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Recently, Hawking, Perry and Strominger described a physical process that implants supertranslational
hair on a Schwarzschild black hole by an infalling matter shock wave without spherical symmetry. Using
the Bondi-Metzner-Sachs-type symmetries of the Rindler horizon, we present an analogous process that
implants supertranslational hair on a Rindler horizon by a matter shock wave without planar symmetry, and
we investigate the corresponding memory effect on the Rindler family of uniformly linearly accelerated
observers. We assume each observer to remain linearly uniformly accelerated through the wave, in the
sense of the curved spacetime generalization of the Letaw-Frenet equations. Starting with a family of
observers who follow the orbits of a single boost Killing vector before the wave, we find that after the wave
has passed, each observer still follows the orbit of a boost Killing vector but this boost differs from
trajectory to trajectory, and the trajectory dependence carries a memory of the planar inhomogeneity of the
wave. We anticipate this classical memory phenomenon to have a counterpart in Rindler space quantum
field theory.
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I. INTRODUCTION

Recently, Hawking, Perry and Strominger [1,2] (HPS)
have shown that a black hole in an asymptotically flat
spacetime has an infinite collection of soft hairs corre-
sponding to the infinite supertranslation symmetries of the
flat spacetime at asymptotic infinity. These supertransla-
tions are essentially diffeomorphisms on the spacetime
which leave the asymptotic structure at null infinity intact
and belong to the Bondi-Metzner-Sachs (BMS) subgroup
[3]. Classically, diffeomorphisms do not affect the vacuum
associated with the phase space of the canonically con-
jugate variables of gravitational degrees of freedom.
However, from a field-theoretic perspective, it has been
argued that the supertranslations act nontrivially on the
degenerate vacua related to the infinite BMS asymptotic
symmetries and are spontaneously broken, accompanied
by the creation/annihilation of Goldstone bosons, namely,
the soft photons and soft gravitons. The results due to
Christodoulou and Klainerman [4] on the stability of
Minkowski spacetime and asymptotic boundary conditions
allow one to construct an infinite number of nonvanishing
conserved supertranslation and super-rotation charges on
the past and future null infinities of generic asymptotically
flat spacetimes. For the black hole spacetimes, as consid-
ered by HPS, it has been conjectured [1] that these charges
would enable the outgoing Hawking quanta to contain
enough correlations to make the evaporation unitary. (Also
see Ref. [5].)

It was shown in Ref. [2] that soft hair can be implanted
on a Schwarzschild black hole by a physical process, an
infalling matter shock wave that does not have spherical
symmetry. The metric after the wave is related to the metric
before the wave by a BMS supertranslation. As these
supertranslations generate nontrivial time translations on
the null generators of the event horizon, they act like a
gravitational memory on the horizon. This raises the
possibility that these horizon supertranslations could be
the mechanism that encodes correlations in the outgoing
Hawking quanta [6].
Hawking’s prediction of black hole radiation [7] relies on

the semiclassical framework for gravity, wherein only the
matter fields propagating on the classical background
geometry are quantized. Within the same framework,
however with a more practical approach, it is known that
an Unruh-DeWitt detector coupled to the Hartle-Hawking
state of the quantum field and positioned at a fixed radius
outside the hole responds thermally [8,9]. In particular,
the response rate of the detector is of the Kubo-Martin-
Schwinger form [10–12]. A uniformly linearly accelerated
observer/trajectory plays a central role in these semiclass-
ical analyses: the thermal form of the Hawking radiation
is a peculiarity associated only with the uniformly linearly
accelerated observers. A freely falling detector, either
radially infalling or on a elliptical/circular orbit responds
quite differently albeit nonthermally [13].
An interesting question one would like to address is how

does implanting a black hole with supertranslation hair
affect the thermal response of the uniformly linearly
accelerated detector. There are two aspects involved in
such an investigation. First, it is well known that the
passage of gravitational radiation, infalling or outgoing,
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results in a change in the mutual proper separation of
geodesic observers at asymptotic infinity, an effect called
the gravitational memory effect [14]. More recently, it has
been explicitly shown that the memory effect for geodesic
observers is equivalent to that of a diffeomorphism on
the Schwarzschild metric belonging to the class of BMS
supertranslations at asymptotic infinity [15–18]. One can
expect the supertranslations to have a distinguishable effect
at a classical level on the congruence of uniformly accel-
erated observers as well. The second aspect is the evolution
of a quantum field when a supertranslation diffeomorphism
is present. In this paper we focus on the first aspect, for
uniformly linearly accelerated observers in the supertrans-
lated Schwarzschild black hole and in its Rindler analogue.
We plan to address the related quantum aspects in a future
paper [19].
The flat spacetime analogue of Hawking radiation is the

