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Abstract—The nominal power of single Wind Energy 
Conversion Systems (WECS) has been steadily growing, 
reaching power ratings close to 10MW. In the power 
conversion stage, medium-voltage power converters are 
replacing the conventional low-voltage back-to-back 
topology. Modular Multilevel Converters have appeared as 
a promising solution for Multi-MW WECSs, due to their 
modularity, and the capability to reach high nominal 
voltages. This paper discusses the application of the 
Modular Multilevel Matrix Converter (M3C) to drive Multi-
MW WECSs. The modelling and control systems required 
for this application are extensively analysed and 
discussed in this paper. The proposed control strategies 
enable decoupled operation of the converter, providing 
maximum power point tracking (MPPT) capability at the 
generator-side, grid code compliance at the grid-side 
[including Low Voltage Ride Through Control (LVRT)], and 
good steady state and dynamic performance for balancing 
the capacitor voltages in all the clusters.  Finally, the 
effectiveness of the proposed control strategy is validated 
through simulations and experimental results conducted 
with a 27 power-cell prototype. 

 
Index Terms—Modular Multilevel Converters, Wind 

Energy Conversion Systems, Low Voltage Ride Through.  

I. INTRODUCTION 

IND energy has grown more and at a faster rate than  all 

other  renewable  energy  sources.  The  wind  power  
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Fig. 1: Proposed topology to drive Multi-MW Wind Turbines 

production capacity for the whole world increased from 17.4 

GW in 2000 to 432.4 GW in 2015, positioning wind power as 

a significant and crucial energy source in areas such as 

Europe, China and the USA [1]. A continual increase in wind 

power capacity is expected in the immediate future. The 

European Wind Energy Association (EWEA) has stated that 

“wind power would be capable of contributing up to 20% of 

EU electricity by 2020, 30% by 2030 and 50% by 2050” [2]. 

A significant part of the required future wind power capacity 

will be installed offshore, due to the presence of higher wind 

energy and lower environmental impacts. For offshore 

applications, upscaling wind turbine dimensions, wind park 

capacities, and electrical infrastructure have become the focus 

of recent research. A high power wind turbine can reduce the 

cost structure of offshore WECS [2]. For this reason, wind 

turbine nominal powers and rotor diameters have increased to 

8MW-140m in 2015. In addition, two 10MW WECSs, the 

Seatitan from WindTec and the Sway 10MW, are expected to 

be introduced to the market shortly [3], [4].  

When the penetration of Wind Energy is high, sudden 

disconnections of large wind power plants may have a 

significant influence on the stability of power systems. 

Therefore, stringent grid codes have been enforced recently, 

which encompass active power control to support the grid 

frequency, reactive power control to support the grid voltage, 

power quality, power controllability, and Fault Ride Through 

(FRT) capability. FRT requirements regulate the behavior 

under Low-Voltage Ride-Through, and High-Voltage Ride 

Through (HVRT) grid voltage conditions and probably 

represent the primary concern for wind turbine and power 

converter manufacturers since grid voltage sag-swell are the 

most common disturbances present in electrical power systems 

[5]. Despite the trend for Multi-MW Wind Turbines, most of 
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the installed WECSs are based on low-voltage power 

converters, usually equipped with 1700V IGBT devices for 

connection to 690V. Therefore, high currents are required at 

the output of Multi-MW WECS. Thus, medium voltage 

converter with flexible control strategies could be better suited 

for this task  [3], [6].  

In this context, this paper presents a novel application of the 

M3C to control a high-power WECS, as shown in Fig. 1. The 

M3C is a modular AC-AC converter able to reach high-voltage 

levels, by the series connection of full-bridge modules. This 

converter has some advantages compared to conventional two-

level topologies for high-power applications,  for instance, full 

modularity, simplicity to reach high voltage levels, control 

flexibility, power quality and redundancy [7]. In offshore 

applications, reliability is one of the key parameters. 

Therefore, the possible redundancy of the M3C, achieved by 

adding redundant modules [8], is a major advantage of this 

topology.  The application of M3Cs topologies to WECSs 

could lead to reductions in the size of the transformer or even 

transformerless operation, with the consequent power density 

increment and weight reduction [9]. In [8], the M3C is 

advantageously compared with others high power converter 

topologies for wind energy applications. 

A topology similar to that shown in Fig. 1 was proposed for 

WECSs in [10], [11]. However, in these papers, the use of 

cluster inductors is not considered. Therefore, it is assumed 

that the only five clusters can switch simultaneously to avoid 

short circuiting the grid-side/machine-side voltage sources 

(see [10]). Additionally, a Space Vector Modulation (SVM) 

algorithm is proposed in [10], [11] to synthesise the cluster 

voltages. Nevertheless, in an M3C composed of n cells there 

are 39𝑛 possible switching states, therefore the modulation 

algorithm discussed in [10], [11], is not feasible when more 

than two cells per cluster are considered. Furthermore, neither 

variable speed operation nor grid-connected operation of the 

M3C are considered in the aforementioned papers. 

The contributions of this paper can be summarised as 

follows: 

 To the best of our knowledge, this is the first paper where 

LVRT control systems for M3C applications (see Fig. 1) are 

discussed, and experimental results presented.  

 A decoupled input/output control for an M3C based WECS 

is proposed and thoroughly analysed in this paper. Similar to 

the operation of Back-to-Back converters for WECS 

applications [4], where the presence of a DC-link allows 

decoupled control of the AC-DC-AC conversion stages, the 

proposed control strategy enables the decoupled operation of 

the grid-side and generator-side control systems.  

 The regulation of the capacitor voltages is realised using 

nested control loops, with the outer loops regulating the 

capacitor voltages (using PI controllers) and the inner control 

loops regulating the circulating currents.  Therefore, the outer 

control loops regulate the dc-component of the capacitor 

voltage imbalances with zero steady-state error.   

 Finally, experimental validation of the proposed control 

schemes is provided, including variable speed operation, grid 

code compliance, and capacitor voltage regulation.  

The rest of this paper is organised as follows. In Section II, 

the M3C is discussed. The proposed control systems are  

  

Fig. 2: Modular Multilevel Matrix Converter Topology. (a) Whole 
converter. (b) M3C Cluster composition. (c) M3C Sub-Converter. 

presented in Section III. Then, simulation and experimental 

results are analysed and extensively discussed in Section IV 

and Section V, respectively. Finally, an appraisal of the 

proposed control methodology is presented at the Conclusions. 

II. MODULAR MULTILEVEL MATRIX CONVERTER  

Fig. 2(a) shows the converter topology used in this work. 

The M3C has nine clusters connecting the phases of the input 

or generator [𝑎, 𝑏, 𝑐 in Fig. 2(a)], to the three phases of the 

output or grid [𝑟, 𝑠, 𝑡 in Fig. 2(a)]. Each of the nine clusters 

shown in Fig. 2(a) is composed of 𝑛 Full H-Bridge cells and 

one inductor (see Fig. 2(b)). As shown in Fig. 2(c), each phase 

of the generator is connected to the phases (𝑟, 𝑠, 𝑡) using a 

Sub-Converter (SC). 

The switching frequency and voltage levels of a cluster 

depend on the modulation technique and the number of series-

connected cells, leading to a low harmonic distortion when a 

high number of cells are considered. It is important to note 

that for this topology, the capacitor voltages of each cell are 

floating and, therefore, they could charge-discharge during the 

operation of the converter, particularly when variable speed 

operation of the generator is considered. Therefore, the 

capacitor voltages have to be controlled to achieve low voltage 

ripple around a steady state operating point.  

Recently, a decoupled modelling approach for the M3C has 

been reported in [12], [13]. In these papers, the basic approach 

is to use a two-stage-𝛼𝛽0 transformation which is briefly 

discussed below. Applying Kirchhoff's circuit laws to Fig. 

2(a), and assuming that the grid and the generator are ideal 

voltage sources, the expression of (1) is obtained.  

