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HIGHLIGHTS

• Behavioral testing is indispensable for deepening our understanding of brain plasticity and 

in developing restorative therapies for stroke.

• Here we review the most common behavioral tests used to assess sensorimotor impairment 

and recovery, cognition and mood in stroke animals.

• Guidance is provided to help select the most appropriate behavioral tests as a way to 

further improve reliability and translational success of experimental studies.

ABSTRACT

Functional recovery after an experimental stroke can be assessed by multiple behavioral tests, 

however, there is no consensus about which test to use in long-term stroke recovery studies or 

whether the tests are affected by stroke surgery, post-operative care or behavioral 

compensation due to repeated testing. This review describes the tests most commonly used to 

assess motor and sensorimotor function, cognition and mood in stroke animals. Although it is 

difficult to predict the direction of future research, it may be possible to prevent false-positive 

results by selecting an appropriate task or a battery of tasks. It is also expected that the 

upcoming stroke recovery recommendations and the improved dialogue between academy, 

industry and healthcare professionals will further promote translational success.    

Keywords: Stroke, Animal models, Behavioral tests, Sensorimotor function, Cognition, 

Depression, Anxiety, Restoration
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1. Introduction

Stroke is a leading cause of adult disability. Depending on the location and the extent of 

the lesion, 80 % of patients suffer from motor impairments that typically affect the control of 

movement of the face, arm and leg on one side of the body [1]. Altered gait patterns, balance 

impairments, reduced muscle tone or power as well as reduced joint stability and mobility are 

commonly observed in stroke survivors. In addition, approximately every second stroke survivor 

suffers from sensory deficits [2,3]. Despite considerable heterogeneity, most patients exhibit 

some degree of spontaneous recovery in the weeks to months after a stroke [4]. For example, 

hemiplegic patients begin to execute voluntary movements within 6 to 33 days [5]. Within six 

months after the stroke, upper extremity dexterity is regained in 41% of people with moderate 

to severe stroke and in 78% with milder stroke [6]. 

It is becoming increasingly clear that cognitive impairment is also a significant concern 

for stroke survivors. In fact, there are reports that as many as 25-35% of stroke patients will 

develop dementia [7,8], and conversely many patients diagnosed with clinical dementia have 

been found to have a history of cerebrovascular pathology [9]. In addition, cerebrovascular 

lesions lead to numerous mood and emotional disturbances including depression and anxiety 

[10–12]. Post-stroke depression (PSD) is the most frequent and debilitating mood disorder 

encountered in stroke survivors which not only affects the patient’s quality of life but also 

drastically increases hospitalization time, hampers recovery and rehabilitation efforts and 

increases mortality. The reported PSD prevalence rates widely vary, the mean prevalence rate 

for both major and minor depression is approximately 24% after a stroke in outpatient settings 

[13]. Anxiety occurs in roughly 30% of patients and it displays high co-morbidity with PSD [14]. 

Emerging knowledge about brain plasticity and endogenous repair mechanisms gives 

rise to hope that it may be possible to develop restorative therapies for stroke patients [15–18]. 

Experimental models are indispensable in this process [19,20] and although the same models 

can be used in acute stroke research and long-term recovery studies, the major difference in 

long term studies is behavioral testing to assess functional outcome in recovering stroke 
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animals. The aim of this review is to summarize the current repertoire of stroke outcome 

measures in experimental animals including sensorimotor functions, cognition and mood with 

guidance for future stroke recovery research and development of restorative therapies. Many 

of the tests can be used in either rats or mice and in this review these species will not be 

separated unless a major species difference exists. Recommendations for behavioral testing in 

large animals, excluding non-human primates, are also discussed.

2. Experimental stroke models and behavior

A number of stroke models have been described for rodents [21]. Rodents are often the 

first choice due to the fact that rats and mice possess a vasculature similar to humans, a rich 

behavioral repertoire along with a number of well described behavioral outcome measures that 

assess similar limb movements as used by humans. Recovery mechanisms can be further 

explored in transgenic mice, allowing the role of specific proteins or pathways to be studied. 

One major factor confounding reliable modeling is the variation in inter-subject vascular 

anatomy leading to differences in the locations and size of the infarct [22]. Another concern is 

the invasive nature of stroke induction, which requires anesthesia and post-operative care. 

Anesthetics may exert mild neuroprotective effects that can slow the maturation of the infarct. 

It is still unclear whether or not this influences the animal’s long-term recovery. Some common 

anesthetics have their own distinctive properties, e.g., isoflurane opens the blood-brain barrier, 

which is already affected by ischemia [23]. Isoflurane may also induce preconditioning [24]; this 

can be a problem in follow-up studies involving repeated procedures such as imaging. Less 

attention has been paid to the optimal post-operative care and analgesics [25]; these drugs 

may also exert an effect on maturation of damage and brain repair mechanisms. Severe weight 

[26] and vision loss [27] which are present in some stroke models (e.g., the intraluminal suture 

model) can impact on the animal’s performance in behavioral tests. Side effects such as 

cauterization of the external carotid artery, also affect behavioral performance independently 

of the ischemic brain lesion [28]. Given these complications, it is unfortunate that there has 

been limited development of new stroke models or efforts to improve the existing methods. 
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There is also a need for less invasive techniques to produce brain ischemia that could reduce 

exposure to anesthetic agents and analgesics. 