Unruh effect [20,21]. A uniformly linearly accelerated
observer, moving on an integral curve of a boost Killing
vector, perceives the Minkowski vacuum to be thermal
with a temperature proportional to the magnitude of its
acceleration. In contrast to the black hole case, the mode
solutions of the quantum field in the Rindler spacetime
are known in terms of well-studied special functions. The
analytical tractability and conceptual similarity often
makes Rindler spacetime a preexploratory arena for
studying numerous black hole effects, which we also
exploit in this paper. We extend the physical process of
implanting a supertranslational hair described by HPS to
the case of the Rindler horizon, and we investigate the
corresponding gravitational memory effects on uniformly
accelerated observers. The BMS-type horizon symmetries
for the Rindler spacetime have been found in Refs. [22–
24] (for a related discussion see Ref. [25]). In Sec. II, we
briefly review a class of such Rindler supertranslations
and introduce an asymmetric matter shock wave imping-
ing on the Rindler horizon. In Sec. III, we motivate and
propose a covariant way to define a uniformly linearly
accelerated trajectory in curved spacetime. In Sec. IV, we
analyze the effect of implanting supertranslational hair
on uniformly linearly accelerated motion in the Rindler
spacetime. Starting with a family of trajectories that
follow the orbits of a single boost Killing vector before
the wave, we find that after the wave has passed, each
trajectory still follows the orbit of a boost Killing vector
but this boost differs from trajectory to trajectory, and the
trajectory dependence carries a memory of the planar
inhomogeneity of the wave. We further show that the
effect of supertranslations on uniformly linearly acceler-
ated observers in the Schwarzschild spacetime is even
more drastic with the trajectory falling inside the black
hole horizon for an ingoing shock wave or the trajectory
ejecting out to spatial infinity for an outgoing shock wave.
Concluding remarks are collected in Sec. V.
The Minkowski metric is taken to have the mostly plus

signature, and roman indices run over all spacetime indices.

II. IMPLANTING SUPERTRANSLATIONAL HAIR
TO THE RINDLER HORIZON

In Ref. [2], HPS considered a linearized shock wave
without spherical symmetry propagating on a Schwarzschild
spacetime. Themetric for the complete process of implanting
the supertranslational hair is given by

ds2¼−
�
1−

2M
r

−hðv−v0Þ
2μ

r
−hðv−v0Þ

MD2C
r2

�
dv2

þ2dvdr−hðv−v0ÞDA

�
2C−

4MC
r

þD2C

�
dvdΘA

þðr2γABþhðv−v0Þ2rDADBC

−hðv−v0ÞrγABD2CÞdΘAΘB ð2:1Þ

where the coordinates ðv; r;ΘAÞ are the advanced Bondi
coordinates (surfaces of constant v are an ingoing family of
null hypersurfaces), γABdΘAΘB is the metric on the two-
sphere,DA is the covariant derivative on the unit two-sphere,
hðv − v0Þ is the Heaviside step function and the function
CðΘÞ characterizes the angular profile of the shock wave.
The metric differs from a Schwarzschild metric of mass
M > 0 by

hab ¼ hðv − v0Þ
�
LΞgab −

2μ

r
δvaδ

v
b

�
ð2:2Þ

where Ξa ¼ ½C;−D2C=2; DAC=r� is the BMS-type super-
translation vector, preserving to linear order the Bondi
gauge conditions grr ¼ 0 ¼ grA and det ðgAB=r2Þ ¼ gðΘÞ,
and satisfying the asymptotic fall-off conditions required to
preserve the asymptotic infinity. The stress-energy tensor of
the shock wave is

Tvv ¼
1

4πr2

�
μþD2ðD2 þ 2ÞC

4
−
3MD2C

2r

�
δðv − v0Þ;

TvA ¼ −
3MDAC
8πr2

δðv − v0Þ: ð2:3Þ

Similarly to the Schwarzschild case, we consider a
physical process version of implanting supertranslation
hair to the Rindler horizon. We begin by writing the metric
of the Rindler spacetime in the advanced Bondi-type
coordinates ðv; r; x; yÞ as

ds2 ¼ −2κrdv2 þ 2dvdrþ δABdxAdxB ð2:4Þ
where κ > 0, −∞ < v < ∞ and −∞ < r < ∞. In the full
Rindler spacetime, shown in Fig. 1, these coordinates cover
region I, where r > 0, region III, where r < 0, and their
joint boundary, the right-going future branch of the Rindler
horizon, where r ¼ 0.
The analogue of the BMS-type supertranslations for

the Rindler horizon in the metric (2.4) are given by the
supertranslation vector

Ξa ¼ 1

κ
½fðx; yÞ; 0;−r∂Afðx; yÞ� ð2:5Þ
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which preserves the Bondi-type gauge (2.4) in the sense
that grr ¼ 0 and gvr ¼ 2, and it also preserves the structure
of the Rindler horizon, in the sense that LΞgvv ¼ 0þOðrÞ
and LΞgAv ¼ 0þOðrÞ [22–24]. Joining the metric in
Eq. (2.4) to the supertranslated metric along a shock wave
propagating at v ¼ v0, we find that the perturbations to the
Rindler metric hab ¼ LΞgab due to the shock wave are then
given by