[

𝑣𝑚𝑎 𝑣𝑚𝑏 𝑣𝑚𝑐
𝑣𝑚𝑎 𝑣𝑚𝑏 𝑣𝑚𝑐
𝑣𝑚𝑎 𝑣𝑚𝑏 𝑣𝑚𝑐

] = 𝐿𝑏
𝑑

𝑑𝑡
[

𝑖𝑎𝑟 𝑖𝑏𝑟 𝑖𝑐𝑟
𝑖𝑎𝑠 𝑖𝑏𝑠 𝑖𝑐𝑠
𝑖𝑎𝑡 𝑖𝑏𝑡 𝑖𝑐𝑡

] + [

𝑣𝑎𝑟 𝑣𝑏𝑟 𝑣𝑐𝑟
𝑣𝑎𝑠 𝑣𝑏𝑠 𝑣𝑐𝑠
𝑣𝑎𝑡 𝑣𝑏𝑡 𝑣𝑐𝑡

] +

[

𝑣𝑔𝑟 𝑣𝑔𝑟 𝑣𝑔𝑟
𝑣𝑔𝑠 𝑣𝑔𝑠 𝑣𝑔𝑠
𝑣𝑔𝑡 𝑣𝑔𝑡 𝑣𝑔𝑡

] + 𝑣𝑁𝑛 [
1 1 1
1 1 1
1 1 1

]          (1) 

The subscript “g” represents grid-side variables and the 

subscript “m” represents the machine(generator)-side 

variables. Notice that in (1) the nine cluster voltages  

𝑣𝑎𝑟⋯𝑣𝑐𝑡  are synthesised by the converter using the 

modulation indexes obtained from the control systems 
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Fig. 3: Overview of the proposed control strategy.  

discussed in this paper. Modulation indexes for each cell are 

normalised to consider the dc-link voltage variation of each 

cell capacitor (see Section III.D). 

The 𝛼𝛽0 transformation matrix, i.e.,  𝛼𝛽0 is defined as: 

 𝛼𝛽0 = √
 

3
[

1 −1 2⁄ −1 2⁄

0 √3 2⁄ − √3 2⁄

1 √2⁄ 1 √2⁄ 1 √2⁄

]          (2) 

The two-stage-𝛼𝛽0 transformation of the 𝑎𝑏𝑐 signals is 

realised by the pre-multiplication of (1) by the Cαβ0 matrix 

and post-multiplication by Cαβ0
t . After some manipulations (3) 

is obtained: 

√3 [

0 0 0
0 0 0
𝑣𝑚𝛼 𝑣𝑚𝛽 0

] = 𝐿𝑏
𝑑

𝑑𝑡
[

𝑖𝛼𝛼 𝑖𝛽𝛼 𝑖o𝛼
𝑖𝛼𝛽 𝑖𝛽𝛽 𝑖o𝛽
𝑖𝛼0 𝑖𝛽0 𝑖00

] + [

𝑣𝛼𝛼 𝑣𝛽0 𝑣0𝛼
𝑣𝛼𝛽 𝑣𝛽𝛽 𝑣0𝛽
𝑣𝛼0 𝑣𝛽0 𝑣00

] +

√3 [

0 0 𝑣𝑔𝛼
0 0 𝑣𝑔𝛽
0 0 0

] + [
0 0 0
0 0 0
0 0 3𝑣𝑁𝑛

]           (3) 

where the currents 𝑖𝛼0 + 𝑗𝑖𝛽𝑜 = (𝑖𝑚𝛼 + 𝑗𝑖𝑚𝛽) √3⁄  and the 

currents 𝑖𝑜𝛼 + 𝑗𝑖𝑜𝛽 = (𝑖𝑔𝛼 + 𝑗𝑖𝑔𝛽) √3⁄ .  The variables (𝑖𝑚𝛼 , 

𝑖𝑚𝛽) are dependent on the generator side currents, meanwhile 

(𝑖g𝛼 , 𝑖g𝛽) are dependent on the grid side currents. The currents 

𝑖𝛼𝛼, 𝑖𝛽𝛼, 𝑖𝛼𝛽 and 𝑖𝛽𝛽 are not present either at the generator side 

nor at the grid side and are called “circulating currents”.  

III. CONTROL STRATEGY FOR THE M3C BASED WECSS 

The proposed control strategy provides decoupled regulation 

of the converter, the input (generator-side), and the output 

(grid-side). For balanced operation, the average value of each 

capacitor voltage has to be regulated to an identical reference 

value. The voltage differences (imbalances) are compensated 

using circulating currents. As discussed in this section, for the 

application proposed in this paper four circulating currents are 

required. These current components are referred to the 

coordinates of the two-stage-𝛼𝛽0  transformation  [see (2-3)] 

and overview of the proposed control system is presented in 

Fig. 3, where the following sub-systems are depicted: 

 Control of the Average Capacitor Voltage 

 Control of the voltage imbalance in the capacitors 

 Circulating Current Control.  

 Generator-side Control System. 

 Grid-side Control System. 

 Single Cell Control and Modulation. 

The control systems have been designed using the root-locus 

method and the transfer functions obtained from (3). The 

circulating current loops have been designed with a bandwidth 

of about 100Hz and the outer voltage control systems with a 

bandwidth of 5Hz. A summary of the proposed controllers is 

shown in Table I with the  designed closed-loop bandwidth 

(Hz) indicated by fn.  

TABLE I: SUMMARY OF THE CONTROL SYSTEMS IMPLEMENTED 

CONTROL LOOP TYPE 𝑓𝑛[HZ] 
Average Voltage  1 PI Controller 10  

Cap.Voltage Balancing  4 PI Controllers (outer control loops) 5 

Machine-side Current  2 PI Controllers (d-q coordinates) 100 

Grid-side current  2 Resonant Controllers 100 

Circulating Currents 4 P Controllers (inner control loops) 100 

Single-Cell Voltage  27 Proportional Controller  2 

The generator is regulated using standard field orientated 

control techniques, implemented in a synchronous rotating d-q 

axis. The average value of the cell-capacitor voltages is 

regulated by imposing an additional component to the 

generator torque current (i.e. similar to the conventional 

control methodologies used in back-to-back converters [4]). 

The grid-side control system regulates the grid-connected 

operation, power factor regulation and provides FRT 

compliance. 

A. Modelling and Control of the Generator-Side: MPPT 
algorithm 

The modelling of WECSs and Permanent Magnets 

Synchronous Generators (PMSGs) have been extensively 

discussed in the literature [3], [4], [14], [15]. In steady state, 

the wind turbine operates using an MPPT algorithm, where the 

generator torque is regulated as: 

𝑇𝑒 = 𝑘𝑜𝑝𝑡𝜔𝑚
 → 𝑃𝑚 = 𝑘𝑜𝑝𝑡𝜔𝑚

3            (4) 

where 𝑘𝑜𝑝𝑡  is a constant that depends on the blade 

aerodynamics the gear box ratio and the wind turbine 

parameters. As presented in [14], the torque-current 

relationship for a PMSG considering orientation along the 

rotor flux is: 
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Fig. 4: Amplified view of (a) Generator-side control system. (b) Intra-SC capacitor voltage balancing. (c) Inter-SC capacitor voltage balancing. (d) 
Grid-side control system. (e) LVRT control system. 

𝑇𝑒 =
3

 
𝑝 𝜓𝑚𝑟𝑖𝑚𝑞                  (5) 

where p represents the number of pole-pairs in the generator, 

the PMSG rotor flux is denoted by 𝜓𝑚𝑟  and the generator 

torque current is 𝑖𝑚𝑞 . Replacing (4) in (5), the PMSG current 

reference for MPPT purposes is calculated as follows: 

𝑖𝑚𝑞 
∗ =

 

3

𝑘𝑜𝑝𝑡𝜔𝑚
2

𝑝𝜓𝑚𝑟  
                 (6) 

The proposed control system is presented in Fig. 4(a) where  

it is shown that the total PMSG torque current is composed of 

two elements. 𝑖𝑚𝑞 
∗  in (6) and a second component 𝑖𝑚𝑞 

∗  

required to regulate one of the voltage components in the 

M3C. This is discussed later.  

B. Control of the M3C 

1) Average Capacitor Voltage Control 

A single cluster is used to analyse the energy stored in the 

M3C capacitors [see Fig. 2(b)]. Neglecting internal losses, the 

cluster energy 𝑊   is defined as the integral of the cluster 

power, which is related to the capacitor voltages using: 

𝑊  =
𝐶

 
∑ 𝑣𝐶𝑖

 
𝑛                  (7) 

Assuming that in each cell the capacitor voltage is operating 

around a quiescent point 𝑣𝑐𝑖
0 ≈ 𝑣𝑐

∗, a small signal model of (7) 

can be derived as: 

∆𝑊  = ∑
𝜕𝑊𝑥𝑦

𝜕𝑣𝑐𝑖
∆𝑣𝑐𝑖𝑛 =  𝑣𝑐

∗ ∑ ∆𝑣𝑐𝑖 =  𝑣𝑐
∗

𝑛 ∆𝑣𝐶𝑥𝑦     (8) 

The relationship between the power and the energy of the 

cluster is obtained from (8) as: 

∆𝑃  =
𝑑∆𝑊𝑥𝑦

𝑑𝑡
=   𝑣𝑐

∗
𝑑∆𝑣𝐶𝑥𝑦

𝑑𝑡
              (9) 

Where: 𝑛 is the number of cells in the cluster,   ∈  {𝑎, 𝑏, 𝑐}, 
  ∈  {𝑟, 𝑠, 𝑡}, 𝑃   represents the cluster power, 𝑣𝐶𝑥𝑦  is the 

addition of all the capacitor voltages in one cluster, 𝑣𝐶
∗  is the 

reference voltage of each cell [assumed as the quiescent point 

in (8)],   represents the capacitance of each capacitor and 𝑊   

symbolises the cluster energy.  