Alongside issues inducing ischemic damage, other factors also affect behavioral 

outcome. Proper handling, pretraining and housing conditions have a major impact on 

outcomes. For example, single housing, social housing or enriched environment can alter 

behavior and recovery from stroke [29]. In efforts to mimic clinical rehabilitation, evaluation of 

restorative treatments should be assessed with and without environmental enrichment or 

training. Less attention has been paid to the fact that rodents are nocturnal animals but they 

are often tested and treated during the lights-on period when they are less active, although a 

reversed light-dark cycle is easy to implement. 

In addition to these external factors that can influence behavioral outcomes, rodents 

show substantial recovery after a stroke. After a focal stroke, mice rapidly recover within 2 to 3 

weeks, rats within 3-4 weeks. In terms of observable sensorimotor deficits, they become 

indistinguishable from naive animals unless sensitive tests are employed [30,31]. One challenge 

is to detect impairments in experimental stroke animals since in the wild, animals are forced to 

hide deficits and illnesses to ensure their survival. In addition, rodents often develop 

compensatory strategies to complete a given task, leading to erroneous conclusions about the 

extent of recovery. Indeed most behavioral tests only assess performance, little attention is 

paid to the way the animals complete the task. The validity of behavioral tests to differentiate 

compensation from true functional recovery has been recently discussed [32].

Behavioral tests to evaluate functional impairment during recovery are numerous 

[30,31,33–36]. Task selection is often based on the time needed to conduct each test and on 

the fact, that special expertise or devices are not required. In the next sections, we will review 

the most common tests used to assess motor and sensorimotor function, cognition and mood 

in stroke animals.

3. Most frequently used behavioral tests in rodent stroke recovery studies
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Stroke recovery studies rely heavily on behavioral testing. A number of tests for 

assessing sensorimotor function, cognition and mood are available to detect acute and long-

lasting deficits (Figure 1, Table 1).   

3.1. Neurological scores and limb placing tests

Modified neurological severity scores (mNSS) measure reflexes to various stimuli, 

balance and simple motor functions giving a total score for gross behavioral impairment [37]. 

Their advantage is that the animals can be tested immediately after the surgical procedure, but 

subjective scoring may give false positive results and summing up scores from different subtests 

may obscure significant results. Since there is a spontaneous recovery within a week or two, 

mNSS tends not to be useful for long-term studies [36,38]. For example, a recent systemic 

review on the elevated body swing test, a procedure usually included in mNSS, showed 

inconsistent swing profiles in ischemic rats, and furthermore, these tended to shift over time 

[39]. This observation suggests that caution should be exercised in selecting simple behavioral 

tasks for stroke recovery studies. 

The limb-placing test is another simple task, which assesses the sensorimotor integration 

of fore- and hindlimb responses to tactile and proprioceptive stimulation [40]. The test has 

several limb placing tasks, which are scored as follows: 2 points, normal response; 1 point, 

delayed (>2 s) and/or incompletely response; and 0 point, no response. Depending on lesion 

size and location, the deficit can be long-lasting [41]. Forelimb placing can also be triggered by 

the stimulating a rat’s vibrissae or holding a rat at 45o above a bench, with one forepaw 

restrained and slowly dragging the other forepaw sideways across the bench [42].

In mice, the SHIRPA battery is a standardized tool for behavioral phenotyping and 

screening of motor impairment [43].

3.2. Rotational asymmetries

Unilateral focal ischemia of the middle cerebral artery (MCA) territory induces 

prominent ipsilateral circling behavior in rodents, which subsides within a few days. However, 

evidence from the rotational asymmetry test suggests that the hemispheric imbalance is not 
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compensated completely and a profound turning preference persists in the experimental 

animals for months with very minor spontaneous recovery [30,31]. 

The bowl test is a simple task for evaluating rotation in rodents. In the classic set-up, 

animals are placed into a glass or Plexiglas bowl connected to a special harness with a tether 

attached to an automated rotameter. Clockwise and counter-clockwise rotations are recorded 

to measure the rotational asymmetry during the test period, usually lasting 30 to 40 minutes 

[44]. Alternatively, a laterality index can be calculated by dividing the difference between the 

number of clockwise and counter-clockwise rotations with reference to the total number of 

rotations [30]. One drawback of the setup is the harness used to attach the animals to the 

tether which can be cumbersome and stress-inducing for the animals. With the availability of 

novel video tracking systems, it has become possible to reliably measure rotation from video 

analysis without the need for a mechanical rotameter or constraining harness. The 

amphetamine/apomorphine induced rotation test has been used in a limited number of stroke 

studies [30,45–48]. Rotational asymmetry after striatal strokes is apparently a robust and 

replicable phenotype. In animals with larger infarcts, there is no need for pharmacological 

manipulations.      

3.3. Sensory impairments 

Impairments in tactile sensation, which are present in at least 50% of stroke survivors, 

are more common than proprioceptive deficits and more pronounced in individuals with 

cortical lesions compared to those with subcortical strokes [2]. Behavioral tests evaluating 

tactile performance would be ideal to study recovery since adaptive behavior to compensate 

for a lost sensation is rather unlikely [49].

