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In this paper, to predict the dynamics behaviors of flow and mass transfer with
adsorption phenomenain porous media at the representative elementary volume (REV)
scale, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model for the
convection-diffusion equation is developed to solve the transfer problem with an
unsteady source term in porous media. Utilizing the Chapman-Enskog analysis, the
modified MRT-LB model can recover the macroscopic governing equations at the REV
scale. The coupled MRT-LB model for momentum and mass transfer is validated by
comparing with the finite-difference method and the analytical solution. Moreover,
using the MRT-LB method coupled with the linear driving force model, the fluid
transfer and adsorption behaviors of the carbon dioxide in a porous fixed bed are
explored. The breakthrough curve of adsorption from MRT-LB simulation is compared
with the experimental data and the finite-element solution, and the transient
concentration distributions of the carbon dioxide along the porous fixed bed are
elaborated in detail. In addition, the MRT-LB simulation results show that the
appearance time of breakthrough point in breakthrough curve is advanced as the mass
transfer resistancein linear driving force model increases, however, the saturation point

is prolonged inversely.
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. INTRODUCTION

The problem of flow and mass transfer with adsorption/desorption phenomenain
porous mediais ubiquitous and significant in many fields of science and engineering,
including carbon capture and storage technology [1], environmental pollution
improvement [2] and chemical engineering [3]. To fully understand this process, an
appropriate mathematical model is necessary for the theoretical description and will
help to optimize the flow and mass transfer with adsorption processes in the equipment
(such as a porous adsorbent bed) [4]. In general, to predict the complete dynamical
behaviours in porous media, a coupling mathematical model, including momentum-,
mass-, and energy-conservation eguations, need to be constructed simultaneously[5].
In addition, for describing the effect of the adsorption behaviours on the mass transfer
process, an appropriate mass transfer kinetic model of adsorption should be
incorporated into the mass-conservation equation as a source term [6-8]. It isworth to
note that the solving processes of this coupling model are tedious and time-consuming
[9]. In this context, the development of a simplified and efficient numerical model for
predicting the flow and adsorption processes in porous media has attracted much
attention in recent years.

As a promising mesoscopic numerical method, the lattice Boltzmann (LB) model
has some significant advantages over the conventional numerical methods in modeling
complex physics in fluids, such as its role as a linear convective operator, its high

efficiency for parallel performance, and its excellent applicability to cases with



complicated boundary conditions [10-12]. Consequently, the LB model has rapidly
emerged as a powerful numerical tool in studies involving simulations of momentum-,
heat- and mass-transport problems [13-20], including transport phenomena in porous
media. Generally, the LB simulation in porous mediainvolves micro-scale (pore scale),
and meso-scale (representative elementary volume scale, REV scale) [13], where the
relationship between thetwo scalesisillustrated in Fig.1. At the microscopic pore scale,
the geometric structure of porous mediais described in detail; while, at the mesoscopic
REV scale, the geometric structure is ssimplified by an elementary cell using the
volume-averaging method. Due to the briefness of boundary schemes to handle the
complex morphology of porous matrix, a series of pore scale LB models have been
proposed to study the adsorbate’s mass transport and adsorption behaviors in the pore
structures of porous media, which were constructed by the regular particles or the
stochastic irregular solid matrix[21-28]. By using these LB simulations at the pore scale,
the transient fluid velocity and the adsorbate concentration profiles in the
pore structures were presented in detail, and the effect mechanism of pore structure
characteristics on the dynamic adsorption performance was elaborated to provide a
guidance for the design and optimization of adsorption systems in the micro-scale.
Nevertheless, the present pore scale studies need to describe the detailed geometric
information of porous structures, thus the size of computation domain cannot be too
large due to the limited computer resources 29].

In contrast, because the geometric structure of porous mediaisignored, the REV

scale numerical study can overcome the limitation of computation domain at the pore



scale, and hence can be used for systems with the large computation domain [30]. In
recent years, the REV LB model, as a computationally efficient numerical method [31],
has been successfully used in the simulation of flow and heat transfer in porous
medial32-34]. Moreover, to address some inherent shortcomings of the single-
relaxation-time LB model, such as the numerical inaccuracy and the instability
problems, the multiple-relaxation-time (MRT) LB model, as an effective improving
scheme[ 35], has been employed to solve the transfer problems in porous media at the
REV scale more accurately[13,36]. However, to the best of our knowledge, little work
has been reported on the application of the LB model coupled with a mass transfer
kinetic model of adsorption in solving masstransfer with adsorption problemsin porous
mediaat the REV scale.