Using (9), neglecting initial conditions and assuming 

operation around the aforementioned quiescent point (i.e. 

𝑣𝐶𝑥𝑦 ≈ 𝑛𝑣𝐶
∗ + ∆𝑣𝐶𝑥𝑦), the 9 cluster-capacitor voltages (𝑣𝐶𝑥𝑦) 

are obtained as: 

[

𝑣𝑐𝑎𝑟 𝑣𝑐𝑎𝑠 𝑣𝑐𝑎𝑡
𝑣𝑐𝑏𝑟 𝑣𝑐𝑏𝑠 𝑣𝑐𝑏𝑡
𝑣𝑐𝑐𝑟 𝑣𝑐𝑐𝑠 𝑣𝑐𝑐𝑡

] =
1

𝐶𝑣𝑐
∗ ∫ [

∆𝑃𝑎𝑟 ∆𝑃𝑎𝑠 ∆𝑃𝑎𝑡
∆𝑃𝑏𝑟 ∆𝑃𝑏𝑠 ∆𝑃𝑏𝑡
∆𝑃𝑐𝑟 ∆𝑃𝑐𝑠 ∆𝑃𝑐𝑡

]
𝑡

0
𝑑𝑡 + 𝑛𝑣𝑐

∗ [
1 1 1
1 1 1
1 1 1

]  (10) 

In 𝑎𝑏𝑐 coordinates, the powers in each cluster are 

calculated using 𝑃  = 𝑣  𝑖   (see Fig. 2). Applying the two-

stage 𝛼𝛽0 transformation to (10) yields: 

[

𝑣𝑐  𝑣𝑐  𝑣𝑐0 
𝑣𝑐  𝑣𝑐  𝑣𝑐0 
𝑣𝑐 0 𝑣𝑐 0 𝑣𝑐00

] =
1

𝐶𝑣𝑐
∗ ∫ [

∆𝑃𝛼𝛼 ∆𝑃𝛽𝛼 ∆𝑃0𝛼
∆𝑃𝛼𝛽 ∆𝑃𝛽𝛽 ∆𝑃0𝛽
∆𝑃𝛼0 ∆𝑃𝛽0 ∆𝑃00

]
𝑡

0
𝑑𝑡 + [

0 0 0
0 0 0
0 0 3𝑛𝑣𝑐

∗
] (11) 

In steady state, when the incremental powers ∆𝑃  ≈ 0 and 

the capacitor voltages in each cell are equal to 𝑣𝑐
∗, the 

converter is operating in “balanced” conditions. Consequently, 

most of the voltages (i.e. 𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  , 

𝑣𝑐  , 𝑣𝑐  ) in (11) are equal to zero. The only exception is the 

component 𝑣𝑐  = 3𝑛𝑣𝐶
∗ . This component is related to the 

active power flowing into the converter 𝑃00, which can be 

calculated as the difference between the input and output 

power, i.e.: 

∆𝑃00 =
 

3
(∆𝑃𝑖𝑛 − ∆𝑃𝑜𝑢𝑡) =

 

3
(
3

 
𝑣𝑚𝑞∆𝑖𝑚𝑞 − ∆𝑃𝑜𝑢𝑡) ≈

 𝑣𝑐
∗ 𝑑∆𝑣𝑐  

𝑑𝑡
                    (12) 

where 𝑣𝑚𝑞  and 𝑖𝑚𝑞  are the q-axis generator-side voltage and 
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current respectively. As shown in (12), the power term ∆𝑃00
is regulated using incremental changes in the generator torque

current. The term ∆𝑃 is considered a disturbance and can be𝑜𝑢𝑡

neglected,  or  used  as a  feed-forward  term,  for  control 

purposes.  Therefore,  for  energy  balancing  purposes,  an 

incremental torque current ∆𝑖𝑚𝑞  can be calculated as: 

∆𝑖𝑚𝑞 = 2
𝐶𝑣𝑐

∗

𝑣𝑚𝑞

𝑑∆𝑣𝑐  

𝑑𝑡
               (13) 

In this work, the control system regulates the average 

voltage of all capacitors by using ∆𝑖𝑚𝑞 
∗ , i.e.:  

∆𝑖𝑚𝑞 
∗ = −𝐺𝑃𝐼(𝑠)∆𝑣𝑐  = 𝐺𝑃𝐼(𝑠) ( 3𝑛𝑣𝑐

∗ − 𝑣𝑐  )    (14) 

where 𝐺𝑃𝐼(𝑠) is the transfer function of a PI controller [see 

Fig. 4(a)].  

2) Control Systems for Balancing the Cap. Voltages 

The mean component of the eight voltages in (11) (i.e. 𝑣𝑐  , 

𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐  ) have to be regulated to 

zero in order to balance the converter. The voltage terms 𝑣c  , 

𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐   represent capacitor voltage imbalances inside 

a sub-converter (Intra-SC). The voltage components 𝑣𝑐  , 

𝑣𝑐  , 𝑣𝑐  , 𝑣𝑐   represent imbalances between SCs (Inter-SC). 

All these voltage terms could be regulated using either 

circulating currents or the common mode voltage 𝑣𝑁𝑛 (see 

[12], [13]). However, the injection of a common-mode voltage 

could lead to large capacitor-voltage oscillations if a third 

order harmonic common mode voltage is used, and the 

generator frequency is one third of the grid frequency (16.3 Hz 

for a 50 Hz grid) [12]. Therefore, in this work circulating 

currents alone have been used to regulate the unbalanced 

voltage components. 

The power components in (11) can be expressed as a 

function of the voltages and currents of the system referred to 

the two-stage --0 domain (see [12]). Neglecting the voltage 

drop in the inductance, using 𝑣𝑁𝑛 = 0 and denoting “∘” as the 

Hadamard (element by element) product, the powers in the 

𝑎𝑏𝑐-𝑟𝑠𝑡 domain are obtained from (1) as: 

[𝑃  ] = ([𝑣𝑚 ] − [𝑣𝑔 ]) ∘ [𝑖  ]            (15) 

Applying the two-stage transformation to (15) and after 

some manipulations/simplifications (see [12]), the power in 

the two-stage 0 domain is obtained. For instance, the power 

component 𝑃𝛼𝛼 can be expressed as: 

𝑃𝛼𝛼 =
 

3
(𝑣𝑚𝛼𝑖𝑔𝛼 − 𝑣𝑔𝛼𝑖𝑚𝛼) +

 

√6
(𝑣𝑚𝛼𝑖𝛼𝛼 − 𝑣𝑚𝛽𝑖𝛽𝛼) −

 

√6
(𝑣𝑔𝛼𝑖𝛼𝛼 − 𝑣𝑔𝛽𝑖𝛼𝛽)                (16) 

This component is required to obtain the incremental power 

∆𝑃𝛼𝛼, used to regulate 𝑣𝑐   in (11). At this point, some 

simplifications to (16) can be considered. If the rotational 

speed of the WECSs is restricted within a suitable range, then 

the term (𝑣𝑚𝛼𝑖𝑔𝛼 − 𝑣𝑔𝛼𝑖𝑚𝛼) possess components of 

frequencies 𝜔𝑔 ± 𝜔𝑚. If the dc-link capacitors are properly 

designed (see Section III.E) these frequencies do not produce 

large oscillations in the capacitor voltages.  

Therefore, in this work, the circulating currents are 

designed to generate a non-zero mean active power term in the 

power 𝑃𝛼𝛼 which can be used to regulate any possible dc-drift 

or close-to-dc components in this power term. The drift could 

be produced, for instance, by non linearities in the converter 

cells, offsets in the measured signals, etc. Notice that, due to 

the integral effect produced in the capacitors, even small dc 

components in the powers of (11) could produce significant 

voltage imbalances. 