The adhesive removal test is a sensitive test for evaluating sensory and motor 

impairments after unilateral lesions involving the sensory-motor cortex, the corticospinal tract, 

and the striatum [31]. During the test, small adhesive tape patches are applied to one or both 

paws depending on the protocol. The animal is then released to its home or a test cage. Naïve 

animals rapidly sense the alien object and react to it quickly. The latency to contact and remove 

the patch is recorded, typically with a cutoff time of 120 seconds [50]. Contact refers to any sort 
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of behavior indicating that the animal is aware of the patch such as paw shaking or touching it 

with its mouth. In protocols where both paws receive a patch, animals with unilateral strokes 

tend to touch and remove first the patch on the ipsilateral forelimb. The order of contact and 

the latency to contact on the contralateral paw are indicators of the sensory deficit, while an 

increase in the removal time is a result of both sensory impairment and motor learning. 

Detection of long term deficits has been reported in some studies using stroke models but not 

in others [51]. This is likely related to the degree of the brain damage [36]. 

3.4. Sensorimotor testing

Rotarod is one of the most commonly used assessments of sensorimotor coordination 

and balance in stroke rats and mice [52–54]. This test is easy to perform, i.e. one measures the 

time that the animal can remain balanced on a rotating rod as the device accelerates. One 

major disadvantage of the test is that it cannot discriminate spontaneous recovery from 

therapy induced recovery, the former being partly due to postural adjustments that subjects 

develop during repeated testing. Nevertheless, long term deficits have been reported following 

ischemic damage, but this can be dependent on the strain of rat in use [55].

Another frequently used test is the cylinder test, which is based on the rodent’s own 

exploratory activity in a transparent Plexiglas cylinder [42]. When the animal is placed in the 

cylinder, it initiates vertical, exploratory scanning of the wall by touching equally with its left 

and right forelimbs. After brain ischemia, there is a reduction in use of the impaired forelimb in 

first wall contact and a significant reliance on non-impaired forelimbs [56]. One disadvantage of 

this test is that too frequent testing results in rapid habituation with less tendency to rear and 

explore the cylinder.

The corner test is also used to evaluate persistent asymmetries in turning preference 

after focal ischemia. In the classic version, animals are introduced to a testing apparatus 

consisting of two connected cardboard walls forming a 30° angle. At the junction of the walls a 

small opening is cut to motivate animals to enter deep into the corner. Typically, animals move 

towards the small opening at the junction and after a brief exploration they rear and make a 



10

turn to one side. Mice develop a clear preference towards the lesion (ipsilateral) side after a 

focal stroke which has damaged the striatum [30,31]. Similarly, in unilateral embolic middle 

cerebral artery occlusion (MCAo), the corner test has been claimed to be very sensitive in 

distinguishing sham from stroke animals up to 90 days post-stroke [57]. Numerous other 

studies employed the corner test for long term assessments in various focal stroke models 

[50,58,59]. Interestingly, the corner test was either unable to reveal any difference between 

groups in distal MCAo or cortical infarct models where the striatum had been spared [60,61] or 

at best, they displayed a mild transient contralateral preference [62].       

3.5. Skilled forelimb use

Montoya’s staircase test is frequently used for rats [63]. In this test, mildly food-

restricted animals are trained to pick up foot pellets from a set of stairs on either side of a 

raised central platform that supports the animal’s body. The test box is designed so that the 

animal can use only the right forelimb to grasp the pellets from the right side and vice versa. 

The typical training period lasts 2-3 weeks in rats. Post-stroke testing is done in a similar fashion 

at intervals usually beginning no sooner than 5-7 days’ post-stroke [64,65]. The impairment is 

long-lasting or permanent and the performance is not affected by repeated testing. The test is 

more challenging for mice and therefore the single pellet task is preferred for this species. 

A more comprehensive assessment of reaching behavior can be achieved using the 

single-tray reaching task in conjunction with kinematic analysis [66–68]. The reaching boxes are 

often custom-made from Plexiglas with a slot in the middle of the front wall to force the animal 

to reach for food pellets that are placed on a shelf attached to the outside of the front wall in 

two small indentations. Rats are individually habituated to the reaching boxes and trained to 

reach for food pellets [69]. The pellets are placed contralaterally to their preferred paw. 

Training lasts about 4 weeks until the success rate in individual rats no longer increases. A 

successful reach (quantitative analysis) is defined as a reach that allows the rat to grasp the 

food pellet and consume it. Reaching accuracy is scored as the percentage of successful 

reaches per total number of pellets available in each session. If high speed video capture is 
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used and the movements that make up the reach are individually scored, then the test can be 

used to differentiate true motor recovery from compensatory movement strategies [70,71].  

Another simple and quantitative way to study paw and digit function is the pasta 

handling test [60,72]. The major difference compared to reaching tasks is that pasta handling is 

a bimanual task. Slow-motion video analysis allows quantification of detailed fine digit and 

bimanual movement patterns as the pasta is eaten. Focal cerebral ischemia does not increase 

eating time, but leads to a prolonged reduction due to adjustments being made with the 

contralateral forelimb. In addition, ischemia increases atypical behaviors. Minimal training, 

repeated and long-term testing within a few minutes are the key advantages of the pasta 

handling test. 