Hence, the present work aims at developing an MRT-LB model to exploretheflow,
mass transfer and adsorption behavioursin porous media at the REV scale. This model
includes an MRT-LB modéel for the fluid flow and an MRT-LB model for the mass
transfer with adsorption. In Section I, the macroscopic governing equations of fluid
flow, mass transfer and adsorption processes in porous media are first presented. In
Section I11A, an existing MRT-LB model for momentum transfer in porous media is
introduced to solve the fluid flow in porous media at the REV scale. In Section I11B,
based on the work of LB model for the convection-diffusion equation (CDE) in non-
porous media[37,38], an MRT-LB model is developed to simulate the mass transfer
with an unsteady source term in porous media at the REV scale. In Section 1V, the

combined MRT-LB model is validated by comparing it with the finite-difference



method and the analytical solution. Then, the linear driving force (LDF) model, as a
widely used mass transfer kinetics model of adsorption process39-43], is considered
as an unsteady source term in the LB model for the CDE to describe the adsorption
behaviour of the adsorbate. The above modified MRT-LB model is used to simulate the
carbon dioxide flow, mass transfer and adsorption processes in a porous fixed bed of
activated carbon, and the numerical results are compared with the experimental data

and the finite-element solution. Finally, some conclusions are given in Section V.

II. Macroscopic gover ning equations

For the fluid flow and mass transfer coupled with the adsorption process in
homogeneous, isotropic porous media, the macroscopic momentum transfer at the REV

scale, which is governed by the generalized Navier-Stokes equations, can be expressed

aq31]:
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where u and p denote the volume-averaged fluid velocity and pressure, respectively; po
isthe mean fluid density; ¢ denotes the porosity of the porous media; ve isthe effective
kinetic viscosity; and F is the total body force.

Considering an adsorbate in the fluid, the governing equation of the mass transfer

of adsorbate can be written as the CDE with a source term in porous media[44]:

gaa—?+v(uC) =¢DV’C+R, A3)
where C is the adsorbate concentration in the fluid, D is the effective diffusion

coefficient of the adsorbate in porous media, and R’ is an unsteady source term that



represents the rate of mass transfer through adsorption by the absorbent particle of the

porous media. Based on the LDF model, R’ is given by [9]
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where q denotes the average amount adsorbed by the adsorbent particle, g* represents
the amount adsorbed at equilibrium with the instantaneous adsorbate partia pressure,

pbisthe adsorbent particle density, and Ky isthe effective LDF masstransfer coefficient.

In addition, the total body force of fluid F can be written as:
F=—""u-—~uu+ea ©)

where v denotes the kinetic viscosity, K represents the permeability, Fgisthe geometric
function, and a isthe external force. Using Ergun’s relation, the geometric function and

the permeability of the porous media are given by
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where d, is the mean diameter of the adsorbent particles. The key parameters of the
fluid flow and adsorption process can be characterized using several dimensionless
numbers, including the Darcy number Da, the Reynolds number Re, the Schmidt
number Sc, the Fourier number Fo, and the dimensionless ratio K* of the LDF mass

transfer coefficient to the diffusion coefficient, which are defined as:
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whereL and U are the characteristic length and vel ocity of the system, respectively, and

risthe computation time for the fluid flow and mass transfer process.



[11. MRT-LBM for the flow, masstransfer and adsor ption processesin porous

media

A. MRT-LBM for momentum transfer in porous media

To ssimulate thefluid flow in porous mediausing the LB method, an existing D2Q9
MRT-LB model [36] isadopted to solve the generalized Navier-Stokes equations, given
asEq. (1) and Eq. (2). The evolution equation with aforcing term can be expressed as:

fi(x+edt,t+8t)— f (x,t) = (MTM),[f; (x,t)— £ (x, )]+ M & —g)s , (8)
wherefi (X, t) denotesthe volume-averaged density distribution function associated with
the discrete velocity g at position x and timet, oz istime step, | isthe unit matrix, M is
a 9x9 orthogonal transformation matrix, I" is a diagonal relaxation matrix, which is

related to the collision matrix, and the forcing term Sisa 9-dimensional column vector:
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where yi (0<yi<2) is the relaxation rate and S is a component of S, which will be

determined later. For the D2Q9 model, the discrete velocity € is given by

(0,0) i=0
e =1 c(cod(( —1)%],sin[(i —1)%]) i=1234 - (12)
J2c(cos](2i - 9) %] ,sin[(2i —9) %]) i =56,7,8

where c=0x/0t is the lattice speed with Jdx denoting the lattice spacing step and Jx is set



equal to ot in this paper. The equilibrium distribution function is expressed as:

-@- wo) + PoSp(U), =0
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where w; is the weight coefficient of the D2Q9 model with wo = 4/9, wi = 1/9for i =
-4, i = 136 for i =5-8, cs=1/~/3 represents the lattice sound speed, and s(u) isgiven
by
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In this LB model, the total body force of fluid F in Eq. (2) isrepresented using the

forcing term S. Based on the work of Liu et al.[36], the components of S are chosen as:
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The macroscopic variables, including the volume-averaged fluid velocity u and

pressure p, are defined ag[31]:
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where v isatemporal velocity and lo and |1 are two parameters of the model, which are
given by
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In addition, the effective kinetic viscosity veis defined as:
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Based on the Chapman—Enskog analysis [45], the continuity equation Eq. (1) and

the momentum equation Eq. (2) can be recovered from this MRT-LB model.
B. MRT-LBM for the convection-diffusion equation in porous media