LΞgAv ¼ hðv − v0Þ2r∂Af; ð2:6Þ

LΞgAB ¼ hðv − v0Þ2
�
r
κ

�
∂A∂Bf ð2:7Þ

where again hðv − v0Þ is theHeaviside step function. Hence,
the full metric describing the shock wave at v ¼ v0 passing
through the Rindler horizon at r ¼ 0 is

ds2 ¼ −2κrdv2 þ 2dvdrþ 4rhðv − v0Þ∂AfdvdxA

þ
�
δAB þ 2hðv − v0Þ

r
κ
∂A∂Bf

�
dxAdxB: ð2:8Þ

Working to linear order in f, we find the linearized stress-
energy tensor of the shock wave to be

Tvv ¼ −rh0∂A∂Af −
r
κ
h00∂A∂Af;

Tvr ¼
h0

κ
∂A∂Af;

TvA ¼ −h0∂Af;

TAB ¼ 2
h0

κ
∂A∂Bf; A ¼ B;

TAB ¼ −2
h0

κ
∂A∂Bf; A ≠ B; ð2:9Þ

where the primed indices denote differentiation with respect
to v. Note that Tab is by construction covariantly conserved.
Similarly to the Schwarzschild case, one could demand

the surface stress-energy tensor to have an additional
μ̄h0ðv − v0Þ term, with μ̄ > 0 a constant, in the null-null
component Tvv such that

Tvv ¼ μ̄h0 − rh0∂A∂Af −
r
κ
h00∂A∂Af ð2:10Þ

with all the other components as in Eq. (2.9). The physical
interpretation of μ̄ is the surface energy density of the shock
wave. The corresponding metric perturbations in Eq. (2.7)
then get modified to

hAv ¼ hðv − v0Þ2r∂Af; ð2:11Þ

hAB ¼ μ̄

κ
δABhðv − v0Þðeκðv−v0Þ − 1Þ

þ hðv − v0Þ2
�
r
κ

�
∂A∂Bf: ð2:12Þ

We emphasize that the linearized stress-energy tensor
(2.9) comes from reverse engineering a matter source for
the Rindler supertranslation, and for generic f this stress-
energy tensor may not satisfy any of the usual energy
conditions. However, when the surface energy term (2.10)
is included, the stress-energy tensor can be made to satisfy
the null energy condition for μ̄ > 0. This is all similar to
what happens with the shock wave (2.1) in Schwarzschild,
as is seen by comparing Eq. (2.3) to Eqs. (2.9) and (2.10).
We also emphasize a significant difference from the

Schwarzschild case. In Schwarzschild the surface energy
density term μ=4πr2 leads to a perturbation in the gvv metric
component, but in Rindler it is the transverse part of the
metric that gets perturbed due to the surface density μ̄.
We show in Sec. IV that this leads to a drastic difference in
the effect on the uniformly linearly accelerated trajectories:
the effect in Rindler is a trajectory-dependent Lorentz
boost, while the effect in Schwarzschild is an instability
that knocks the trajectory away from stationarity and, for
μ > 0, makes it fall into the black hole.

III. LETAW-FRENET EQUATIONS IN
CURVED SPACETIME

To describe the memory effect for uniformly linearly
accelerated observers, we need a covariant definition of
such observers in a spacetime that is not necessarily flat.
Below we motivate the need for such a construction.
In Minkowski spacetime, a uniformly accelerated tra-

jectory may be defined as a timelike orbit of a Killing
vector. These orbits were classified in terms of Lorentz-
signature Frenet equations by Letaw [26], and summaries
in terms of the geometry of the Killing vectors were given
in Refs. [27,28]. As each of the trajectories is an orbit of a
one-parameter isometry group, the magnitude of the proper
acceleration is constant along the trajectory. The uniformly