3.6. Hindlimb functions

Not many tests exist for testing hindlimb function, but the tapered/ledged beam and 

grid walk tasks are recommended. In the tapered/ledged beam test, the animal has to walk 

along a gradually narrowing beam to reach its home cage or a darkened goal box [42]. The 

ledge on either side of the beam enables the rats to correct their balance should their foot slip 

from the beam, especially as the beam becomes narrower. In some models, the impairment 

seems to be permanent [73]. Grid walking (foot-fault test) and the ladder task are other tests 

which have been used to assess hindlimb impairment after a stroke [38,74,75]. 

3.7. Gait analysis in rodent models of stroke 

In humans, a wide range of sensorimotor problems including decreased motor control, 

problems in dexterity and accuracy, muscle weakness, spasticity and proprioceptive 

impairments interfere with normal gait [76], causing walking dysfunction [77]. Thanks to recent 

advances in behavioral testing technologies, advanced gait analysis has become a viable, 

valuable and affordable tool in preclinical research.        

Prior to the introduction of computer assisted systems, a rather basic gait analysis was 

possible by applying ink to the paws of the animal and allowing the animal to walk over paper. 

The footprint dimensions (length, width) and distances between prints were measured to 
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determine stride length, hind paw drag [78] and degree of asymmetry. Computer assisted gait 

analysis systems (CAGAS) rely on detecting footprints from video recordings of the moving 

animal registered from underneath a transparent walkway. From the paw print patterns, each 

paw can be discriminated and parameters such as the length and width of the paws, amount of 

pressure exerted on each paw and the duration for which each paw stays on the surface can be 

calculated. By using these basic parameters and their temporal relations, a large array of 

numerical data about the kinematics of ambulation and gait can be acquired, allowing the 

revelation of slight impairments. A detailed description of available gait parameters can be 

found elsewhere [79].  

CAGAS are increasingly used in preclinical stroke research and seem to offer impressive 

long term sensitivity. In proximal MCAo models, numerous gait analysis parameters were 

significantly different among groups at the acute [31,38,80–82] and late time points 

[31,38,82,83] both in rat and mouse studies. In distal MCAo models, where impairments are 

less severe and harder to detect, CAGAS nonetheless revealed significant alterations [62] and 

this approach has also been exploited to examine the effects of therapeutic interventions [84]. 

Despite the impressive technology and in-depth analysis possibilities offered by CAGAS, 

there are also major shortcomings inherent in the widely used setups. In a proximal MCAo 

model in mice, of the total of 100+ parameters, 66 correlated with average speed; 14 of these 

were significant for group differences [30]. An apparent solution to this problem is using CAGAS 

systems that can operate on a treadmill with a fixed speed. In the same study, stroke-induced 

weight loss affected several parameters in the acute phase although the correlations tended to 

diminish as the animals gained weight. In rats, however, weight differences and loss seem to 

represent an even greater problem. In a 60 min transient MCAo model, Parkkinen et al. 

reported a significant correlation between body weight and some major parameters such as 

swing speed, maximum paw contact area, paw print area, paw print width, and toe spread [85]. 

This suggests that intensity-related parameters should probably be totally excluded in rats. 

Taken together, parameters related to relative position between the paws and inter-limb 

coordination appear to be less susceptible to weight and speed bias. 
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In summary, CAGAS offers impressive insights into gait alterations after stroke and 

represents a valuable tool for distinguishing recovery from compensation. Nonetheless, 

investigators should be aware of the limitations of their setup and employ vigorous training 

schedules along with very stringent criteria to denote “successful” runs. 

3.8. Kinematic analysis of behavior

Kinematic analysis of human motion has a long history and important applications 

ranging from basic research to clinical evaluation. Kinematic data has proven particularly 

valuable in the rehabilitation field for discriminating between healthy and pathological 

conditions, deciding on appropriate rehabilitative treatment and assessing its efficacy [86]. In 

stroke rehabilitation, kinematic measures of upper extremity movements [86], movements of 

head, trunk, pelvis [87], and locomotion [88] are gaining wider applications. Reaching ability is 

often severely impaired in stroke survivors, making kinematic analysis of reaching tasks a 

particularly interesting focus in post-stoke rehabilitation research [89,90].

It is possible to analyze the kinematics of rodent behavior. Detailed analyses of mouse 

and rat locomotion have been described in the literature [91–93]. In a few studies, the effects 

of various external conditions and biological variables ranging from age to hypergravity have 

also been analyzed [94,95]. In malonate-induced lesions of the dorsal striatum, 3D motion 

capture technology was used to assess treadmill running kinematics in rats with and without 

obstacles. Lesioned animals` contralesional limbs exhibited changes in length and timing 

parameters, and were found to be overflexed [96]. Eftaxiopoulou et al. described compensatory 

behavior in adjusting the gait in a model of temporal nerve palsy using 3D angular kinematic 

analysis of treadmill locomotion. An increase in the overall range of motion of the hip and an 

increase in the initial ankle angle during the swing phase were observed in those animals 

exhibiting compensation [97].