In addition to the above MRT-LB model for the momentum transfer in porous
media, one other appropriate MRT-LB model should be constructed to simulate the
mass transfer coupled with the adsorption process, as described in EqQ. (3), which isa
typical CDE in porous media In recent years, a series of LB models for the
CDE[37,38,46] were developed to investigate the mass transfer or heat transfer
problems of fluids. While, thereisrelatively less work on MRT-LB models for solving
mass transfer with a source term in porous media. To eliminate this research gap,
inspired by theideaof Chal et al.[37] , we develop an MRT-LB model for the CDE with
asource term in porous media at the REV scale, and Eg. (3) can be recovered from the
modified model using Champan-Enskog analysis. The evolution equation of the MRT-
LB model for the CDE can be expressed as:

g (x+ed,t+8t)—g,(x,1) =Q; + &G , (22)
where gi (X, t) is the discrete distribution function of a scalar variable. For the mass
transfer problem governed by the CDE, the scalar variable represents the concentration

variable C, and g (X, t) denotes the concentration distribution function, which is



different from fi (X, t) representing the density distribution function. On the right-hand
side of EQ. (22), the collision term is given by
Q; =-(MAM); [g; (x,1) - g7* (x,1)], (23)

where the equilibrium distribution is modified as:

e-u (e-u’ e-u Cep
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and ni denotes the coefficients that are given by
n = (i=0), Mo = _2#07% ’ (25

where i is the weight coefficient of the D2Q9 model, with 7o =-5/9, i = /9 fori =1

to 4, and i = /36 for i =5to 8. The diagonal relaxation matrix is given by
A=diag(Zo, 2 %) (26)

where 0<1i<2. Considering the effect of the porosity of the porous media, the source

term of the MRT-LB modedl is constructed as:
G =[MU —%)M]ij R, (27)
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where R is the source term of the macroscopic CDE. Using the transformation matrix
M, the discrete concentration distribution function and the equilibrium distribution
function can be projected onto their macroscopic variables in the moment space:
m:=Mg, m®;=Mg (29)
where m=(mo,my,...mg)" and mEP=(m® O M@ L 8T The scalar variable C can be

obtained using Eqg. (30):



gC=Zgi+52tR (30)

Using the Champan-Enskog analysis (the details are presented in Appendix A), EQ. (3)
will berecovered from the developed LB model. Hence, thismodel can be used to solve
the mass transfer with absorption in porous media at the REV scale, which is different
from the previous MRT-LB mode for CDE in non-porous media [37]. In addition,

based on the nonequilibrium scheme [38], the flux can be calculated as follows:

> clg - 98]+ S (CF +u )
J=D- ~ £ _+cCu
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It is noteworthy that the MRT-LB model is not only used to investigate the mass
transfer coupled with adsorption in porous media, but also applied to study heat or mass
transfer as the convection-diffusion problem in porous media when the scalar variable

and the source term are adjusted appropriately.
C. Treatment of boundary and initial conditions

The boundary conditions are critical for the accurate implementation of the LB
model. In this paper, as a method of second-order accuracy, the non-equilibrium
extrapolation scheme [47] is employed to treat the boundary conditions for the MRT-
LB model. For the LB model of the momentum transfer, the distribution function at the

boundary node x, can be expressed as :

(% 1) = 60, D) +[ (X, )= £ (x, . D] @2

where X denotes the nearest-neighbour fluid node of x» (Xi=Xxb» + &dt). For the velocity

boundary condition, such asthe no-slip wall boundary, the unknown pressure value can



be substituted by the pressure at the nearest-neighbour fluid node, and the equilibrium
distribution function of the boundary node in Eq. (32) can be calculated as follows:

Po—(1-y) gp(:; L + P (U(%,1), 1=0

£ 49(%,,t) = : . (33)

(X;,1) _
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As such, the distribution function at the boundary node for the CDE can be
calculated as:
i (X, 1) = 077 (X, ) +[ 95 (X5, 1) = g7 (X, )] (34)
For the Dirichlet boundary condition, the equilibrium distribution function at the
boundary node can be obtained using Eq. (24). However, for the Neumann boundary
condition, the unknown scalar variable C(xp, t) should be estimated based on the
gradient of the scalar variable at the boundary node[ 36]:

_AC(X ¢, 1) = C(X 4 ,1) = 2A-VC(Xy, 1)