FIG. 1. The Rindler spacetime. The metric reads ds2 ¼
−dUdV þ δABdxAdxB, and the two transverse dimensions xA

are suppressed. Regions I and II are the right and left Rindler
wedges. The coordinates (2.4) cover regions I and III and their
joint boundary, such that r > 0 in I and r < 0 in III. Curves of
constant v are lines of constant V, and curves of constant positive
r in I and III are hyperbolas of constant UV. The infalling null
shock wave v ¼ v0 is shown, with a selection of hyperbolas of
constant positive r at v < v0.
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accelerated trajectories are hence a special class among
worldlines on which the proper acceleration four-vector
has constant magnitude. Note that if just the magnitude of
the proper acceleration were fixed to a constant α > 0,
the direction of the proper acceleration four-vector would
still remain freely specifiable on the S2 of radius α in the
hyperplane orthogonal to the four-velocity, at each point
on the worldline.
Among the uniformly accelerated trajectories, the orbits of

a boost are called uniformly linearly accelerated. In quantum
field theory, a uniformly linearly accelerated observer reacts
to theMinkowski vacuum as if it were a thermal state [21]; by
contrast, the observer’s response under the other types of
uniform acceleration is not expected to be thermal [26–28].
This special property of the boost can be attributed to the
specific form of the entanglement between the fieldmodes in
the causally disconnected quadrants separated by the boost
Killing horizon, and to the fact that each trajectory stays in
one of the quadrants.1 In this paper we hence focus on
observers of uniform linear acceleration.
To address uniformly linearly accelerated observers in

the presence of matter shock waves, we do however need to
generalize the notion of uniform linear acceleration to a
spacetime that is not necessarily flat. We now proceed to
do this.
Letaw [26] showed that the construction of the gener-

alized Frenet equations in Minkowski spacetime can be
utilized to define analogues of the scalar curvature, the
torsion scalar and the hypertorsion scalar for worldlines in
flat spacetime. In particular, the scalar curvature is the
magnitude of the proper acceleration. The case of uniform
linear acceleration then arises when the scalar curvature is
fixed to a constant positive value while the torsion and
hypertorsion scalars are taken to vanish.
To generalize the Letaw-Frenet construction to curved

spacetime, we begin as in Ref. [26] by defining four unit
vectors forming an orthogonal tetrad using the Gram-
Schmidt orthogonalization procedure. These are defined
at each point along the trajectory xaðτÞ of interest as

Va
0 ¼ ua ¼ dxa

dτ
;

Va
1 ¼

aa

jaj ;

Va
2 ¼

jaj2wa − jaj2ðwbubÞua − ðwbabÞaa
N

;

Va
3 ¼

−1ffiffiffi
6

p ϵabcdffiffiffiffiffiffi−gp V0bV1cV2d ð3:1Þ

where aa ¼ ub∇bua, wa¼ ub∇baa and N¼ jajðjaj2wawa−
ðaawaÞ2þjaj4Þ1=2. Assuming aa ≠ 0 and N ≠ 0, the four
unit vectors of the tetrad by definition satisfy the following
condition at the tangent space at each event along the
trajectory:

VαaVa
β ¼ ηαβ ð3:2Þ

where the greek indices label the respective unit vector.
The generalized Letaw-Frenet equations then are

ub∇bVa
α ¼ Kβ

αVa
β ð3:3Þ

where

Kαβ ¼

0
BBB@

0 −KðτÞ 0 0

KðτÞ 0 −T ðτÞ 0

0 T ðτÞ 0 −VðτÞ
0 0 VðτÞ 0

1
CCCA: ð3:4Þ

To arrive at Eq. (3.4), we may proceed as in flat spacetime
[26], by taking the derivative of the orthogonality condition
(3.2) along ua, using Eq. (3.3) to deduce antisymmetry of
Kαβ, and finally using Eq. (3.1) to deduce that the αth row in
Kαβ can have nonzero entries only in the columns with
β ≤ αþ 1. The scalar quantitiesKðτÞ, T ðτÞ and VðτÞ can be
straightforwardly identified as the analogues of the curvature
scalar, torsion and the hypertorsion scalars respectively by
simply constructing a local inertial frame around any event
on the trajectory and matching the covariant scalars with
those in the construction of Letaw’s Frenet equations in flat
spacetime. Note that KðτÞ is the magnitude of the proper
acceleration, KðτÞ ¼ ðub∇bV0aÞVa

1 ¼ jaj.
We may now define the curved spacetime analogue of

uniform acceleration by requiring KðτÞ, T ðτÞ and VðτÞ to
be independent of τ. Uniform linear acceleration is defined
as the special case in whichK is strictly positive and T and
V vanish. For uniform linear acceleration, the only non-
trivial Frenet equation is then the equation of motion for the
normalized acceleration vector,

ub∇bVa
1 ¼ K0

1V
a
0 ⇒ ub∇baa ¼ wa ¼ jaj2ua: ð3:5Þ

The above equation was also obtained in Ref. [31] by
generalizing the differential-geometric characteristics of a
rectangular hyperbola in Minkowski spacetime to curved
spacetimes. As a technical caveat, we should note that the
tetrad (3.1) is not well defined for uniform linear accel-
eration because the formula for Va