Imposing a negative sequence of frequency 𝜔𝑚  (i.e.  𝑖𝛼 =

𝑖𝛼𝛼 − 𝑗𝑖𝛽α, with 𝑖𝛼𝛼 = 𝑖𝑐𝑐𝑐𝑜𝑠𝜃𝑚, 𝑖𝛽𝛼 = 𝑖𝑐𝑐𝑠𝑖𝑛𝜃𝑚) in the 

circulating currents interacting with 𝑃𝛼𝛼, (16) yields to: 

𝑃𝛼𝛼 =
𝑣𝑚𝑖𝑐𝑐

√6
(cos 𝜃𝑚 + 𝑠𝑖𝑛

 𝜃𝑚)
⏞                

𝐷𝐶 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
1

√6
(𝑣𝑔𝛼𝑖𝛼𝛼 − 𝑣𝑔𝛽𝑖𝛼𝛽)
⏞            

𝐴𝐶 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝜔𝑔±𝜔𝑚

 

+
 

3
(𝑣𝑚𝛼𝑖𝑔𝛼 − 𝑣𝑔𝛼𝑖𝑚𝛼)
⏞            

𝐴𝐶 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝜔𝑔±𝜔𝑚

→
𝑑∆𝑣𝑐

′
  

𝑑𝑡
=

∆𝑃  
′

𝐶𝑣𝑐
∗ ≈ 𝑘 𝑣𝑚𝑖𝑐𝑐   (17) 

where 𝑘 =
 

√6𝐶𝑣𝑐
∗ and 𝑣𝑐

′
𝛼𝛼

is a filtered version of 𝑣𝑐  . 

Filtering the AC components in (17) leads to the second 

expression, which is applied to control the component 𝑣𝑐
′
𝛼𝛼

.  

a. Intra-SC balancing current reference calculation:  

The same methodology (i.e. neglecting high-frequency 

components and considering 𝑣𝑁𝑛=0) is used to analyse the 

dynamic of the incremental voltages ∆𝑣𝑐
′
𝛼𝛼
, ∆𝑣𝐶  

′ , ∆𝑣𝐶  
′ and 

∆𝑣𝐶  
′ . This yields to: 

𝑑

𝑑𝑡

[
 
 
 
 
∆𝑣𝑐

′
𝛼𝛼

∆𝑣𝑐
′
𝛼𝛽

∆𝑣𝑐
′
𝛽𝛼

∆𝑣𝑐
′
𝛽𝛽]
 
 
 
 

= 𝑘1

{
 
 

 
 

[
 
 
 
 
𝑣𝑚𝛼 0 −𝑣𝑚𝛽 0

0 𝑣𝑚𝛼 0 −𝑣𝑚𝛽
−𝑣𝑚𝛽 0 −𝑣𝑚𝛼 0

0 −𝑣𝑚𝛽 0 −𝑣𝑚𝛼 ]
 
 
 
 

}
 
 

 
 

[
 
 
 
∆𝑖𝛼𝛼
∆𝑖𝛼𝛽
∆𝑖𝛽𝛼
∆𝑖𝛽𝛽 ]

 
 
 

     (18) 

Therefore, a negative-sequence circulating current 

component of frequency 𝑚 leads to a non-zero mean active 

power value, which is manipulated to drive the average 

component of the unbalanced voltages of (18) to zero. Notice 

that in (18) circulating currents of frequency 𝑔 could be also 

applied to the M3C to generate a non-zero mean active power. 

However, in this application it is assumed that the WECS has 

to be synchronised to the grid before being connected. 

Therefore, before synchronisation well-regulated grid voltages 

are not available in the cluster voltages and better results can 

be achieved by using the generator voltages and circulating 

currents of frequency 𝜔𝑚. As shown in Fig. 4(b), PI 

controllers regulate the average component of the Intra-SC 

terms to zero by imposing circulating current references of 

negative-sequence  𝜔𝑚.  

b. Inter-SC balancing current reference calculation  

A similar process is carried out to analyse the Inter-SC 

unbalanced voltages. The dynamics of the unbalanced 

incremental voltage components are described by: 

𝑑

𝑑𝑡

[
 
 
 
 
∆𝑣𝑐

′
𝛼0

∆𝑣𝑐
′
𝛽0

∆𝑣𝑐
′
0𝛼

∆𝑣𝑐
′
0𝛽]
 
 
 
 

=
1

√3𝐶𝑣𝑐
∗ [

−𝑣𝑔𝛼
0
𝑣𝑚𝛼
0

  −𝑣𝑔𝛽
0
0
𝑣𝑚𝛼

0
−𝑣𝑔𝛼
𝑣𝑚𝛽
0

0
−𝑣𝑔𝛽
0
𝑣𝑚𝛽

]  

[
 
 
 
∆𝑖𝛼𝛼
∆𝑖𝛼𝛽
∆𝑖𝛽𝛼
∆𝑖𝛽𝛽]

 
 
 

     (19) 

The circulating current references are controlled to regulate 

the Inter-SC unbalanced voltages to zero using PI controllers. 



 

 

 
Fig. 5: (a) FRT requirements. Voltage profile for faults in Germany, 
Denmark, UK and Spain. (b) Single cell capacitor voltage control.  

In this case, the current references are referred into positive 

sequence reference frames using the angles 𝜃𝑚 and 𝜃𝑔, as 

shown in Fig. 4(c).  

3) Circulating Current Control 

The composite circulating current references are obtained 

considering the superposition of the Inter-SC and Intra-SC 

circulating current references. The equation for the circulating 

current reference 𝑖𝛼𝛼
∗ , for example, is: 

∆𝑖𝛼𝛼
∗ = ∆𝑖𝛼𝛼1

∗ + ∆𝑖𝛼𝛼2
∗ + ∆𝑖𝛼𝛼3

∗            (20) 

Similar expressions can be used to obtain the current 

references ∆𝑖𝛽𝛼
∗ ,  ∆𝑖𝛼𝛽

∗  and ∆𝑖𝛽𝛽
∗ . In the experimental 

implementation, the voltage commands required to regulate 

the four circulating currents are obtained using proportional 

controllers: 

[
𝑣𝛼𝛼
∗ 𝑣𝛽𝛼

∗

𝑣𝛼𝛽
∗ 𝑣𝛽𝛽

∗ ] = −𝑘𝑐𝑐([
𝑖𝛼𝛼
∗ 𝑖𝛽𝛼

∗

𝑖𝛼𝛽
∗ 𝑖𝛽𝛽

∗ ] − [
𝑖𝛼𝛼 𝑖𝛽𝛼
𝑖𝛼𝛽 𝑖𝛽𝛽

])      (21) 

where 𝑘𝑐𝑐 is the proportional gain required to control the 

circulating currents with an appropriate dynamic response. 

C. Modelling and control of the Grid-Side: LVRT 
algorithm 

In the last years, stringent grid codes have been enforced for 

grid-connection of WECS, focusing on power quality, power 

controllability, and Low Voltage Ride Through (LVRT) 

capability [16]. As shown in Fig. 5(a), several national grid 

codes for LVRT demand that WECSs remain connected in the 

presence of voltage swell-sag, providing grid-voltage support. 

For the implementation of LVRT control systems, the 

measured currents and voltages must be separated into 

positive and negative sequence components to eliminate the 

power oscillations in the active –or reactive– power injected 

into the grid. As reported in [17], the power supplied to the 

grid and the grid voltages/currents are related by (22):  

[
 
 
 
 
𝑃𝑔0
𝑄𝑔0
𝑃𝑔𝑠2
𝑃𝑔𝑐2]

 
 
 
 

=

[
 
 
 
 
𝑣𝑔𝛼
𝑝

𝑣𝑔𝛽
𝑝

𝑣𝑔𝛽
𝑛

𝑣𝑔𝛼
𝑛

𝑣𝑔𝛽
𝑝

−𝑣𝑔𝛼
𝑝

−𝑣𝑔𝛼
𝑛

𝑣𝑔𝛽
𝑛

𝑣𝑔𝛼
𝑛

𝑣𝑔𝛽
𝑛

−𝑣𝑔𝛽
𝑝

𝑣𝑔𝛼
𝑝

𝑣𝑔𝛽
𝑛

−𝑣𝑔𝛼
𝑛

𝑣𝑔𝛼
𝑝

𝑣𝑔𝛽
𝑝
]
 
 
 
 

[
 
 
 
 
𝑖𝑔𝛼
𝑝

𝑖𝑔𝛽
𝑝

𝑖𝑔𝛼
𝑛

𝑖𝑔𝛽
𝑛
]
 
 
 
 

         (22) 

Where the superscripts 𝑝, and 𝑛 symbolises the positive and 

negative-sequence components, respectively. The terms “𝑃𝑔𝑐 ” 

and “𝑃𝑔𝑠 ” represent double frequency oscillations in active 

power that can be mitigated using the following references: 

[
 
 
 
 
𝑖𝑔𝛼
𝑝∗

𝑖𝑔𝛽
𝑝∗

𝑖𝑔𝛼
𝑛∗

𝑖𝑔𝛽
𝑛∗
]
 
 
 
 

=

[
 
 
 
