should the handled bulk 
solids be cohesive. Sifting may also occur whereby particles segregate by size. This leads to segregation though the 
material bed, with larger particles concentrated away from the fill point and smaller particles directly below the fill 
point (Johanson, 1978). Withdrawing particles by mass flow tends to remix the fines and coarse at the hopper outlet, 
whereas in funnel flow distinct pockets of fines and coarse flow from the hopper. 

For many materials, flow problems can be eliminated by ensuring that a mass flow pattern exists in the 
hopper.  The first step in achieving mass flow is to ensure that the converging walls are steep enough, and have 
friction low enough, to allow the bulk materials to slide along them.  Flow properties tests were performed by the 
Jenike approach similar to that shown by Craig and Hossfeld (2002).  Given the highly frictional nature of the ore, 
coupled with building layout restrictions, a hopper-in-hopper BINSERT® design (Johanson, 1982) was implemented 
(note that the BINSERT® is a registered trademark to Jenike & Johanson).  This has the benefit of achieving mass 
flow while reducing the overall hopper height compared to a traditional simple cone. 

Figure 8 shows the as designed mass flow hopper used to evaluate flow behaviour (left) and sited above the 
applicator in the pilot plan (right). Note the elevated feed conveyor feeding material into the top of the bin. 

 

Figure 8: Applicator mass flow hopper simulated to evaluate flow behaviour (left) and in-situ above the applicator in the pilot plant (right) 

The outlet of the hopper must also be large enough to prevent cohesive and mechanical interlocking arches 
from forming.  Given the relatively large particle size and low moisture of the handled ore, cohesive arches were 
secondary in the pilot plant.  Arching due to mechanical interlocking was far more important due to the requirement 
to handle large particles in a small hopper.  The outlet geometry was modified from a simple cone to minimize the 
mechanical interlocking arching potential.  The geometry also allowed a higher discharge rate compared to a simple 
cone. 

The hopper was designed for handling ore having an average bulk density ~1300kgm-3 and a nominal feed 
size -50.8+25.4mm. At a discharge rate of 100tph, average material residence time in the hopper is 36 seconds, with 
the hopper having a total working capacity of approximately 1 tonne.  

5.2 Applicator Transition System and Apron/Belt Feeder 

In order to maintain mass flow through the applicator and prevent blockages caused by mechanical bridging 
of the particles at the in-feed (mass flow hopper outlet) and out-feed ends of the applicator (interface with downstream 
feeder), transition sections at these points were designed. The geometry of the mass flow hopper outlet was 
previously described in Section 5. 
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As is typical with bulk solids handling projects, the withdrawal of product from the bottom of the system 
controls the flow of solids above.  This is no different to the pilot plant design.  A belt feeder interface was used to 
control the discharge rate in the pilot plant.  In addition to preventing blockages, the interface with the belt feeder that 
controls material flow through the system also prevents pulsatile flow as a result of the characteristic particle flow 
behaviour when the ore is transported as a packed bed. 

As material flows through the vertical applicator tube a dilation wave propagates upward at a time period 
consistent with the system geometry, material properties and flow rate.  This dilation wave results in transient loads 
applied to the applicator tube.  An example is given in Figure 9.  Discrete Element Method (DEM) analyses were 
conducted to calculate the pulsatile loads.  The software is proprietary to Jenike & Johanson. 

Minimizing the pulsatile loads, or dilation wave, minimized the loads applied to the applicator tube which 
ensured robust system operation.  Failure of the treatment tube due to high stresses could result in damage to 
microwave system components.  Finite element analyses were conducted to ensure the design minimized the tube 
stresses. 

[a] [b]  

Figure 9: [a] Pulsatile loads calculated on the applicator tube as a result of flowing solids and dilation wave;                                                              
[b] stress calculation due to pulsatile loads 

5.3 Control of Arcing 

Arcing is a common issue in microwave based processing systems. It is undesirable because it can damage 
the material being processed, materials of construction of the applicator and the magnetron housed in the generator 
itself. It may also reduce the efficiency of the system, as microwave power is transferred to the arc event rather than 
into heating the process material. In order to produce samples for subsequent metallurgical testing, it was necessary 
to use single size classes of the test ores, rather than use a typical Run of Mine (ROM) size distribution as this would 
then enable evaluation of the fracture process as a function of particle size. Commissioning tests showed that 
processing of these single size classes (-50.8+25.4mm) led to void spaces within the packed bed as it moved through 
the applicator. Further voiding was created due to pulsatile flow of the ore at throughputs greater than 70tph. As 
material is moved out from the lower transition onto the apron feeder, momentary interruption of the downward flow 
occurred. This was identified as material moving as packets onto the apron feeder caused by temporary mechanical 
interlocking of the material in the lower transition section. This then transiently held the ore in place in the applicator. 
When this is removed by the apron feeder, the ore in the applicator drops down to fill the void, resulting in increase 
in transient voiding and the observed ‘pulsing’ of material flow. 