2 takes the ambiguous
form 0=0, using Eq. (3.5). This can be remedied by defining
a binormal Vab

2;3 to the plane of V0a and V1a by

1If the observer is direction specific, thermality does however
arise also for the accelerated trajectory constructed from a boost
and a commuting spatial translation, but with an anisotropic
temperature that contains a direction-dependent Doppler shift
factor [29,30].
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Vab
2;3 ¼

−1ffiffiffi
6

p ϵabcdffiffiffiffiffiffi−gp V0cV1d: ð3:6Þ

In the space spanned by this binormal, one can choose two
unit vectors such that the orthonormality condition in
Eq. (3.2) still holds. The analysis then proceeds as above
andonce again theonly nontrivial Frenet equation isEq. (3.5).
The consistency of the setup can be verified by considering
the change in the binormal Vab

2;3 along the trajectory,

ue∇eVab
2;3 ¼

−1ffiffiffi
6

p ϵabcdffiffiffiffiffiffi−gp ðue∇eV0cÞV1d

þ −1ffiffiffi
6

p ϵabcdffiffiffiffiffiffi−gp V0cðue∇eV1dÞ ¼ 0 ð3:7Þ

where the first term vanishes since ue∇eV0c is parallel to V1d
and the second term vanishes on using the constraint equation
Eq. (3.5). The vanishing of the ue∇eVab

2;3 confirms that
Eq. (3.5) is consistent with the vanishing of the torsion and
hypertorsion scalars as required. One can note that the explicit
forms of the unit vectorsVa

2 andV
a
3 in this case are not needed.

A heuristic way to arrive at the constraint equation (3.5) is
as follows. In order to impose uniform linear acceleration,we
demand that the accelerationvectoraa has a constant positive
magnitude, and any change in aa lies in the plane spanned by
ua and aa. The latter condition implies

ub∇baa ¼ wa ¼ p1ua þ p2aa ð3:8Þ

where p1 ¼ −uawa and p2 ¼ aawa=jaj2, using uaaa ¼ 0.
As jaj is constant, we have

0 ¼ ub∇bðaaaaÞ ¼ 2aawa ¼ 2p2jaj2 ð3:9Þ

which implies p2 ¼ 0. As uaaa ¼ 0, we have

0 ¼ ub∇bðuaaaÞ ¼ jaj2 þ uawa ð3:10Þ

which impliesp1 ¼ jaj2. Collecting,we obtain the constraint

wa − jaj2ua ¼ 0 ð3:11Þ

which is identical to Eq. (3.5). Using Eqs. (3.8) and (3.11)
and the constancy of jaj, we further see that all further of
derivatives of ua lie in the plane spanned by ua and aa.

IV. THE MEMORY EFFECT FOR
ACCELERATED OBSERVERS

In this section, we investigate the gravitational memory
effect of supertranslations on uniformly linearly acceler-
ated trajectories. We consider in turn the Rindler and
Schwarzschild spacetimes with supertranslational hair
implanted by an asymmetric shock wave as discussed

in Sec. II. Starting with a family of uniformly linearly
accelerated trajectories that follow the orbits of a single
Killing vector before the shock wave, the task is to find
what these trajectories have become after the wave has
passed. We begin with the Rindler spacetime.

A. Rindler spacetime

We work in the Bondi-type gauge where the Rindler
metric before the shock wave, v < v0 can be expressed as
in Eq. (2.4),

ds2 ¼ −2κrdv2 þ 2dvdrþ δABdxAdxB: ð4:1Þ

The boost Killing vector in these coordinates is ξ̄a ¼
κ−1ð1; 0; 0; 0Þ. Without loss of generality, let us consider a
representative Rindler trajectory for v < v0 with the world-
line xaðτÞ ¼ ½τ= ffiffiffiffiffiffiffiffiffi

2κrc
p

; rc; xAc � where τ is the proper time
along the trajectory and rc, xAc are the initial values. It is easy
to check that the trajectory is linearly uniformly accelerated
in the sense of Eq. (3.5), and jaj ¼ κ=

ffiffiffiffiffiffiffiffiffi
2κrc

p
.