 
𝑣𝑔𝛼
𝑝

𝑣𝑔𝛽
𝑝

𝑣𝑔𝛽
𝑛

𝑣𝑔𝛼
𝑛

𝑣𝑔𝛽
𝑝

−𝑣𝑔𝛼
𝑝

−𝑣𝑔𝛼
𝑛

𝑣𝑔𝛽
𝑛

𝑣𝑔𝛼
𝑛

𝑣𝑔𝛽
𝑛

−𝑣𝑔𝛽
𝑝

𝑣𝑔𝛼
𝑝

𝑣𝑔𝛽
𝑛

−𝑣𝑔𝛼
𝑛

𝑣𝑔𝛼
𝑝

𝑣𝑔𝛽
𝑝
]
 
 
 
 
−1

 

[
 
 
 
 
𝑃𝑔
∗

𝑄𝑔
∗

𝑃𝑔𝑠2
∗

𝑃𝑔𝑐2
∗
]
 
 
 
 

         (23) 

If the grid currents calculated from (23), considering       

𝑃𝑔𝑐2
∗ = 0, 𝑃𝑔𝑠2

∗ = 0, are imposed by the control system, the 

oscillatory active power consumed by the filter inductance is 

supplied by the M3C. These oscillations are calculated as [17]: 

∆𝑃𝑔𝑐2 = [2𝑅𝑔
′ (𝑖𝑔𝛼

𝑝
𝑖𝑔𝛼
𝑛 + 𝑖𝑔𝛽

𝑝
𝑖𝑔𝛽
𝑛 ) + 2𝜔𝑔𝐿𝑔

′ (𝑖𝑔𝛼
𝑝
𝑖𝑔𝛽
𝑛 − 𝑖𝑔𝛽

𝑝
𝑖𝑔𝛼
𝑛 )]    (24) 

∆𝑃𝑔𝑠2 = [2𝑅𝑔  (𝑖𝑔𝛼
𝑝
𝑖𝑔𝛽
𝑛 − 𝑖𝑔𝛽

𝑝
𝑖𝑔𝛼
𝑛 ) + 2𝜔𝑔𝐿𝑔

′ (−𝑖𝑔𝛼
𝑝
𝑖𝑔𝛼
𝑛 − 𝑖𝑔𝛽

𝑝
𝑖𝑔𝛽
𝑛 )] (25) 

Where 𝐿𝑔
′  and 𝑅𝑔

′  are the equivalent inductance and 

resistance of the grid. The equivalent grid-side inductance is 

𝐿´𝑔 = (1 3⁄ )𝐿𝑏 + 𝐿𝑔, where the term (1 3⁄ )𝐿𝑏  corresponds to 

the parallel connection of the three cluster inductors connected 

to each of the grid phases,  and the term 𝐿𝑔 represents any 

additional inductance connected between the M3C output and 

the grid. As discussed in the previous sections, avoiding 

voltage oscillations is important in modular multilevel 

converters where the capacitors are floating. Therefore, to 

avoid increasing the voltage ripple in the converter, the power 

oscillations produced in the inductances, i.e. the values of 

𝑃𝑔𝑐 
∗  and 𝑃𝑔𝑠 

∗  [see  (24)-(25)], have to be supplied by the 

grid. Then, the values of ∆𝑃gc  and ∆𝑃𝑔𝑠  should be 

considered in the calculation of the reference current in (23), 

i.e. 𝑃𝑔𝑐2
∗ = −∆𝑃𝑔𝑐 , 𝑃𝑔𝑠2

∗ = −∆𝑃𝑔𝑠 . 

In this section, an enhanced LVRT algorithm, for M3C 

applications, is proposed. The control diagram is shown in        

Fig. 4(d) and Fig. 4(e). The double frequency active power 

components (∆𝑃𝑔𝑐  and ∆𝑃𝑔𝑠 ) calculated using (24)-(25) are 

referred to a synchronous frame rotating at twice the grid 

frequency. Then, PI controllers are used to regulate ∆𝑃𝑔𝑠2  and 

∆𝑃𝑔𝑐2 in 𝑑𝑞 coordinates, obtaining the powers 𝑃𝑔𝑠 
∗  and 𝑃𝑔𝑐 

∗  

used in (23) [see Fig.4(e)]. To implement (23) the positive and 

negative components of the currents are estimated using the 

Delay Signal Cancellation (DSC) method proposed in [18]. 

Finally, using (23) and the control system shown in        Fig. 5, 

the current references 𝑖𝑔𝛼
𝑝∗

, 𝑖𝑔𝛽
𝑝∗

, 𝑖𝑔𝛼
𝑛∗  and 𝑖𝑔𝛽

𝑛∗  are obtained and 

regulated using Resonant Controllers. The complete control 

system for the grid converter is presented in Fig. 4(d). 

D. Single-Cell Control  

The voltage references obtained in the control loops 

presented above (𝑣𝛼𝛼
∗ , 𝑣𝛽𝛼

∗ , 𝑣𝛼𝛽
∗ , 𝑣𝛽𝛽

∗ , 𝑣𝛼0
∗ , 𝑣𝛽0

∗ , 𝑣0𝛼
∗  and 𝑣0𝛽

∗ ) 

are transformed to the natural reference frame using the 

inverse two-stage 𝛼𝛽0 transform. Then, references 𝑣𝛼𝑟
∗ , 𝑣𝑏𝑟

∗ , 

Time (s)

(a)

(b)

G
ri

d
 V

o
lt

ag
e 

(%
)



 

 

 

 

 

  

I

𝑣∗ 𝑣∗ 𝑣∗ 𝑣∗ 𝑣∗ 𝑣∗ 𝑣∗ are  obtained  for  each  cluster𝑐𝑟 , 𝑎𝑠, 𝑏𝑠, 𝑐𝑠, 𝑎𝑡 , 𝑏𝑡, 𝑐𝑡

[see (1)].

  An  additional  loop  (based  on  a  proportional  controller)  is 
utilised to  regulate  the  dc-link  voltage  of  each  cell  within  a 
cluster [19]. The capacitor voltage of each cell 𝑖 [𝑖 ∈ (1, 𝑛)] is

compared to the desired value 𝑣𝑐
∗. The resulting error is 

multiplied by the sign of the cluster current (and by the gain 

kn) producing an incremental voltage ∆𝑉 which is added to the 

cell reference voltage 𝑣  
∗ /𝑛. The modulation index in each 

cell is then calculated considering its dc-link voltage value 

[see Fig. 5(b)]. Finally, phase-shifted PWM is used to 

synthesise the voltage references. This modulation is simple to 

implement in a commercial FPGA-based control platform and 

produces power losses evenly distributed among the cells of 

the same cluster. Moreover, phase-shifted unipolar modulation 

generates an output switching frequency of 2n times the 

carrier frequency [19]. 

E. Dimensioning of the M3C  

To select the correct value of cell capacitance to be utilised 

in the implementation of the M3C clusters is important [20], 

[21]. This capacitance has to be designed to buffer the peak-

to-peak energy variations generated by the variable speed 

operation, maintaining the voltage oscillations inside an 

appropriate range.   

In natural abc, rst frames, the instantaneous power in each 

cluster is obtained from the Hadamard product of (15) as: 

[𝑃  ] = ([𝑣𝑚 ] − [𝑣𝑔 ]) ∘ (1 3⁄ )([𝑖𝑚 ] + [𝑖𝑔 ])   (26) 

Where  ∈ {𝑎, 𝑏, 𝑐} and   ∈ {𝑟, 𝑠, 𝑡}. It is assumed that a 

third of the machine/grid phase currents is circulating in each 

cluster. Expanding (26), power terms with four oscillating 

frequencies are obtained: a term of frequency 2𝜔𝑚 ; a term of 

frequency 2𝜔𝑔; and two power terms of frequencies 𝜔𝑔 ± 𝜔𝑚 

(produced by the input/output cross products, i.e. 𝑣𝑚 𝑖𝑔 −

𝑣𝑔 𝑖𝑚 ). Using (9) the variation in the energy stored in the 

capacitors could be obtained from these four power terms as: 

∆𝑊  =  𝑣𝐶
∗∆𝑣𝐶  = ∫ ([𝑃   ]𝜔= 𝜔𝑚

+ [𝑃   ]𝜔= 𝜔𝑔
+

𝑡

0

[𝑃  3]𝜔=𝜔𝑔−𝜔𝑚
+ [𝑃  3]𝜔=𝜔𝑔+𝜔𝑚

)dt        (27) 

As discussed in several publications, the capacitor voltage 

oscillations in the M3C are more difficult to control when the 

input/output frequencies have similar values, i.e. 𝜔𝑔 − 𝜔𝑚 is 

relatively small [22]. From (27) the cluster capacitance could 

be calculated as: 

 = 𝑘𝑐
∆𝑊𝑥𝑦

∆𝑣𝑐𝑥𝑦𝑣𝑐
∗                    (28) 

where ∆𝑊   is the energy ripple, ∆𝑣𝐶𝑥𝑦  is the maximum 

allowable capacitor voltage ripple and 𝑘𝑐 represents an 

additional safety factor [21]. In this application, kc is selected 

to slightly oversize the capacitance considering that during 

LVRT the energy fluctuation in the capacitors could be 

increased.  