The voiding created as a result of running a single size class is shown in Figure 10 (left). Here the microwave 
infeed section of waveguide has been removed after interlocking the system so that the distribution of material in the 
applicator can be observed. The consequence of these transient voids is sporadic arcing as shown in Figure 10 
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(right). This image was captured from a digital video camera held in a port of the in-feed waveguide facing the quartz 
tube. 

 
 

       0              mm       200 

 
 

Figure 10: -50.8+25.4 mm single size class ore feed stationary in the quartz liner of the applicator. Note the void distribution between the 
particles (left). Process arcs of the same ore during operation, taken from a camera sighted in the waveguide looking at the quartz tube (right). 

It quickly became apparent during commissioning of the system that in order to reliably deliver power to the 
single size classes needed for the Phase I sighter testing, the use of a filler material to close out the voids and 
improve material flow at high throughput was required. This necessitated the blending of size classes together for 
each of the test ores.  Of course in a real process the feed would be present as a distribution, rather than as single 
size classes so this aspect of the work was particular to the pilot scale operation. It is included here to give guidance 
to the reader as to the importance of bulk density of the feed column of ore to both the maximisation system 
throughput but also the reliable delivery of power to it. 

5.4 Modification of Mass Flow Hopper to Control of Blend Segregation 

Flow testing of a 50:50 mix of -50.8+25.4mm and -12.7+6.35mm Ore 3 through the applicator revealed 
propensity to segregate the material on transport through the applicator Figure 11 (left). This again was found to 
induce transient voids and associated process instability through arcing. It was found that on filling of the mass flow 
hopper, the in-feed discharge conveyor was non-uniformly distributing the material. Preferential loading of the far 
side of the hopper (Figure 11, right) then lead to segregation by size class as the material was fed into the applicator.  
This was primarily a consequence of the building height restriction that resulted in the conveyor and mass flow hopper 
positioning. 

  

 0  mm      200 

 

0                  mm                1000 

 

Figure 11: Blend segregation in applicator (left) due to off centre loading in mass flow hopper (right) 

The results of subsequent discreet element (DEM) modelling of the particle flow reflected that observed 
during sighter tests. To address the problem, a distributor system was developed to ensure that blended material 
transferred into the hopper was evenly loaded.  This comprised of a hood positioned in the path of the inflowing ore 
and a distributor cone directly below it. The original design and the subsequent modification is shown in Figure 12. 
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Figure 12: Discrete element modelling of particle flow in mass flow hopper showing preferential loading of blended ore (left);                                 
loading on addition of hood and distributor (centre); design of hood and distributor (right) 

Segregation was also found to occur due to side-to-side segregation of product on the conveyor filling the 
mass flow hopper.  Modifications to uniformly load the conveyor solved the side-to-side conveyor loading issue. 

The results of the hopper and conveyor modifications can be seen in Figure 13. In the blended material no 
segregation by size class during transport through the applicator was observed. In addition, a significant reduction in 
the void distribution was achieved. This then led to a significant increase in process stability, with a correspondingly 
marked reduction in arc frequency during the production of test samples. 

 

     0       mm           200 

 

Figure 13: Applicator evenly filled with blended 50:50 -50.8+25.4 and -12.7+6.35mm monzonite ore after hopper modifications 

6 Phase II – Dual Applicator Configuration and Throughput Scaling to 150tph 

Following evaluation of the sighter test results (Batchelor et al., 2017) the potential for improving the system 
performance was investigated by increasing the homogeneity of treatment in the applicator and by increasing the 
throughput. 

Section 4.3 presented the distribution of power density within the applicator and optimum position of the ‘hot 
spot’ as a function of sliding short position. Due to the presence of this hot spot, ore particles were inevitably not 
treated at the same level of intensity, resulting from the non-uniform distribution of electric field intensity within the 
treatment zone as ore particles flow through the applicator. The power density then created in each phase of the 
particle is then also variable. Previous work has shown that micro-fracture around grain margins and resulting macro-
fracture though the matrix is dependent on the evolved power density in the heated phases of each specific particle 
(Jones et al., 2005).  For a particular ore fragment, beneficial effect is then dependant on which position in the 
applicator it moves through and its specific mineralogy. Given that only a quarter of the applicator cross-sectional 
area supports the highest power density, the probability of a susceptible ore fragment passing through the hot spot 
is much reduced. To this end, a second applicator was installed in series with the first. By off-setting the ‘hot spots’ 
of the two applicators, a greater volume of the process ore passes through an area of high electric field intensity, so 
resulting in a much greater proportion of the ore being exposed to the highest powers, thereby increasing the 
performance of the system. The addition of a second applicator in series with the first necessitated an increase in 
system throughput to maintain equivalent energy doses across the Phase I and Phase II testing programmes. 
Particularly those tests conducted at relatively low energy doses. By increasing the throughput of the system from 

http://doi.org/10.1016/j.mineng.2017.03.0


Minerals Engineering 109 (2017) 169-83 

16 

http://doi.org/10.1016/j.mineng.2017.03.006 

100tph to 150tph, achieved by increasing the speed of the apron feeder, the material residence time on the applicator 
is decreased from 0.58 to 0.38 seconds. 