Let an asymmetric shock wave at v ¼ v0 with the
stress-energy tensor (2.9) impinge on the Rindler horizon.
Working to linear order in the perturbation, we can
investigate separately the memory effect due to the surface
energy density term μ̄hðv − v0Þ and the memory effect due
to the supertranslation perturbation terms. We first consider
the case without the surface energy density term and set
μ̄ ¼ 0. The resultant metric is as in Eq. (2.8),

ds2 ¼ −2κrdv2 þ 2dvdrþ 4rhðv − v0Þ∂AfdvdxA

þ
�
δAB þ 2hðv − v0Þ

r
κ
∂A∂Bf

�
dxAdxB ð4:2Þ

with the corresponding supertranslation vector

Ξa ¼ 1

κ
½fðx; yÞ; 0;−r∂Afðx; yÞ�: ð4:3Þ

We assume that hðv − v0Þ ¼ λHðv − v0Þ where λ is a
small dimensionless perturbative parameter and Hðv − v0Þ
is the Heaviside step function. To determine the trajectory
on and after the shock wave for v ≥ v0, we make for the
trajectory’s four-velocity the ansatz

ua ¼
�

1ffiffiffiffiffiffiffi
2κr

p ; 0; EðvÞ
ffiffiffiffiffiffiffi
2κr

p

κ
∂Af

�
ð4:4Þ

where EðvÞ is of first order in λ and must be determined
from Eq. (3.5). The acceleration vector is

aa ¼
�
0;

κ

2κr
;
1

κ

dh
dv

∂Af þ 1

κ

dE
dv

∂Af

�
ð4:5Þ

and it satisfies
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a2 ¼ κ2

2κr
þOðλ2Þ: ð4:6Þ

This shows that the ansatz (4.4) is consistent with keeping
the magnitude of the acceleration constant to linear order.
What remains is to impose the constraint (3.5), which to
linear order takes the form

0 ¼ wa − a2ua

¼
�
0; 0;

1

κ
ffiffiffiffiffiffiffi
2κr

p d2h
dv2

∂Af þ 1

κ
ffiffiffiffiffiffiffi
2κr

p
�
d2E
dv2

− κ2E
�
∂Af

�
:

ð4:7Þ

The equation for EðvÞ is hence

d2E
dv2

− κ2E ¼ −
d2h
dv2

ð4:8Þ

and matching to the orbits of the boost Killing vector ξ̄a

before the wave gives the initial condition EðvÞ ¼ 0 for
v < v0. The solution is

EðvÞ ¼ −hðv − v0Þ cosh½κðv − v0Þ�: ð4:9Þ

The four-velocity vector of the trajectory is hence

ua ¼
�

1ffiffiffiffiffiffiffi
2κr

p ; 0;−hðv − v0Þ cosh½κðv − v0Þ�
ffiffiffiffiffiffiffi
2κr

p

κ
∂Af

�
:

ð4:10Þ

Integrating Eq. (4.10) to first order in λ, we find that the
trajectories are

xaðτÞ ¼
�

τffiffiffiffiffiffiffiffiffi
2κrc

p ; rc; xAc − h

�
κðτ − τ0Þffiffiffiffiffiffiffiffiffi

2κrc
p

�

× ∂AfðxAc Þ2rc sinh
�
κðτ − τ0Þffiffiffiffiffiffiffiffiffi

2κrc
p

��
ð4:11Þ

where τ0 is the proper time at v ¼ v0.
For v < v0, the trajectories (4.11) are by construction

integral curves of the boost Killing vector ξ̄a ¼ κ−1ð1;0;0;0Þ.
What are these trajectories for v > v0?
For v > v0, working to linear order in λ, the perturbed

metric is related to the Rindler metric by a diffeomorphism
generated by the supertranslation vector Ξa [Eq. (4.3)].
As LΞξ̄

a ¼ 0, it follows that ξ̄a is a boost Killing vector
also for v > v0. Assume now that f is generic. It is then
immediate from Eq. (4.10) that the trajectories (4.11) are
not orbits of ξ̄a. Further, we have verified that a vector field
parallel to the velocity field (4.10), of the form

qa ¼ Qðr; xAÞ½1; 0; EðvÞ2r∂Af�; ð4:12Þ

satisfies Killing’s equation to linear order in λ only when
EðvÞ ¼ 0 and Qðr; xAÞ is a constant. This means that the
velocity field (4.10) is not parallel to a Killing vector, and
the trajectories (4.11) do not constitute a family of integral
curves of a Killing vector field.
However, the Letaw-Frenet construction at v > v0 guar-

antees that each trajectory in the family (4.11) is the orbit of
some boost Killing vector. This means that the Killing vector
must differ from trajectory to trajectory. When the velocity
vector in Eq. (4.10) is transformed to a set of standard
Minkowski coordinates ðT; X; YAÞ, it takes the form

Ua ¼
�
cosh

�
κτffiffiffiffiffiffiffiffiffi
2κrc

p −
log½κrc�

2

�
;sinh

�
κτffiffiffiffiffiffiffiffiffi
2κrc

p −
log½κrc�

2

�
;