C(Xp,t) = 2 (35)

where the xs denotes the nearest-neighbour fluid node of xs, and A=xs -Xx= Xt -Xs, and
the gradient of C(x, t) is obtained using the Fick law (Job=-DVC(xs, t)), where the flux
at the boundary Jy is known for the Neumann boundary condition. In addition, at the
initial time of the ssimulation, the distribution function is obtained from its equilibrium

distribution function:

f(xt=0)=f9(x,t=0), g (x,t=0)=g"(x,t=0) @

V. RESULTSAND DISCUSSION

A. Numerical testsfor the MRT-L B model



In this section, the proposed method is evaluated on severa benchmarks, and the
results are compared with those of the finite-difference method and the analytical
solution to validate the proposed MRT-LB model for simulating the flow and
convection-diffusion problems with a source term in porous media. In benchmark 1,
the isothermal Poiseuille flow in a 2D porous channel is investigated to demonstrate
the effectiveness of the MRT-LBM for momentum transfer. Then, considering the
comparability for heat transfer and mass transfer problems described by the CDE, the
applicability of the MRT-LBM for the CDE in porous media is clarified by the
simulation of thermal Poiseuille flow with heat dissipation in benchmark 2. In addition,
to examine the validity of the MRT-LB simulation combined with the unsteady LDF
model, the unsteady mass diffusion processis studied using the MRT-LBM for the CDE

with an unsteady source term in benchmark 3.

1. Poiseuilleflow in a 2D porous channel

Guo and Zhao[31] simulated the Poiseuille flow in a 2D channel filled with
porous media to confirm the validity of the LBGK mode for the flow field in porous
media. Similarly, the numerical results cal culated by this adopted MRT-LB momentum
model are compared with the solutions obtained using the finite-difference method
(FDM) from Guo and Zhao's work.

The schematic of the Poiseuille flow in a 2D porous channel is shown in Fig. 2.
The height of the channel H is selected as the characteristic length, and the fluid is
driven using an external force along the x-axis direction ax. The inlet and outlet of 2D

channel are set as the periodic boundary, and the no-dlip velocity boundary is employed



at the top and bottom walls using the non-equilibrium extrapol ation scheme.

In this validation case, the porosity of the porous channel ¢ is 0.1, the viscosity
ratio vdvisset as 1, and the grid size (LxH) is 80x80. The relaxation rates are chosen
as yo=y3=ys=1, y1=y>=1.1, and ys= y6=1.2, while y7 and ys are set to be 5/3. At the initial
time (Fo=0), the velocity field in the computational domain is initialized as 0. Using
the MRT-LB for momentum model, the velocity distributions of the fully developed
Poiseuille flow along the y-axis direction are investigated under different Darcy
numbers and Reynolds numbers, where the characteristic velocity Uo in Reynolds
number is the maximum velocity at the centreline of the 2D porous channel without
considering the nonlinear Forchheimer drag force. Fig. 3(a) shows the dimensionless
velocity distributions at a given Darcy number Da=107. It is found that the fluid peak
velocity is reduced when the Reynolds number Re varies from 0.01 to 100. This is
caused by the increased nonlinear drag force with increased Re. For the different
Reynolds numbers, the numerical results of the MRT-LB model agree with the solutions
of the FDM very well. On the other hand, when the Darcy number Da varies from 10°°
to 10 at a given Reynolds number(Re=0.1), the effect of the resistance of the porous
mediaon the Poiseuilleflow ispresented in Fig. 3(b), and the vel ocity profiles predicted

by the adopted LB model are in excellent agreement with the solutions of the FDM.

2. Thermal Poiseuille flow with heat dissipation

To validate the developed MRT-LBM for the CDE with a source term, the
thermal Poiseuille flow in a 2D channel with heat dissipation is simulated based on

Cha and Zhao's work[37]. Note that the scalar variable C in the CDE denotes the



temperature T provisionaly, and the source term R represents the viscous heat

dissipation, which is defined as

R:&(S:SX (37)
C

where S=[Vu+(Vu)']/2, (39)
and C, denotes the specific heat at constant volume. As the thermal Poiseuille flow
includes the temperature field, the temperature at the top wall and at the bottom wall
are set as To=1.1 and T:=0.1, respectively. The periodic temperature boundary is
employed at the inlet and outlet of the 2D channel. In addition, the momentum transfer
is achieved using the above MRT-LBM for the momentum transfer, and the boundary
conditions have been described in the above subsection, and the grid size (Lx H) isalso
80X 80. As a steady problem, we can consider the numerical results to have reached

the steady state when the following condition is satisfied:

DTG =T (x,t-8t)
D> T

In the first stage, the effect of porosity is neglected (¢=1), and the fluid is driven

<10x10°® (39)

by an external force along the x-axis direction ax. Thetemperature and heat flux profiles
are calculated using the proposed MRT-LB model asthe Prandtl number Pr=v/D=1 and
the defined Froude number Fr=U?_/axH=14.7, where Umax denotes the maximum
velocity at the centerline of the 2D channel.

In the numerical results as shown in Fig. 4, the dimensionless temperature Otis

defined as @=(T-T1)/(To-T1), and the dimensionless heat flux J* is defined as:



Jo__J-H
D(TO_Tl).