In order to effectively move ore through the applicator at this increased throughput, it was necessary to 
‘fluidise’ the particles in fine material. This took the form of a mixture of Ore 1 and 2 in the size class -6.35+00mm. 
The bulk ore was run as a lean phase having composition 40% ore, 60% ore fines. 

6.1 Dual Applicator Configuration 

The central portion of the applicator comprises the single mode cavity and four reactive choking structures 
above and below it. To create the dual applicator system, a second applicator (built to the same specifications) was 
added in series with the original. Given a fixed height between the hopper and apron feeder, the outer reactive chokes 
were removed, and the length of the resistive choking structures increased to maintain the total 4m length of the 
applicator. The as installed dual applicator is shown in Figure 14. Again a quartz liner was used in the central portion 
of the applicator. To maintain the integrity of the quartz liners given they are sited in series, a UHMW-PE ring situated 
in the centre of the middle choke corrugation was used as a spacer.  

 

Figure 14: As installed dual applicator configuration 

Again as described in Section 4.1, the scattering parameters of the dual applicator configuration were 
measured for the Ore 1 and 2 and compared to those derived from FDTD based simulation in CONERTO®. The 
positions of the two ‘hot spots’ in the dual applicator configuration are shown in Figure 15 at the optimum short 
positions of 270mm. 
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Figure 15: Simulation of the positioning of the two ‘Hot Spots’ in the Dual Applicator Configuration for Ore 1 

A comparison of the distribution of electric field intensity at the optimum short position for the single and dual 
applicator configurations is shown in Figure 16. It can be seen that when two applicators are used in series, the cross 
sectional area of the process tube which supports the highest electric field intensity is much larger. 

   

Figure 16: the distribution of the electric field intensity inside the quartz liner, shown in cross section, sighting down the applicator from above 
for single (left) and dual applicators (right) at the optimum short position 

Using Eq. 1 and Eq. 2, the PUI could then be calculated for two applicators in series. This is shown in Figure 
17. It can be seen from Figure 17 that the PUI (0.27) is reduced by half when two equivalent applicators are used in 
series compared to the single applicator (PUI 0.64). This corresponds to an approximate doubling of the cross-
sectional area of the process tube which supports the highest electric field intensity. It then follows that twice the 
volume of ore is exposed to this electric field intensity in the modified system. As such, the treatment efficiency is 
greatly increased when two applicators are used in series in the pilot scale system. 

Direction of ore flow 
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Figure 17: PUI as a function of sliding short position in the dual applicator configuration for the quartzite Ore 1 -50.8+25.4mm.                                
PUI for single applicator shown for comparison 

7 Operational Stability 

During the commissioning process and sample production under the Phase I (single applicator) and Phase 
II (dual applicator) test programmes, the pilot scale plant has processed around 900 tonnes of ore, of which 
approximately 300 tonnes was under microwave power. A typical run is shown in Figure 18 which is derived from the 
data acquisition system. It shows the mass of material flowing through the applicator and the forward and reflected 
power during the run, as measured by each of the in-line 3-stub tuning units. 

The material processed in the run is flowing at a throughput of 150tph and the microwave power from both 
generators set at 100kW each. It can be seen that the microwave power is applied almost instantaneously. The 
power does take a number of seconds to stabilise and is an artefact of the so called ‘fast start’ process inherent to 
the microwave generators. Once the generators have stabilised, the reflected power is typically below 2 - 3 kW for 
the duration of the run, thereby ensuring that the power is efficiently and stability transferred to the ore during 
processing. 
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Figure 18: Exemplar process log for Ore 1 treated at 2 ×100kW and 150tph 

8 Conclusions 

By integrating electromagnetic design with a materials handling system, we were able to yield a pilot-scale 
microwave system capable of stably treating porphyry copper ores at throughputs of up to 150tph. The system is 
based on controllably flowing a blend of ore fragment sizes down though a vertically aligned tube as a packed bed. 
The mass flow hopper and applicator interfaces ensure the material is transferred through the TE10n single mode 
applicator, such that power from two 100kW generators operating at 896MHz can be delivered reliably without arcing. 

The performance of the applicator was validated by evaluating scattering parameters measured 
experimentally of the as built system to FDTD simulations. Good correlation between the two was observed, 
particularly for Ore 1 (S11 experiment -3.69 ±0.25, simulation -3.4). The use of a series of corrugated chokes around 
the applicator tube allowed the applied microwave field to be confined, such that the average power densities in the 
bulk ores are of the order 6.6× 106W/m3. 

By adding a second applicator in series with the first, an increase in the cross-sectional area covered by the 
size of the areas of highest power density is significantly increased. This results in a decrease in PUI from 0.64 to 
0.27.  Combining this with an increase in throughput capacity from 100tph to 150tph by fluidising the ore in fine 
material resulted in a significant increase in system performance. 
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