×h

�
κðτ− τ0Þffiffiffiffiffiffiffiffiffi

2κrc
p

�
αA cosh

�
κτffiffiffiffiffiffiffiffiffi
2κrc

p − κv0

��
ð4:13Þ

where αA ¼
ffiffiffiffiffiffiffi
2κrc

p
κ ∂AfðxAc Þ, and we have used Eq. (4.11) to

express thevelocity vector in termsof the proper time τ. From
Eq. (4.13) we see that a trajectory with given rc, xAc is an
integral curve of a boost Killing vector that is obtained by
applying to ξ̄a the Lorentz boost

Λa
b ¼

0
BBB@

1 0 αY cosh β αZ cosh β

0 1 −αY sinh β −αZ sinh β
αY cosh β αY sinh β 1 0

αZ cosh β αZ sinh β 0 1

1
CCCA

ð4:14Þ
where β ¼ ð1=2Þ log½κrc� − κv0. Note that the magnitude
and direction of the boost (4.14) depend on rc and xAc .
Collecting, we have shown that implanting a super-

translational hair on the Rindler horizon by our matter
shock wave boosts a family of Rindler trajectories in a way
that differs from trajectory to trajectory, and this trajectory
dependence carries a memory of the planar inhomogeneity
of the wave. This is the gravitational memory effect for
uniformly linearly accelerated observers.
To end this subsection, we return to the case of positive

μ̄. Working to linear order, we can set the perturbations due
to the supertranslational terms to zero. The relevant metric
in this case is

ds2 ¼ −2κrdv2 þ 2dvdr

þ
�
δAB þ μ̄

κ
δABhðv − v0Þðeκðv−v0Þ − 1Þ

�
dxAdxB:

ð4:15Þ
We now find that the velocity vector field

ua ¼
�

1ffiffiffiffiffiffiffi
2κr

p ; 0; 0; 0

�
ð4:16Þ
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has jaj ¼ κ=
ffiffiffiffiffiffiffiffiffi
2κrc

p
and satisfies the Letaw-Frenet con-

straint (3.5) for all v. For v < v0, the trajectories are orbits
of the boost Killing vector ξ̄a. For v > v0, the metric (4.15)
is flat to linear order, and when the velocity vector (4.16) is
transformed to a standard set of Minkowski coordinates
ðT; X; YAÞ, it takes the form

Ua ¼
�

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − T2

p ;
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 − T2
p ;

μ̄e−κv0xAc ðT þ XÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − T2

p
�

ð4:17Þ

where X > jTj. We see again that after the wave has passed,
each trajectory is an integral curve of a boost, but the boost
differs from trajectory to trajectory. The effect can be
interpreted as a focusingdue to the energydensity in thewave.

B. Schwarzschild spacetime

We now turn to the infalling linearized shock wave in the
supertranslated Schwarzschild spacetime, and to its con-
sequences for a family of trajectories that are static before
the wave and are continued to the future of the wave as
uniformly linearly accelerated trajectories. We proceed as
in Rindler. Working in the Bondi gauge where the super-
translational hair-implanting shock wave is infalling in the
Schwarzschild black hole metric, the complete metric reads
as in Eq. (2.1),

ds2¼−
�
1−

2M
r

−hðv−v0Þ
2μ

r
−hðv−v0Þ

MD2C
r2

�
dv2

þ2dvdr−hðv−v0ÞDA

�
2C−

4MC
r

þD2C

�
dvdΘA

þðr2γABþhðv−v0Þ2rDADBC

−hðv−v0ÞrγABD2CÞdΘAΘB: ð4:18Þ

For notational simplicity, we write V ¼ 1�2M=r.
We consider trajectories that are static for v < v0,

xaðτÞ ¼ ½τ= ffiffiffiffiffiffiffiffiffiffiffiffi
VðrcÞ

p
; rc; θAc �, where τ is the proper time

along the trajectory and rc, ΘA
c are the initial coordinates.

These trajectories are uniformly linearly accelerated in the
sense of Sec. III, and the magnitude of the acceleration is
jaj ¼ V 0ðrcÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffi
VðrcÞ

p
. We continue the trajectories across

and to the future of the shock wave by keeping them
uniformly linearly accelerated.
We first consider the effect from the shock-wave mass

term μ, taking the perturbed metric to be

ds2 ¼ −
�
1 −

2M
r

− hðv − v0Þ
2μ

r

�
dv2 þ 2dvdr

þ r2γABdΘAΘB ð4:19Þ

and assuming μ > 0. As the overall effect of μ is to increase
the mass of the black hole, we may anticipate the initially
static trajectories to become unstable on crossing the shock
wave and to fall into the black hole. We now verify that this

is the case within the perturbative treatment. A nonpertur-
bative treatment could be given by the methods of
Refs. [32,33].
Working to linear order in the perturbation,we assume that