A limited number of studies have used kinematic approaches in stroke research. Braun 

et al. employed kinematic analysis in a classical skilled reaching task [98]. As the rats were 

reaching for a food pellet through a narrow slit, their paw movements were tracked and plotted 

in a 2D plane, giving a trajectory for each attempt. This study demonstrated significant 
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differences in reaching trajectories between control stroke and bone marrow cell treated 

stroke animals. Over the course of 10 weeks, both groups showed improved performance, 

however, the non-treated stroke animals did so via compensation, involving increased 

trajectory adjustments. Another study used the same approach in a mouse photo-thrombotic 

focal ischemia model and reached similar conclusions [99].      

As mentioned above, kinematic studies do not necessarily need to use sophisticated 

equipment and software combined with complex angle and motion analyses. Describing a 

typical behavior during a task by defining the components and sequence along with anatomical 

description of joint rotations already allows for a detailed quantitative scoring. By adapting 

previous studies, Knieling et al. devised a skilled reaching test to evaluate recovery and 

compensation in a photothrombosis model of stroke [69]. A skilled reaching task that typically 

relies on the number of successful reaches was videotaped and analyzed after breaking down 

the typical reaching movement into three separate components (reaching, grasp, withdrawal) 

which were further divided into 35 subcategories. Each category was scored for its adherence 

to normal pattern. This demonstrated effective compensation in experimental stroke animals 

and that this could be facilitated by provision of an enriched environment. Another study used 

a similar approach with a simpler gesture analysis method and observed “learned bad use” with 

excessive gestures in the stroke rats [100].     

3.9. Post-stroke cognition

The Morris water-maze is undoubtedly one of the most widely used behavioral tasks in 

neuroscience [101]. A number of variations exist, but the general concept is to train the animals 

to locate an underwater hidden platform based on spatial cues placed around the pool. 

Learning is assessed by giving the animal 4-5 trials with a short rest between trials. A typical 

training period takes 3-4 days. If the animal fails to find the hidden platform within a fixed time, 

it is placed on the platform by the investigator. The starting point is changed after each trial. 

The swim paths are monitored by a video camera connected to a tracking program. Escape 

latency (time to reach the platform), time spent in each quadrant of the pool and swim path 

length are used to assess water-maze acquisition. Swim speed is used to assess motor 
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capabilities while a visible platform can assess altered visual acuity since both may confound 

the memory analyses. Usually a probe trial is performed after the last training run by taking the 

platform away to control how well the animals remember the position of the platform. In MCAo 

rodents, the impairment of water-maze navigation is long-lasting [102]. However, thigmotaxis 

behavior (e.g., swimming in the outermost annulus of the pool) is observed [103], indicating 

that sensory deficits contribute to the result. To overcome possible misinterpretation, training 

to a predetermined performance criterion has been proposed [104]. The water-maze 

performance of mice is significantly inferior to the performance in rats [105]. Hypothermia may 

also confound the test results in mice [106]. 

The radial arm maze is another frequently used method to study learning behavior and 

memory impairments. The apparatus consists of a central platform with a variable number of 

arms, from 4 to 8 (standard) up to as many as 17 [107]. Two main procedures have been 

described: 1) working memory and 2) working memory/reference memory version. In the first 

version, the animal is allowed to explore and obtain food reward. A computer records which 

arms the animal visits once versus those that are revisited (errors). The second version is the 

combined working/spatial memory in which some arms are baited in each trial and some are 

not. Revisits to baited arms are scored as working memory errors and entries into never-baited 

arms are scored as reference or trial-dependent errors. Similar to the water-maze, this task may 

be confounded by sensorimotor deficits, so care has to be taken when applying this task in 

stroke models.

There is rather limited experience with other cognitive tests in stroke animals and with 

considerable differences in results. There are a few publications describing auditory fear-conditioning 

[108,109],  [108,109], object recognition tests models [110], and passive avoidance test [50,111,112]. 

It has been claimed that delayed performance in passive avoidance test correlates with cortical and 

striatal damage [50]. 

3.10. Post-stroke neuropsychiatric disturbances

Studying depression and anxiety-like behavior in rodent models has a long history in 

behavioral phenotyping and antidepressant drug screening [113,114]. Behavioral despair 

induced by stressful and aversive conditions can be tested with simple paradigms such as the 
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forced swim test [115] and tail suspension test [116], but in models of stroke, the motor 

impairment may confound these tasks. It is hard to deduce if “giving up” on these tasks is truly 

a reflection of depression or increased fatigue due to the motor effects of the stroke. 

Reductions or loss of capacity to experience pleasure, namely anhedonia can also be evaluated 

via sucrose consumption/preference tests [117,118]. An evaluation of anxiety-like behavior is 

possible with the light-dark box, elevated plus maze and novelty-induced hypophagia tests 

[113]. Modeling of post-stroke depression and other mood disorders in the context of stroke is 

a relatively recent endeavor and behavioral findings, especially from focal ischemia models, 

have been inconsistent between different laboratories. 