In this work, it is assumed that 𝑓𝑔 is 50Hz and the generator 

is operating between 10-40Hz. Furthermore, the capacitor 

  

Fig. 6: Simulation results during grid faults. (a) Grid Voltages. (b) Grid 
currents. (c) Generator-side currents. (d) Cluster capacitor voltages. 

voltage could be regulated between 100V-155V with a ∆𝑣𝐶𝑥𝑦  

of about 15V peak (10% of 155V). 

The value of the cluster inductance is relatively simple to 

calculate by imposing a limit in the ripple of the current 

(usually set to 10%-15% of the nominal value). This value is 

calculated as [20][23]:  

𝐿𝑏 =
0.5(

𝑣𝑐
∗

𝑛
+∆𝑣𝑐𝑥𝑦)

∆𝑖𝑥𝑦𝑓𝑠𝑤
                 (29) 

where ∆𝑖   is the maximum allowable cluster current ripple 

and 𝑓𝑠𝑤 is the output switching frequency.  

IV. SIMULATION RESULTS  

A simulation model considering a M3C composed of five 

cells per cluster has been implemented using the software 

PLECS. The design of the high-power converter is depicted 

in Table II. The parameters of the experimental system are 

also shown in that Table. It  is assumed that a PMSG is 

connected to the converter input and that medium voltage 

IGBT devices are used in the M3C implementation (see [24], 

[25]), therefore each capacitor voltage is regulated to 2.4kV. 

For the simulation work the cluster inductances are designed 

to produce a maximum cluster current ripple of 10%. The 

performance of the proposed control strategy is tested for a 

Dip Type C (see [16]), with two of the phases reducing their 

voltages to a 50% of the nominal value [see Fig. 6(a)]. 



I  

 
TABLE II: SIMULATION & EXPERIMENTAL SETUP PARAMETERS 

Parameters Simulation Experimental setup 

Nominal Power 10 MVA 6kVA 

Cells per branch 5 3 

Input Voltage/Freq. 5.4kV/10-40Hz 200V/10-40Hz 

Branch Inductor 1.3 mH 2.5 mH 

Single cell C. 8 mF 4.7 mF 

Capacitor Voltage 2.4 kV 100-155V 

Output Voltage/Freq. 5.4kV/50 Hz 185V/50 Hz 

Switching frequency 0.7kHz 2.5kHz 

When the fault is applied, the active power supplied to the grid 

is reduced to fulfill the LVRT requirements. As stated in (23), 

the LVRT control algorithm regulates unbalanced grid- 

currents to mitigate active power oscillations and to provide 

reactive power injection, [see Fig. 6(b)].  As a consequence of 

the fault, the power produced by the generator is reduced as 

well as the active power fed to the grid [see Fig. 6(c)]. Due to 

the temporary mismatch between the mechanical input power 

and the electrical output power, the generator speed could be 

increased. However, for Multi-MW WECS, the high inertia of 

the generator; the relatively short duration of the fault (in the 

milliseconds range); the use of pitch control in the WECS; and 

the feasibility of using a dc- voltage limiter in each cell reduce 

the possibility of having large voltage fluctuations in the 

capacitor voltages during LVRT conditions [see Fig. 6(d)]. 

Therefore, the control systems for generator-side and grid-side  

are decoupled during grid-voltage sags, and the dynamic at the 

machine-side of the M3C remain relatively unaffected [14].  

V. EXPERIMENTAL RESULTS  

Experimental results for the proposed control methodology 

have been obtained using a 27-power cell laboratory prototype 

composed of nine clusters, each comprising the series 

connection of 3 full-H-bridge modules and one inductor. A 

photograph of the system is presented in Fig. 7(a) and a 

diagram is illustrated in Fig. 7(b). Parameters of the 

experimental system are given in Table II. Because of 

hardware availability reasons, 2.5mH inductors are used in 

each cluster, bounding the ripple to about 13% of the 

maximum cluster current. The system is controlled using a 

Digital Signal Processor Texas Instrument TMS320C6713 

board and 3 Actel ProAsic3 FPGA boards, equipped with 50 

14-bit analogue-digital (A/D) channels. A unipolar phase-

shifted PWM algorithm generates the 108 switching signals 

timed via an FPGA. Optical fibre connections transmit the 

switching signals to the gate drivers of the MOSFET switches. 

Two programmable AMETEK power supplies emulate the 

electrical grid and the PMSG. The wind turbine dynamics are 

programmed in the generator-side power supply (model 

CSW5550) to emulate a generator operating at variable speed, 

variable voltage. The grid-side of the M3C is connected to 

another power source (Model MX45), which can generate 

programmable grid sag-swell conditions. The classification of 

voltage sags presented in [26] (e.g. dip type A, B, etc.) is used 

in this work. The H-bridges used in the M3C, have been 

implemented using MOSFET devices of 60A, 300V each one. 

However, considering the nominal current of the generator- 

side CSW5550 power supply, the M3C maximum input  

 

Fig. 7: Implemented System (a) Photograph. (b) Diagram. 

current has been limited to about 18A peak. Finally, the open 

loop pre-charge method presented in [27] is used to pre-charge 

the 27 cell capacitors. 

A. Fixed Speed operation 

Steady state operation of the experimental prototype for fixed 

generator frequency is presented in Fig 8. Oscilloscope 

waveforms of the capacitor voltage 𝑣𝑐𝑎𝑟 , the input voltage 

𝑣𝑚𝑎𝑏 , the cluster voltage 𝑣𝑎𝑟  and the grid voltage 𝑣𝑔𝑟𝑡 are 

presented from top to bottom in Fig. 8(a). The generator-side 

frequency is set to 40 Hz, whereas, the grid frequency is       

50 Hz. The cluster voltage 𝑣𝑎𝑟  modulates both (generator and 

grid) voltages and the different levels produced by the phase 

shifted modulation are observed. Signals measured using the 

A/D converters available in the control platform are also 

presented in Fig. 8(b)-(g). The input and output currents are 

controlled to 18 A (peak value), and are not much affected by 

the circulating currents produced by the balancing algorithms. 

As shown in Fig. 8(b) and Fig. 8(c), the input and output 

currents present low harmonic distortion (𝑇𝐻𝐷 ≈ 2%) and are 

balanced. The Inter-SC voltage ripple components (𝑣𝑐0𝛼 , 𝑣𝑐0𝛽, 

𝑣𝑐𝛼0, 𝑣𝑐𝛽0) are presented in Fig. 8(d), whereas the Intra-SCs 

ripple components (𝑣𝑐𝛼𝛼 , 𝑣𝑐𝛼𝛽 , 𝑣𝑐𝛼𝛽 , 𝑣𝑐𝛽𝛽) are shown in Fig. 

8(e). The eight unbalanced voltage components are 

successfully regulated inside a ±5V band. For this test, the 

average value of all the capacitor voltages is regulated to 

100V [see Fig. 8(f)]. Fig. 8(g) illustrates the unity power 

factor operation of the system, in this case, injecting 4kW into 

the grid. 

B. Variable Speed Operation 

The operation of a PMSG based variable-speed wind turbine is 

simulated using a wind speed profile. The frequency and 

voltage profiles obtained in this simulation are discretised and 

programmed in the input-side power supply (Model CSW- 

M3C

G
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Fig. 8: Experimental results for fixed speed operation. (a) Oscilloscope 
waveforms operating at 150V. (b)-(g). Exp. results for 𝑣𝐶

∗ = 100V. (b) 
Grid currents. (c) Generator-side currents. (d) Inter-SC components. 
(e) Intra-SC Components. (f) 27-Capacitor voltages. (g) Active and 
Reactive Power supplied to the grid. 

5550), considering a sampling time of 400 µs. Therefore, the 

power source generates voltages of variable frequency and 

magnitudes while emulating the behaviour of a PMSG based 

wind turbine connected to the M3C input. As shown in Fig. 

9(a), the wind speed profile generates a variable rotational 

speed at the converter input, whereas the grid frequency 

remains constant. The 27 capacitors have well-regulated 

voltages during the test [see Fig. 9(b)], even when relatively 

large variations in the frequency and voltage magnitudes are 

applied to the M3C-input. The generator-side control system 

tracks the maximum power point for each wind velocity, 

achieving MPPT operation through the regulation of the 

quadrature current [see (6) and Fig. 9(c)]. Lastly, Fig. 9(d) 

presents the performance of the grid-side control, which is 

regulated to operate with unity power factor. 