(40)
It is found that the dimensionless temperature and the dimensionless heat flux are
enhanced by the increasing heat dissipation indicated by the Eckert number (Ec), and
Ec=U?_/[C.(To-T1)]. When the Eckert number varies from 10 to 100, we can see that
the numerical results are agree well with the analytical solutions, which are clarified in
Appendix B, and the maximum error in the temperature between the numerical and
analytical solutionsisless than 1% at Ec=100.

In what follows, the proposed MRT-LBM for the CDE is applied to ssimulate the
thermal Poiseuille flow in a 2D porous channel. For the Poiseuille flow conditions
identical to those presented in Fig. 3(b) (¢=0.1, Re=0.1), the constant temperatures
To=1.1 and T1=0.1 are employed at the top wall and bottom wall, respectively. If the
source term is not considered, the profiles of temperature and heat flux, as the Darcy
number Da varies from 10 to 103, can be calculated using the FDM. The comparative
results between the MRT-LBM and the FDM are shown in Fig. 5. Due to the absence
of effects of heat dissipation and convection, the profiles of dimensionless temperature
vary linearly from 0 to 1, governed by Fick’s law. But, the profiles of dimensionless
heat flux along the x-axis are significantly different for different Da numbers, whichis
caused by the varying distribution of velocity with the different permeability. In

addition, the numerical results from the proposed MRT-LB model are in excellent

agreement with the solutions of the FDM.

3. Mass diffusion with an unsteady state source term

In this subsection, the MRT-LB model is used to calculate the CDE coupled with



an unsteady state source term, which is similar to the source term of Eq. (3), governed
by the LDF model. To validate the MRT-LB model with an unsteady source term
through comparison with an analytical method, the fluid flow is ignored in this case
(Re=0), and a constant concentration Co=0 is employed at the top wall and bottom wall
of the 2D porous channel (¢=0.1), as shown in Fig. 2. It is important to note that the
scalar variable C of the CDE denotes the concentration hereafter. The mass source term
Ris defined as:

R=k (C,-C), (41)
where km is @ mass transfer coefficient, Cz is a constant concentration C1=1, and C is
the transient concentration in the computational domain, which is set as Co at theinitial
time =0. The grid size for this numerical ssmulation (L X' H) is 60x60, and the
dimensionless concentration @cis defined as @c=(C-Co)/(C1-Co). As simulation results,
the profiles of the dimensionless transient concentration with different dimensionless
mass transfer coefficients are plotted in Fig. 6. It is obvious that the concentration
increases with increasing dimensionless time due to the mass source term. When the
dimensionless mass transfer coefficient k.(k.=kmH?%D) rises from 0.72 to 36, the time
to reach the steady state is reduced, and the equilibrium concentration is closer to the
constant concentration C1. Moreover, for the different dimensionless mass transfer
coefficients and the dimensionless time, the numerical results from the MRT-LB model

are consistent with the analytical solutions, which are explained in Appendix C.

B. MRT-LB simulation of carbon dioxide flow, masstransfer and adsorption in a

porous fixed bed



Based on the above validation work for the MRT-LB model, the proposed model
is applied to simulate the transfer and adsorption processes of carbon dioxide from
nitrogen as a carrier gas in a porous fixed bed of activated carbon. Due to the
independent of adsorption behaviours of carbon dioxide and nitrogen [48], carbon
dioxide is considered as a single adsorbate in this work. To ssimplify the problem, the
porous fixed bed is viewed as a 2D channel with length L, as shown in Fig. 7. The
boundary conditions of the N-S equations for the flow of gas mixtures are identical to
those described for the Poiseuille flow in Section IV A. Meanwhile, the concentration
of carbon dioxide at the inlet of the channel is set as Co and is given by Eq. (42):

uC, =uC, -¢DV . C | (42)
where C; denotes the feed concentration, which is a constant. Moreover, the
concentration gradient at the outlet is set to zero, and non-permeable boundaries (the
mass flux is zero) are employed at the top and bottom walls. Unless otherwise stated,
the non-equilibrium extrapol ation schemeis adopted to treat these boundary conditions
of the CDE for the masstransfer of carbon dioxide. At theinitial time, the concentration
of carbon dioxideis equal to zero in the fixed bed.

In addition, to utilize the LDF model for the adsorption behaviour of carbon
dioxide as a source term in the CDE; the amount adsorbed at equilibrium, described by
Eg. (A22), should be determined using the isotherm Toth equation for single-
component adsorption[48,49]:

_ queq pc
[1+(KgP )1

q 43

where gmis the maximum adsorbed concentration, ¢ is the heterogeneity parameter, pc



is the partial pressure of carbon dioxide, which is obtained from the concentration of
carbon dioxide as an ideal gas, and the equilibrium adsorption constant Keq is

determined by Eq. (44):