In a unilateral medial prefrontal stroke model, Vahid-Ansari et al. showed a robust PSD 

phenotype in mice [119]. While this model is certainly of interest, the fact that frontal strokes 

are rare in humans limits its translational value. Ischemia-associated increased activity (right 

MCAo) and anxiety (left MCAo), but no post-stroke depression, was reported in animals tested 

eight weeks’ post-stroke [120]. Another report by the same group described anxiety, anhedonia 

and depressive-like behavior in animals with stroke when tested at a later time point (~ 13 

weeks) [121]. Using sucrose consumption test, Craft and DeVries observed a hedonic deficit two 

weeks’ post stroke in animals with right MCAo [122]. Similarly, Kim et al. showed that left 

MCAo animals displayed behavioral despair in the forced swim test (FST), especially between 

weeks 3 to 5 post-stroke but there was no effect on sucrose consumption [123]. The same 

study investigated the effects of chronic mild stress (CMS) after the stroke. A synergistic effect 

between MCAo and CMS was observed, intensifying stroke-induced mood disturbances. 

Interpretation of experimental results is further complicated by findings showing that 

behavioral phenotypes evolve with time and depend on housing conditions. In the study of 

O`Keefe et al., right MCAo mice were less immobile in FST at week two and only displayed 

behavioral despair (increased immobility) when housed in isolation [124]. When tested at day 

33 post-stroke, right MCAo animals were significantly immobile for longer times compared to 

control mice and furthermore, the housing condition exerted no synergistic effect. Similar 

conflicting findings have also emerged from rat studies [125,126].
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Numerous research groups have adopted the strategy to expose experimental stroke 

animals to varying durations of CMS or isolation which apparently produce more robust and 

reproducible PSD-like behavior [124,127,128]. However, it has to be kept in mind that CMS and 

social isolation procedures are already used in animal models inducing anxiety, and anhedonia 

in the absence of cerebral damage [118,129,130]. Therefore such approaches may not be 

optimal models of PSD unless a clear and substantial synergistic effect (as opposed to the 

additive effect detected in most studies) is observed. 

Stroke is an age-related disease occurring with much greater prevalence in the elderly. 

Compared to young animals, aged rodents differ in their physiological response to experimental 

stroke. Older animals develop larger infarcts, blunted behavioral recovery, and exhibit a 

distinctive gene expression profile [131]. It has been reported that aged rats develop consistent 

PSD-like phenotype whereas young rats recover fairly well after MCAo [132,133]. This 

important finding, however, awaits replication by other groups.     

    

4. A comprehensive behavioral test battery to assess stroke recovery and 

treatment effects

4.1. Sensorimotor testing

Currently there is no clear consensus about which tests should be used in assessing 

sensorimotor functions after stroke. The advantage of neurological severity scores and limb-

placing tests is their simplicity. These tests can be used during the acute phase to exclude 

animals with an incomplete lesion or for the allocation of animals to equivalent groups with 

respect to impairment. However, the impairments resolve so quickly that they have limited 

utility in stroke recovery studies. If one wishes to detect long-term deficits in models with 

striatal and cortical damage, Montoya’s staircase, single-pellet reaching, foot-fault, cylinder and 

adhesive tape tests are potential options, in that order of preference. They require training, and 

in some cases, time-consuming data analysis, but most importantly, they are better 

approximations of the chronic impairments that characterize human stroke. However, the 
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model used and the extent of ischemic damage need to be considered, as some tests are only 

sensitive to deficits in models with more extensive brain damage.

In order to differentiate compensation from true recovery, reaching tasks with video 

recording and movement analysis are the best option. This approach can reveal specific 

movement patterns including extension, aiming, and grasping, which can be scored. The 

reaching tasks, particularly during training part, are laborious limiting their large scale use but 

the recently described automated behavioral boxes may be helpful in this respect [134,135]. In 

these systems, not only training is automated, but duration and difficulty can be controlled, and 

performance analyzed during reaching behavior in near real-time by MATLAB-based software 

[134]. It is noteworthy that other tasks such as treadmill, Rotarod, pasta handling and ladder 

rung can gain significant sensitivity when subjected to kinematic analyses.       

In conclusion, multiple behavioral tests are able to detect long-term sensorimotor 

impairment and differentiate recovery from compensation when combined with kinematic 

analysis, thereby offering valuable tools for monitoring stroke recovery. However, this will 

increase workload, costs, and it inevitably results in more complex study designs. Nevertheless, 

such changes are necessary in order to increase the translational value of preclinical stroke 

recovery research. At the same time, automated training devices allowing high throughput 

testing are becoming more sophisticated and more widely available. For example, Intellicage 

and PhenoWorld type automated test environments may provide unique data about daily 

activities in a normal social environment and reveal stroke-related impairments otherwise 

missed by conventional tests. Ultimately, quality and reliability of data should not be sacrificed 

for expediency.

4.2. Cognition

Post-stroke cognitive impairment is a clinically important problem, but has received less 

attention in both clinical and preclinical stroke research. Most preclinical studies have used the 

Morris water-maze, which is a measure of hippocampal function. This test is also affected by 

coexisting sensory and motor deficits, possibly confounding the data interpretation. A greater 

concern is that hippocampal injury is rare in human stroke and thus the validity of the water 
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maze to assess post-stroke cognitive functions is highly questionable. Another issue is that 

rodent cognition is far less lateralized than in humans and this may require the use of bilateral 

injury models to create deficits in higher order executive functions such as attention set shifting 

[136]. Clearly, learning and memory tests have been less validated for stroke animals and this is 

an area that could be enhanced by exploitation of automated touch-screen cognitive testing 

systems [137]. 