hðv − v0Þ ¼ λHðv − v0Þ where λ is a small dimensionless
perturbative parameter and Hðv − v0Þ is the Heaviside step
function. To find the trajectory for v ≥ v0, we assume
r − 2M ≫ 2μ and seek the velocity vector field by the ansatz

ua ¼
�
1þ hðv−v0Þμ

rV þ EðvÞffiffiffiffi
V

p ; EðvÞ; 0; 0
�

ð4:20Þ

where EðvÞ is to be determined. For the magnitude of the
acceleration vector, we find

jaj2 ¼ V 02

4V
þ
�
V 0

V

�
E0 þ

�
V 0

rV2

�
μh0 þ

�
V 0

r2V

�
μh

þ
�

V 02

2rV2

�
μh ð4:21Þ

where the prime denotes differentiation with respect to
the argument, that is, V 0 ¼ dV=dr, h0 ¼ dh=dv and E0 ¼
dh=dv. The constraint (3.5) gives

0 ¼ wa − a2ua ¼
1

4V5=2r2
½0; 4rμh00 þ 2μrh0V 0 þ 4r2VE00

þ 2Er2V2V 00 þ 4μVh0 − r2VV 02E; 0; 0�: ð4:22Þ

Differentiation of Eq. (4.21) with respect to v shows that
Eq. (4.22) implies the constancy of jaj. The only equation
that needs to be solved is hence Eq. (4.22).
Writing EðvÞ in terms of ð1= ffiffiffiffi

V
p Þdr=dv, Eq. (4.22)

gives

d2rϵ
dv2

− VðrcÞ
�
jaj2 − V 00ðrcÞ

2

�
rϵ

¼ −μh0

rc
−
μVðrcÞh

r2c
−
μV 0ðrcÞh

2rc
ð4:23Þ

where rϵ ¼ r − rc. With the initial condition rϵðvÞ ¼ 0 for
v < v0, the solution is

r ¼ rc − hðv − v0Þ
μ

rcβ
sinh ðβðv − v0ÞÞ

− hðv − v0Þ
�
μV
r2c

þ μV 0

2rc

�
2

β2
sinh2

�
β

2
ðv − v0Þ

�

ð4:24Þ

with β2 ¼ VðrcÞðjaj2 − V 00ðrcÞ=2Þ. The solution has an
exponential runaway and will eventually exit the regime in
which the linearized treatment is valid, but the signs in
Eq. (4.24) show that the trajectory will start to fall towards
the black hole, as we anticipated.
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When the supertranslation terms in the metric are added,
the Rindler analysis suggests that the trajectories will carry
a memory of the spherical anisotropy of the wave, and a
generic trajectory will either fall into the black hole or
escape to infinity.

V. DISCUSSION

In this paper we have demonstrated and quantified a
gravitational memory effect due to a matter shock wave that
implants supertranslational hair on a Rindler horizon. We
considered a family of observers who follow the integral
curves of a Lorentz boost prior to the wave, and we
assumed that the observers continue as uniformly linearly
accelerated across the wave, in the sense of a curved
spacetime generalization of the Letaw-Frenet uniform
linear acceleration in flat spacetime [26]. After the wave
has passed, we found that each observer still follows the
orbit of a boost Killing vector, but this boost differs from
trajectory to trajectory, and the trajectory dependence
carries a memory of the planar inhomogeneity of the wave.
We also considered a matter shock wave that implants
supertranslational hair on the Schwarzschild spacetime [2],
showing that a similar memory effect on initially static
uniformly linearly accelerated trajectories exists but
involves an instability that makes the trajectories fall into
the black hole or escape to the infinity.
InSchwarzschild, the linearized stress-energy tensor of the

supertranslation-implementing shock wave involves a Dirac
delta on a null hypersurface [2]. In Rindler, by contrast, we

found that the linearized stress-energy tensor of the super-
translation-implementing shock wave, in addition to a Dirac
delta term, also involves a derivative of the Dirac delta on
a null hypersurface. Studying the shock wave beyond the
linearized theory [32–34] could hence be significantly more
challenging in Rindler than in Schwarzschild.
While our discussion was classical, it is motivated by

the potential of supertranslations as a solution to the black
hole information paradox [1]. As the classical memory
effect due to Rindler supertranslations involves a trajectory-
dependent boost, the Killing horizons of the uniformly
linearly accelerated trajectories in the future of the shock
wave are boosted with respect to each other. In terms of
spacetime regions separated by the Rindler horizons, some
of the degrees of freedom that prior to the shock wave were
inaccessible to a particular Rindler observer become
accessible in the future of the shock wave, and vice versa.
This leads us to anticipate that the classical memory effect
due to the Rindler supertranslations has a counterpart in the
thermal aspects of Rindler space quantum field theory, and
we plan to address this effect in a future paper [19].
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