Ko =K exp('RT) (44)

where -AH isthe adsorption enthal py and Ro isthe gas constant. According to the work
of Dantas et al. [44,48], the parametersin Egs. (43) and (44) are given in Table .
Since the fluid transfer process occursin along 2D porous channel, the effect of the
concentration distribution along the width direction can be neglected. Therefore, the
flow and adsorption studied in this work can be regarded approximately as a one-
dimensional transport process along the length direction, and thelength L of the channel
acts as the characteristic length. For comparison with the experimental and finite-
element method results at temperature T=423 K from the literature[44], the physical
and transport properties of the fluid and porous fixed bed are determined using a series
of dimensionless numbers, which arelisted in Table 1.
The transient concentration at the outlet of porous fixed bed is plotted in Fig. 8 as
a typica breakthrough curve. It is found that the concentration of outlet remains
constant at zero until the time of the breakthrough point is reached, which indicates that
the influent carbon dioxide is completely adsorbed by the porous fixed bed at the early
stages of the adsorption process. Then the transient concentration of outlet rises to the
feed concentration sharply until the time of the saturation point is reached, which
indicates the adsorption process has been completed. For the most part, the LB model

result for the outlet well agreed with the experimental data and the finite-element



solution from the literature[44]. The comparison result shows that this developed LB
model, as an efficient mesoscopic numerical method, can be used to simulate the flow,
mass transfer and adsorption process in porous adsorbent equipment at the REV scale.
Furthermore, the mole flux distribution and transient concentration along the
length direction are shown in Fig. 9, where the dimensionless mole flux is defined as
J’=J L/C, -D), (45)
At the early stages of the adsorption process (Fo=0.08), because most of the carbon
dioxide is adsorbed by the porous adsorbent bed, the mole flux gradually decreases
along the length direction, and the transient concentration at the tail of the channel
remains constant at zero before the time at which the breakthrough point is reached.
During the unsteady adsorption process of carbon dioxide, the porous adsorbent bed is
saturated starting from the inlet of the channel, and the mole flux along the length
direction rises to the value of the inlet flux. On the other hand, the region in which
transient concentration remains at zero diminishes gradually with the increasing
adsorption time. The region eventually vanishes when the carbon dioxide is reached at
the position of the outlet. After that, the concentration at the outlet increases sharply
with increase in Fo, as shown in Fig. 8, until the feed concentration is reached, which
indicates the adsorption process has been compl eted.
The LDF mass transfer coefficient K* is akey parameter determined by the mass
transfer resistance of microscopic adsorbent particles. When K* is defined to be 9.36
and other parametersisthe same asin Table |1, the breakthrough curve of the output is

calculated as shownin Fig. 10. Compared to the breakthrough curve for K* =93.6 , the



appearance time of the breakthrough point is reduced at lower LDF mass transfer
coefficient; while, the time until the saturation point is reached is significantly
prolonged. Thisresult showsthat the LDF masstransfer coefficient playsaconsiderable
rolein the flow and adsorption processes. When the mass transfer coefficient rate of the
adsorbent particles decreases, the influent carbon dioxide is unable to be adsorbed
adequately by the adsorbent bed due to a higher mass transfer resistance; therefore, the
residual carbon dioxide flow to the outlet will lead to faster appearance of the
breakthrough point than that of the breakthrough curve with the higher LDF mass
transfer coefficient. On the other hand, owing to the constant total adsorption capacity
of adsorbent bed, the completion time of the adsorption process is extended with the
decreasing adsorption efficiency of the adsorbent particles; as a result, the appearance

time of the saturation point is prolonged at the higher mass transfer resistance.

V. CONCLUSION

In this paper, we modified an MRT-LB model for the CDE to solve the transfer
problem with an unsteady source term in porous mediaat the REV scale, and the correct
macroscopic equations can be recovered using the Chapman-Enskog analysis.
According to the comparison with the results obtained using the finite-difference
method and the analytical solutions, the present MRT-LB model can be applied to
calculate the momentum transfer and solve the convection-diffusion problem in porous
media. The validated MRT-LB algorithm, which is coupled with the LDF model, was
used to analyse the carbon dioxide flow and adsorption behaviours in a porous fixed

bed. The breakthrough curve of adsorption from MRT-LB simulation is compared with



the experimental data and the finite-element solution, and the comparison result shows
that this LB model can be used to simulate the flow, mass transfer and adsorption
process in porous adsorbent equipment at the REV scale. Then the transient
concentration distributions of the carbon dioxide along the porous fixed bed are
elaborated in detail. In addition, numerical results show that the LDF mass transfer
coefficient plays a considerable role in the flow and adsorption processes. As the mass
transfer resistance of the adsorbent particles increases, the appearance time of the
breakthrough point is advanced; in contrast, the appearance time of the saturation point

is prolonged.
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APPENDIX A: CHAPMAN - ENSKOG ANALYSISON MRT-LBM FOR CDE

The Chapman - Enskog analysis is employed to derive the macroscopic equation
from the MRT-LB model for CDE. The distribution function, the derivatives of time
and space, and the source term can be expanded as:

g =9”+89" +6°g? to (Ala)

0= 00, +6 Zat2 ' (Alb)



aa: 58051 (Alc)
R=0R, F=0F, (Ald)