4.3. Mood

Despite the prevalence of post-stroke depression, its pathophysiology has been grossly 

overlooked. The numbers of clinical studies are limited and animal models require much 

greater refinement and validation. As such, a review of the literature suggests that MCAo in 

aged rodents may offer sufficient construct validity [131]. 

5. Large animals in stroke recovery research

Large animal models may have some advantages over rodent models since large animal 

species mostly possess a gyrencephalic brain, and furthermore their physiological functions and 

the grey-to-white-matter-ratio better approximate to those of humans [138]. Another 

significant advantage is their suitability for combination with imaging technologies [139], the 

opportunity for long-term surveillance and the possibility to gain more information from a 

single experiment/subject than can be obtained in rodent models (e.g., more complex and 

parallel physiological monitoring and readout). Several methods for behavioral phenotyping 

have been described. These range from simple scoring scales [140] to more sophisticated gait 

analysis systems [141]. Test batteries for cognitive function are also available since cognitive 

decline during ageing is a common phenomenon in domestic pets [142]. However, large animal 

stroke research is laborious, with expensive maintenance and it requires dedicated facilities 

with species-appropriate housing and care. Sample sizes usually tend to be smaller in large 

animal studies, but inter-subject variability is typically higher than in rodent models and 

therefore more comparable to that observed human clinical trials. The resulting reduction of 

statistical power requires careful design and selection of the primary endpoints to reach 
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reliable statistical significance. For instance, advanced functional readout parameters [20] could 

be addressed together with strong and robust imaging endpoints. Thus, large animal stroke 

models are recommended to be primarily employed in confirmative rather than exploratory 

stroke research [143].

6. Multi-center preclinical animal studies to improve translation

In recent years, there has been a movement towards the delivery of experimental 

studies in the same fashion as phase III randomized control clinical trials [144,145] with multiple 

centers testing large numbers of animals, using standardized protocols and featuring central 

randomization, blinding and data analysis [146,147]. The Multi-PART consortium (Multicentre 

Preclinical Animal Research Team; www.multi-part.org) has developed a framework for the 

design and conduct of this type of preclinical trial. The aim of this is not to replace basic 

exploratory research, but to take therapeutic targets which have shown promise and test them 

in a robust fashion prior to clinical trials [143]. The motivation derives from a lack of translation 

from experimental studies, not only in stroke neuroprotection [148] but in many other 

disorders [149,150]. Systematic analysis of preclinical data has revealed several problems, e.g., 

poor experimental design, underpowered studies and lack of generalizability to other situations 

(models, gender, co-morbidities) [151–153] and these can be addressed by adopting a 

multicenter trial design. The aim of this approach is to improve internal validity (for example by 

using centralized randomization), and by introducing systemic variation, for example by 

exploiting different models, to increase external validity and the generalizability of results.  

When designing such trials, it is paramount to consider the best outcome measures and 

it is essential that functional assessments should be included. An advantage of large multicenter 

trials is that they will provide more statistical power, enabling even subtle deficits that are still 

evident in the long term following ischemic damage to be used to reveal treatment effects, as 

highlighted recently by Rewell et al. [51]. However, to carry out behavioral assessments in this 

multicenter situation requires robust, standardized and centralized training of experimenters, 

especially if they are expected to apply a subjective scoring system. One way to avoid bias is to 

have scoring of behavioral videos carried out by experimenters blinded and in a centralized 

http://www.multi-part.org
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location. In practice, the selection of tests tends to be more challenging. There needs to be 

standardization, not only across sites for a single trial, but between trials to allow comparison 

of studies. This would mimic the clinical situation where standardized assessments such as the 

modified Rankin or Fugl-Meyer scales are used. The chosen test/s need/s to be suitable for 

multiple models of stroke and strains, should be easy to administer across multiple sites, be 

quantitative and objective, detect deficits in the longer term post-stroke and ideally enable high 

throughput testing. At present, no single behavioral test is adequate for capturing the range of 

stroke deficits and there is no consensus on what would represent the best test battery. 

Therefore, there is a need to improve current assessments or to develop new tests. These may 

rely on the types of kinematic analysis detailed earlier, or the use other sensitive equipment to 

detect subtle deficits, such as drinking behavior [154]. Until the point that these sorts of test 

and the technology become widely accessible, some type of compromise will be necessary. This 

may be achieved by using easily applicable tests that have some flaws across all sites and then 

having a subset of centers carrying out more detailed behavior tests within the trial. 

7. Toward better stroke recovery studies 

Implementing the optimal battery of behavioral tests is time-consuming and expansive. 

Behavioral tests are often performed by rotating personnel (e.g. undergraduate and graduate 

students). However, more consistent and reliable results will likely have to be obtained if one 

has well-trained personnel who have a strong background in behavioral assessment techniques. 

Improved function is the most important endpoint not only for stroke, but also for other 

neurodegenerative and cognitive disorders and this applies not only for academic institutions, 

but also for the pharmaceutical industry. 