C. Performance of the Control System Considering a 
Type A Symmetrical Voltage Dip. 

In this test, the MX45 power source is programmed to 

produce a symmetrical Dip type A, with the phase voltages  

 

Fig. 9: Experimental results for variable speed operation. (a) Grid and 
generator frequencies. (b) 27-Cells capacitor voltages. (c) Tracking of 
quadrature input current. (d) Active and Reactive Power supplied to the 
grid. 

being decreased to a 30% of the nominal value for 0.2s. 

During the next 0.6s, a profile for the recovery of the grid 

voltage is applied. Waveforms from the digital scope are 

shown in Fig. 10(a). The fault is applied three times [an 

amplified view of the dip is depicted in Fig. 10(e)]. The 

signals measured by the ADCs of the control platform are 

presented in Fig. 10(b)-(f). When the fault is applied, the 

active power reference current is regulated to 0A, and the 

reactive power current reference is set to 50% of the nominal 

value. Therefore, the grid current is reduced [see Fig. 10(b)]. 

The power component of the grid-side current is fed-forward 

to the generator-side controller. As a consequence of this 

signal, the generator is no longer controlled using the MPPT 

algorithm of (6) and the machine side current reference is set 

to 0A [see Fig. 10(c)]. The performance of the balancing 

control system to regulate the overall average voltage 

(𝑣𝑐*=150V) is shown in Fig. 10(d). Good average voltage 

regulation is observed, and the magnitude of the voltage ripple 

is less than 4% of the nominal value. As shown in Fig. 10(f), 

for t 1.9s, the converter supplies only reactive power to the 

grid. 

D. Performance of the Control System Considering a 
Type C Asymmetrical Voltage Dip. 

The proposed control strategy has been tested considering a 

Type C Voltage Dip. In this case, two grid phases decrease 

their voltages to 50% of the nominal value [see Fig. 11(a)]. 

The output currents are controlled using (24) with 𝑃𝑔
∗ =

𝑃𝑔𝑐 
∗ = 𝑃𝑔𝑠 

∗ = 0. As discussed in the previous section, the 

control system regulates the positive and negative currents to 

mitigate the double-frequency power pulsations. Therefore, 

the unbalanced grid currents presented in Fig. 11(b) are 

generated. The 27-cell capacitor voltages are displayed in         

Fig. 11(c). The voltages are well-regulated using the 

circulating current discussed in the previous section. Again,  
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Fig. 10: Experimental Results. (a) Oscilloscope Waveforms. (b) Grid 
Currents. (c) Generator-side Currents (d) 27-Capacitor Voltages. (e) 
Amplified view of grid voltages (f) Active and reactive power injected 
into the grid. 

the magnitude of the voltage ripple is less than 7% of the 

reference voltage (150V). As shown in Fig. 11(d), when the 

grid currents are regulated using (24), the active power 

supplied to the grid is regulated to zero [see Fig. 11(d)] and 

the converter supplies only reactive power to the grid. 

However, in this case, the power oscillations required by the 

filters are provided by the converter, and this could increase 

the voltage oscillations in the M3C-capacitors during LVRT. 

Alternatively, the control system depicted in Fig. 5 can be 

applied to reduce the power oscillation in the converter. The 

experimental results are shown in Fig. 11(e). In this case, the 

active power oscillations in the converter are successfully 

reduced by a factor of approximately three compared to the 

oscillations obtained with the conventional LVRT. 

VI.  CONCLUSIONS 

This paper has described the application of a modular 

multilevel matrix converter for variable speed WECS. Due to 

the topology characteristics, such as modularity and 

scalability, this converter is well suited for high power appli- 

 

Fig. 11: Experimental Results. (a) Grid Voltages. (b) Grid Currents. (c) 
27-H- Bridge Cells Capacitor Voltages. (d) Active and reactive power 
injected into the grid using the conventional LVRT (e) Active power 
oscillations at M3C terminals. Blue line for the conventional LVRT 
algorithm, and green line for the proposed LVRT algorithm. 

cations. Extensive discussion on the modelling and control of 

the M3C has been presented, introducing a decoupled control 

strategy based on a two-stage αβ0 transformation. The 

proposed control strategy has been validated using a 27-Cell 

M3C prototype of 4kW. The energy balancing control, the 

LVRT strategy and then control of the circulating current have 

all presented excellent dynamic performance, even when very 

demanding symmetrical and asymmetrical faults have been 

experimentally applied to the prototype.  

REFERENCES 

[1] Global Wind Energy Council, “Global Wind Statistics 2015.” 
[2] The European Wind Energy Association, “UpWind: Design limits and 

solutions for very large wind turbines,” 2016. 

[3] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-
power wind energy conversion systems: State-of-the-art and emerging 

technologies,” Proc. IEEE, vol. 103, no. 5, pp. 740–788, 2015. 

[4] M. Liserre, R. Cardenas, M. Molinas, J. Rodriguez, R. Cárdenas, M. 
Molinas, J. Rodríguez, R. Cardenas, M. Molinas, and J. Rodriguez, 

“Overview of Multi-MW Wind Turbines and Wind Parks,” IEEE 

Trans. Ind. Electron., vol. 58, no. 4, pp. 1081–1095, Apr. 2011. 
[5] O. S. Senturk and A. M. Hava, “A simple sag generator using SSRs,” 

IEEE Trans. Ind. Appl., vol. 48, no. 1, pp. 172–180, Sep. 2012. 

[6] H. Abu-Rub, J. Holtz, and J. Rodriguez, “Medium-Voltage Multilevel 
Converters—State of the Art, Challenges, and Requirements in 

Industrial Applications,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 

2581–2596, Aug. 2010. 
[7] A. J. Korn, M. Winkelnkemper, P. Steimer, and J. W. Kolar, “Direct 

modular multi-level converter for gearless low-speed drives,” in Power 

Electronics and Applications (EPE 2011), Proceedings of the 2011-
14th European Conference on, 2011, no. direct MMC, pp. 1–7. 

[8] J. Kucka, D. Karwatzki, and A. Mertens, “Optimised operating range of 

modular multilevel converters for AC/AC conversion with failed 
modules,” in 2015 17th European Conference on Power Electronics 

and Applications, EPE-ECCE Europe 2015, 2015, pp. 1–10. 

[9] T. M. Iversen, S. S. Gjerde, and T. Undeland, “Multilevel converters 
for a 10 MW, 100 kV transformer-less offshore wind generator 

-10

0

10

(b)

G
ri

d
 

C
u

rr
en

ts
 (

A
)

-10

0

10

(c)

In
p
u
t

C
u

rr
en

ts
 (

A
)

145

150

155

(d)

C
a
p

a
c
it

o
r

V
o

lt
a
g

e
s 

(V
)

-150

0

150

(e)

G
ri

d
 

V
o

lt
a
g

e
s 

(V
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

Time (s)
(f)

G
ri

d
 P

o
w

e
r

(k
W

-k
W

r)

0.2 s

0.2 s

-20

0

20

(b)

G
ri

d
C

u
rr

en
ts

 (
A

)

-200

0

200

(a)

G
ri

d
V

o
lt

a
g
e
s 

(V
)

140

150

160

(c)

C
a
p
a
c
it

o
r

V
o
lt

a
g
e
s 

(V
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

Time (s)
(d)

G
ri

d
 P

o
w

e
r

(k
W

-k
V

A
r)

 

 

0.1 0.15 0.2 0.25 0.3

-0.2

0

0.2

(e)
M

3
C

 A
c
t.

 P
o
w

e
r

O
sc

il
la

t.
 (

k
W

)

 

 

P
M3C

 k
LVRT

=1 P
M3C

 k
LVRT

=0

P
g

Q
g



 

 
system,” in 2013 15th European Conference on Power Electronics and 

Applications, EPE 2013, 2013, pp. 1–10. 
[10] R. Erickson, S. Angkititrakul, and K. Almazeedi, “A New Family of 

Multilevel Matrix Converters for Wind Power Applications: Final 

Report,” 2006. 
[11] R. W. Erickson and O. A. Al-Naseem, “A new family of matrix 

converters,” in IECON’01. 27th Annual Conference of the IEEE 

Industrial Electronics Society (Cat. No.37243), 2001, vol. 2, pp. 1515–
1520. 

[12] W. Kawamura, M. Hagiwara, and H. Akagi, “Control and Experiment 

of a Modular Multilevel Cascade Converter Based on Triple-Star 
Bridge Cells,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3536–3548, 

Sep. 2014. 
[13] F. Kammerer, J. Kolb, and M. Braun, “Fully decoupled current control 

and energy balancing of the Modular Multilevel Matrix Converter,” in 

15th International Power Electronics and Motion Control Conference 
and Exposition, EPE-PEMC 2012 ECCE Europe, 2012, p. LS2a.3-1-

LS2a.3-8. 