Using the Taylor expansion, Egs. (A1) can be substituted into the evolution

equation EQq.(22), thus the evolution equation of zero-first- and second-order are

written as.
5% g9 =g | (A22)
5% (9,+¢ V) g¥ = 4 (MlAM)ijg(jl)—i-[Ml(I—%)M]ij R, . (A2b)
5% 0,97 +(0,+¢V) g(1)+(8t1+ciV1)2gi(°):—6lt(MlAM)”g(f) : (A2c)
e-u e -(epV,C/ p, +CF
Where Ri,i :a)i[(1+ ;Cz )R+ i (gp 1 CZPO l) ] ) (A3)

S S

If the distribution functions are rewritten as macroscopic variables in the moment space

by multiplying the transformation matrix M, EQgs.(A2) in the moment space are

modified as:
5% m@ =m™ (A4d)
5% Dlm(o)z—éAm(l)+(I—§)MRl (A4b)
5% 6t2m‘°)+Dl(I—%) m‘”+%D1(I—%) MRlz—éAm‘Z) (A4c)

where D, =0,I+M0d diag(e,, ., .6, )M " (A5)

and Ri=(Ru,0, R1.1,...,R18)". Using Egs.(24), (30) and (A2a), the Egs.(A6) and (A7) can

be derived as follows [46]:
() ot
Zg =2.9 =Zgi+§R=EC, (A6)

Zg“) (A7)

Thus, thefirst term in Eq.(A4b) can be expanded as:



atl(gc) + axl(Cux) + ayl(Cuy) = R1 (A8)
Analogously, based on Egs.(24), (A3)and (A6), the fourth, and sixth term in Eq.(A4b)

can be calculated as;

0,(Cu,) +0 ,[C(ec +ep/ py+u* [ £)]+0,,(Cu,u, / &)
(A9a)
- —% me® + (1—%)(8£ 0.C+CF +u, ) ,
&

0

04 (Cu,)+08 ,[C(eci +ep/ py + u2 1€)]+04(Cuu,/e)
(A9b)

- %nﬁua 5)(g£a C+CF1+uy%)

It is noted that the following relationship can be derived using Egs.(9), (12) and (29):

) =Ye,0% mP=Ye,® (A10)

According to Egs.(A6), (A7) and (A10), the first term of Eq.(A4c) can be derived as:
0,,(eC) +0 (- 3>[m§1>+ (20 C+CF +u, Fei)]}

2 po (A11)

+0,{a- 5)[m§1)+2( P 5 cicF, FQi)]}:o
Po

It is obvious that Egs.(A9) can be rewritten as:

(gﬂa C+CF,+u, 5

=-i[au<Cu>+ax1(g<:c2+Cip+ ) 1o, (X y) (gpa C+CF +u 5)]

0 O

:-i[u 0uC+C (0, + %0, + ya U, + 18'“’>+—*(ax10u +0,,Cy) +0,4(eCc?) — (CF, +u, 5)]
P

0

(A12)

(5—6 C+CF, +u, 5)

Ccu?
:-ﬂ[atl(CUy)+ayl(€CC§+C—€p+—y)+8 Sy (gpa C+CF,+u, ]
s, Lo £ £ £

& u u ylgp

= -l—[uyatlc +C(d,u, + ?yayluy + ;Xaxluy +
5

u
)+—2(0,,Cu, +0,,Cu,) +0,,(eCc?) — (CF,, +u, 5)]
& &

0

(A13)



If Eq.(A8) issubstituted into the right -side of Egs.(A12) and (A13), we can get that:

M+ % Po crcr +u R
2 py g

(A14)
u
=L, + S o0+ o0+ 2P F ) o, (Cc)]
£ & Po
&
m® +E(g£aylc:+c:|=yl+uy ':l)
Po (A15)

ot u, u 0,:€P
= -I[C(atluy + ?axluy + ?yayluy + Z); —F,»+0,,(Cc?)]

5 0

On the other hand, based on Champan-Enskog analysis of the LBM momentum

model in porous media, the first-order Navier-Stokes equation is expressed as.

0,u-+ (U ~V1)(§) SR (A16)

Po

Comparing Eq.(A16) with the right-side of Egs.(A14) and (A15), it is easy to obtain

that:

m{P +é;(gpaxlC+CFxl+uXRl)=-f[ 0,4(eCc?) (A7)

() & 3

m? +52t(epay1C+CFyl+uyR1) =% 5 ,(:C) (A18)
Po ¢ A5

Therefore, according to Egs.(A17) and (A18), Eq.(A11) can be rewritten as:

du(eC)+0[(E- 1) et 040,11 e ,C1=0 (A19)
27 2 7,

s~yl
3
Utilizing Egs.(A8) and (A19), the macroscopic CDE can be obtained:
8%+V(UC)=8DV2C+R, (A20)

where the diffusion coefficient D is given by:

11 11
D=c}(=-2)dt=c}(—-I)&
C( 2 2) Ce ( 2 2) (A21)

In general, the source term Rin Eq.(A20) represents an universal source/sink term



in CDE. For mass transfer and adsorption processes in porous media, the source term
R is used to describe the adsorption behaviors caused by the adsorbent particles, which
is determined by LDF model:

R=R =U-2&) pK(q - (A22)

It is obvious that the developed LB model will be recovered as Eq.(3).