For-profit contract research organizations tend to lack the flexibility to adapt their 

readout batteries to a desired specialized endpoint, or to even develop novel test components 

to specifically assess those outcomes.  On the other hand, almost no academic research group 

and only a few universities can afford to invest in infrastructure and create research teams 

solely dedicated to the science of behavioral outcome measures. Future improvements in 

behavioral phenotyping for stroke research must therefore seek alternative solutions. For 
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instance, the pharmaceutical industry and academic institutions may form a partnership to 

establish high-quality behavioral readout centers [155], which may also represent core 

elements of multicenter preclinical trials. 

In addition, active interactions between basic scientists, nursing staff and clinicians are 

important in working towards a better stroke recovery research. One good example of this 

approach is the Stroke Recovery and Rehabilitation Roundtable (SRRR) which aims to provide 

recommendations for the preclinical modeling of stroke recovery and for the better alignment 

between preclinical and clinical researchers [156,157].   

8. Conclusion

Past preclinical stroke research approaches in neuroprotection have been associated 

with complete translational failures. Hundreds of neuroprotective compounds seemingly 

effective in experimental models, have failed to work when administered to stroke patients. 

Thus, a major challenge will be to prevent this failure happening again by improving study 

quality and by carefully selecting clinically relevant stroke models and outcome measures. 

Sensitivity, the capability to differentiate long-term recovery from compensation and 

automation will undoubtedly be incorporated into an optimized behavioral test battery. In 

addition, we expect that behavioral testing will become an integral part of future preclinical 

multicenter studies. Accordingly, the tests need to be standardized to allow comparison of 

results from different centers, to increase statistical power and to decrease the overall study 

costs. Finally, it can be anticipated that stroke recovery recommendations achieved through 

preclinical and clinical dialogues such as the SRRR will guide future research on the route to 

successful translation [156,157].
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Figure legend

Figure 1. Time window of behavioral testing in relation to brain pathology and regeneration in 

rats and mice after stroke. For cognitive functions and mood, the number of studies is limited 

with considerable variations in the outcomes.  - - -Sensitive period duration depends on stroke 

severity. *Depending on the rod type sensitive period increases drastically.  
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Table 1. Pros and cons of common behavioral tests used in stroke research.

Behavioral test Assessment  Time-window Pros  Cons

Rats    

Neurological deficit scores Sensorimotor functions < 2 weeks Simple; Testing at acute phase Subjective; Not suitable for long-term evaluation

Rotarod Coordination, balance and motor 
functions

< 2 weeks Simple; Testing at acute phase Compensation; Not sensitive for long-term 
evaluation

Adhesive label Forelimb sensorimotor 
asymmetry 

< 4 weeks Differentiates between sensory and motor functions, Removal time affected by motor learning

Cylinder test Spontaneous use of forelimbs < 4 weeks No pretraining; Sensitive to chronic deficits Habituation

Grid walking Fore- and hindlimb coordination 
and placing 

> 4 weeks No pretraining; Assessment of both fore- and hindlimbs  

Montoya’s staircase Forelimb reaching and grasping > 4 weeks Independent use of both forelimbs; Sensitive to lesion size 2 week pretraining; Food deprivation

Single pellet reaching Skilled forelimb use > 4 weeks Detailed analysis of movements and compensatory strategies Laborious pretraining

Catwalk Gate > 4 weeks Huge amount of variables and data Affected by body weight

Kinematics Fine digit control > 4 weeks Differentiation between true recovery and compensation Laborious

Water-maze Spatial learning and memory > 4 weeks Many references; Variations in test design Biased with sensorimotor deficit

Mouse    

Neurological deficit scores  Sensorimotor functions < 2 weeks  Simple; Testing at acute phase Subjective; Not suitable for long-term evaluation

Rotarod Coordination, balance and motor 
functions

< 2.5 weeks  Simple; Testing at acute phase Compensation, not suitable for long-term 
evaluation (sensitivity depends on the Rod used) 

Wire hanging Muscle strength and endurance < 2 weeks  Simple; Testing at acute phase  



Pole test Motor function and coordination, 
bradykinesia

1 week – 4 
week

 Simple; Testing at acute phase Anxiety and learning effects performance

Adhesive label Forelimb sensorimotor 
asymmetry 

> 2 weeks Differentiates between sensory and motor functions; Long 
term sensitivity 

Removal time affected by motor learning

Corner Test Turning preference and 
asymmetry

> 2 weeks Simple testing; Long term sensitivity Repeated testing reduces animals exploratory 
behavior; Test becomes gradually more laborious

Cylinder test Spontaneous use of forelimbs  < 4-5 weeks No pretraining; Sensitive to chronic deficits depending on 
stroke severity

Habituation; Not suitable for repeated testing 
with short intervals

Catwalk Gait  > 1 week Huge amount of variables and data; Long term sensitivity Affected by body weight and speed variations

Skilled reaching tasks Skilled forelimb use > 2 weeks Detailed analysis of movements and compensatory strategies Laborious pretraining

Kinematics Fine digit control > 2 weeks Differentiation between true recovery and compensation Laborious; May require costly equipment 

Water-maze Spatial learning and memory > 2 weeks Many references; Variations in test design Non-learner mouse; Suboptimal performance in 
albino strains; Biased with sensorimotor deficit in 
severe strokes