[14] M. Chinchilla, S. Arnaltes, and J. C. Burgos, “Control of permanent-
magnet generators applied to variable-speed wind-energy systems 

connected to the grid,” IEEE Trans. Energy Convers., vol. 21, no. 1, 

pp. 130–135, Mar. 2006. 
[15] M. Espinoza, R. Cardenas, M. Diaz, and J. Clare, “An Enhanced dq-

Based Vector Control System for Modular Multilevel Converters 

Feeding Variable Speed Drives,” IEEE Trans. Ind. Electron., no. 
November, pp. 1–1, 2016. 

[16] F. Iov, A. D. Hansen, P. Sørensen, and N. A. Cutululis, “Mapping of 

grid faults and grid codes,” Wind Energy, vol. 1617, no. July, pp. 1–41, 
2007. 

[17] M. Diaz, R. Cardenas, P. Wheeler, J. Clare, and F. Rojas, “Resonant 

Control System for Low-Voltage Ride-Through in Wind Energy 
Conversion Systems,” IET Power Electron., vol. 9, no. 6, pp. 1–16, 

May 2016. 

[18] R. Cardenas, M. Diaz, F. Rojas, and J. Clare, “Fast Convergence 
Delayed Signal Cancellation Method for Sequence Component 

Separation,” IEEE Trans. Power Deliv., vol. 30, no. 4, pp. 2055–2057, 

Aug. 2015. 
[19] H. Akagi, S. Inoue, and T. Yoshii, “Control and Performance of a 

Transformerless Cascade PWM STATCOM With Star Configuration,” 

IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 1041–1049, 2007. 
[20] J. Kolb, F. Kammerer, and M. Braun, “Dimensioning and design of a 

modular multilevel converter for drive applications,” in 15th 

International Power Electronics and Motion Control Conference and 
Exposition, EPE-PEMC 2012 ECCE Europe, 2012, p. LS1a-1.1-1-

LS1a-1.1-8. 

[21] F. Kammerer, J. Kolb, and M. Braun, “Optimization of the passive 
components of the Modular Multilevel Matrix Converter for Drive 

Applications,” in PCIM Europe: Proceedings of the International 

Exhibition and Conference for Power Electronics, Intelligent Motion, 
Renewable Energy and Energy Management, Nuremberg, May 8 - 10, 

2012, 2012. 

[22] Y. Okazaki, W. Kawamura, M. Hagiwara, H. Akagi, T. Ishida, M. 
Tsukakoshi, and R. Nakamura, “Which is more suitable for MMCC-

based medium-voltage motor drives, a DSCC inverter or a TSBC 

converter?,” in 2015 9th International Conference on Power 
Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 1053–1060. 

[23] B. Li, S. Zhou, D. Xu, R. Yang, D. Xu, C. Buccella, and C. Cecati, “An 

Improved Circulating Current Injection Method for Modular Multilevel 
Converters in Variable-Speed Drives,” IEEE Trans. Ind. Electron., vol. 

63, no. 11, pp. 7215–7225, Nov. 2016. 

[24] J. G. Bauer, M. Wissen, T. Gutt, J. Biermann, C. Schäffer, G. Schmidt, 
and F. Pfirsch, “New 4.5 kV IGBT and diode chip set for HVDC 

Transmission Applications,” in PCIM Europe 2014. 
[25] A. Chakraborty, “Advancements in power electronics and drives in 

interface with growing renewable energy resources,” Renew. Sustain. 

Energy Rev., vol. 15, no. 4, pp. 1816–1827, May 2011. 
[26] M. H. J. Bollen, “Characterisation of voltage sags experienced by three-

phase adjustable-speed drives,” IEEE Trans. Power Deliv., vol. 12, no. 

4, pp. 1666–1671, 1997. 
[27] J. Qin, S. Debnath, and M. Saeedifard, “Precharging strategy for soft 

startup process of modular multilevel converters based on various SM 

circuits,” in 2016 IEEE Applied Power Electronics Conference and 
Exposition (APEC), 2016, pp. 1528–1533. 

 

Matias Diaz (S’15) was born in Santiago, Chile. 
He received the B.Sc. and M.Sc. degrees in 
electrical engineering from the University of 
Santiago, Santiago, Chile, in 2011. He is 
currently working toward a dual Ph.D. degree at 
the University of Nottingham, Nottingham, U.K., 
and at the University of Chile, Santiago, Chile. 
From 2013 to 2015, he was the Subdirector of 
the School of Engineering, Duoc-UC, Santiago. 
He is currently a Lecturer with the University of 

Santiago. His main research interests include the control of wind 
energy conversion systems and multilevel converters.  
 
 

 
Roberto Cardenas (S’95–M’97–SM’07) was 
born in Punta Arenas, Chile. He received the 
B.Sc. degree in electrical engineering from the 
University of Magallanes, Punta Arenas, in 
1988, and the M.Sc. degree in electronic 
engineering and the Ph.D. degree in electrical 
and electronic engineering from the University 
of Nottingham, Nottingham, U.K., in 1992 and 
1996, respectively. From 1989 to 1991 and 
1996 to 2008, he was a Lecturer with the 

University of Magallanes. From 1991 to 1996, he was with the Power 
Electronics Machines and Control Group, University of Nottingham. 
From 2009 to 2011, he was with the Electrical Engineering 
Department, University of Santiago. He is currently a Professor of 
power electronics and drives in the Electrical Engineering Department, 
University of Chile, Santiago, Chile. His main research interests 
include control of electrical machines and variable-speed drives.  
 

 
Mauricio Espinoza (S’15) was born in Alajuela, 
Costa Rica. He received the B.Sc. and Lic. 
degrees in electrical engineering from the 
University of Costa Rica in 2010 and 2012 
respectively. From 2010-2014 he was a lecturer 
at the University of Costa Rica. Actually, he is 
pursuing a Ph.D. degree at the University of 
Chile, Chile. During his career, he has worked 
in research projects related to Modular 
Multilevel Converters, machine modelling and 

control systems for power electronics. 
 
 

 
Andrés Mora (S'14) was born in Santiago, 
Chile, in 1984. He received the Eng. and M.Sc 
degrees in electrical engineering from the 
Universidad Técnica Federico Santa María 
(UTFSM), Valparaíso, Chile, in 2010. He is 
currently working toward the Ph.D degree in 
electrical engineering at the Universidad de 
Chile, Santiago, Chile. Since 2011, he has been 
an Assistant Professor with Department of 
Electrical Engineering, UTFSM. His research 

interests include power converters and control of electrical machines.  
 

 
Felix Rojas was born in Santiago, Chile. He 
received the B.Eng. and M.Sc. degrees in 
electrical engineering in 2009, from the 
Universidad de Santiago de Chile, Chile. In 
2015, he obtained his doctoral degree from the 
Technical University of Munich, Germany. 
During his career, he has worked in research 
projects related to active filters, Matrix 
Converters and Multilevel converters. Currently 
Dr. Rojas work as Assistant Professor at the 

University of Santiago, Chile. His main research interest are Modular 
Multilevel Converters for Distribution Networks and electrical drives. 



I  

 
Jon C. Clare (M’90–SM’04) was born in Bristol, 
U.K., in 1957. He received the B.Sc. and Ph.D. 
degrees in electrical engineering from the 
University of Bristol, Bristol. From 1984 to 1990, 
he was a Research Assistant and Lecturer with 
the University of Bristol, where he was involved 
in teaching and research on power electronic 
systems. Since 1990, he has been with the 
Power Electronics, Machines and Control 
Group, University of Nottingham, Nottingham, 

U.K., where he is currently a Professor of power electronics. His 
research interests include power-electronic converters and modulation 
strategies, variable-speed-drive systems, and electromagnetic 
compatibility. 
 

Prof Pat Wheeler received his BEng [Hons] 
degree in 1990 from the University of Bristol, 
UK.  He received his PhD degree in Electrical 
Engineering for his work on Matrix Converters 
from the University of Bristol, UK in 1994.  In 
1993 he moved to the University of Nottingham 
and worked as a research assistant in the 
Department of Electrical and Electronic 
Engineering. In 1996 he became a Lecturer in 
the Power Electronics, Machines and Control 

Group at the University of Nottingham, UK.  Since January 2008 he 
has been a Full Professor in the same research group.  He is currently 
Head of the Department of Electrical and Electronic Engineering at the 
University of Nottingham.  He is an IEEE PELs ‘Member at Large’ and 
an IEEE PELs Distinguished Lecturer.  He has published 400 
academic publications in leading international conferences and 
journals.  

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/318116961