APPENDIX B: ANALYTICAL SOLUTIONSOF THERMAL POISEUILLE
FLOW

Based on the research results form the literature [37], the analytical solutions of

velocity and temperature along the y-axis, and the heat flux (Jx, Jy)can be obtained as:

y y
u =4__ —(@1--),
y max |y ( H) (B1)
I
o~ 1 (B2
y y
J =4 __ —@1-—=)T,
x e ( |_l) (B33)
(To-T.)., 8PrEc, 2y.s
J,=-D 1+ 1-—)7,
y m [ 3 ( H )’ (B3b)

APPENDIX C: ANALYTICAL SOLUTION OF UNSTEADY MASS
DIFFUSION

If the fluid flow is not considered, the CDE as Eq.(3) will be converted into a
unsteady diffusion equation with asource term. Using the method of variabl e separation,

the transient concentration along y-axis can be expressed as:

e .. Nn
C(z,y) =Z@n(r)sn§y 1)
n=1



D)2+ e

where @n(T)ZI;Wn'e dt (C2q)
2 Mk Nz
and =— |-2C, sin(— vy)dy, (C2b)
Vo= l 2Cysin(-_-y)dy

where the computation time 7 can be integrated into the dimensionless time Fo number.
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Tablel Parameters of Toth model

Table Il Physical and transport properties of fluid and porous fixed bed

Figure captions:

FIG.1 Schematic of relationship between the pore scale and the REV scale

FIG.2 Schematic of the Poiseuille flow in a 2D porous channel.

FIG.3 Velocity profilesof the Poiseuilleflow for different Reynoldsand Darcy numbers.
(a) Da=107%, (b) Re=0.1.

FIG.4 Comparisons between MRT-LB results and analytical solutions of the thermal

Poiseuille flow.(a) Temperature, (b)Flux J;, (C)Flux J,.

FIG.5 Comparisons between MRT-LB results and FDM solutions of the thermal
Poiseuille flow in 2D porous channel.(a) Temperature, (b)Flux J,.

FIG.6 Comparisons between MRT-LB results and analytical solutions of the mass



diffusion with an unsteady state source term..(a)k,=0.72, (b) k,=7.2, (c)k,=36.

FIG.7 Schematic of the transfer and adsorption of carbon dioxide in aporous fixed bed.
FIG.8 Breakthrough curves of adsorption process.

FIG.9 Numerical results of the mole flux distribution and transient concentration along
length direction.(@) mole flux, (b) transient concentration.

FIG.10 Effect of LDF mass transfer coefficient on breakthrough curves.

Table | Parameters of Toth model

Parameters Units Value
Om mol/kg 10.05

0 / 0.678
-AH kJ/mol 21.84

o

Keq bar! 7.62




Table Il Physical and transport properties of fluid and porous fixed bed

Dimensionless Value
numbers
& 0.52
Re 9
< 251
K" 93.6

Da 2X10°




Solid matrix Adsorption  Adsorbate

Representatiye e ementary cell

Pore scale REV scale

FIG.1 Schematic of the relationship between the pore scale and the REV scale.
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FIG.2 Schematic of the Poiseuille flow in a2D porous channel.
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FIG.3 Velocity profiles of the Poiseuille flow for different Reynolds and Darcy

numbers. (a) Da=10", (b) Re=0.1.

45

40

35

m Ec=10
® Ec=50
v [Ec=100
Analytical solution

03 04 05 06 07 08 09

00 01 02 1.0
y/H
(@)
5500 T T T T T
5000 m  Ec=10
® Ec=50
4500 - v Ec=100 -
4000 Analytical solution |

250
200
150
100

50

*

™ 0

-50
-100
-150
-200

-250

0.0

0.1

02 03 04 05

y/H

(b)

06 07 08 09 10

m Ec=10

® Ec=50

v Ec=100
-Analytica solution

01 02 03 04 05 06 07 08 09 10
yiH



(©)
FIG.4 Comparisons between MRT-LB results and analytical solutions of the thermal

Poiseuille flow.(a) Temperature, (b)Flux J;, (¢)Flux J,.

10F T T T T T T T T

= Da10°
08| ® Da=10"

v Da=10°
06 ——FDM

0.4} -

00, . v oy
00 01 02 03 04 05 06 07 08 09 10

y/H

@

0.14 T T T T T T T T
m Da=10°

0.12

0.10

0.06

0.04

0.02

ooo M . o . ..
00 01 02 03 04 05 06 07 08 09 10

y/H

(b)

FIG.5 Comparisons between MRT-LB results and FDM solutions of the thermal
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