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The widespread adoption of RAFT polymerization stems partly from the ease and utility of installing a functional 
chain transfer agent onto the ends of the generated polymer chains. In parallel, the Passerini multicomponent 
reaction offers great versatility in converting a wide range of easily accessible building blocks to functional ma-
terials. In this work, we have combined the two approaches such that a single, commonly-available, RAFT agent 
is used in Passerini reactions to generate a variety of multi-functional RAFT chain transfer agents containing 
ester linkages. Reactions to generate the multi-functional RAFT agents took place under mild conditions and in 
good yields. The resulting Passerini-RAFT agents were able to exert control over radical polymerization to gen-
erate materials of well-defined molecular weights and dispersity. Furthermore, the presence in these polymer 
cores of ester and amide functionality through the Passerini chemistries, provided regions in the materials which 
are inherently biodegradable, facilitating any subsequent biomedical applications. The work overall thus demon-
strates a versatile and facile synthetic route to multi functional RAFT chain transfer agents and biodegradable 
polymers. 

The RAFT methodology is one of the most commonly used 

living radical polymerization techniques, due to high versatility 

in chain transfer agents and availability of a wide variety of 

compatible monomers.1 An additional advantage of RAFT 

polymerization is that the chain transfer agent (CTA) function-

ality is retained on the ends of each polymer chain. This phe-

nomenon can be exploited for the derivatization of polymer 

chains through the use of functional CTAs.2 Previous literature 

has demonstrated efficient strategies for the synthesis of RAFT 

CTAs, for example the work by Martens et al3 showed the syn-

thesis of functionalized RAFT agents from a single thiolactone 

precursor, by subjecting the thiolactone to aminolysis with var-

ious amine species in a one-pot approach. However, in this case, 

a full RAFT agent synthesis was required to produce each func-

tionalized RAFT agent, as the different functionalities were in-

troduced through the thiol precursor. Given the diversity of 

structures which can be constructed by RAFT,4 it would be ad-

vantageous if there were to be a simple synthetic route which 

could provide functional chain ends and derivatizable ‘handles’ 

in addition to providing a RAFT terminus for further polymeri-

zation. 

Multicomponent reactions (MCRs), such as the Passerini, 

Ugi and Biginelli reactions, have been widely explored since 

their first reports in the 19th century onwards.5 These MCRs are 

characterized by their combination of three or more reactants in 

one-pot, to form single products in a one-step and mild process. 

Due to their nature, they possess a high degree of versatility and 

atom-economy, and have thus been utilized for a diverse range 

of applications in chemistry, from the synthesis of functional-

ized cyclic scaffolds to drug discovery and biologically-active 

compound screening.6 More recently however, MCRs have 

found prominence in the field of polymer chemistry, as a di-

verse and useful tool for the synthesis of both monomers, poly-

mers and combinatorial libraries of the two.7 Particularly, work 

reported by the groups of Meier8 and Li9 extensively demon-

strate the use of the Passerini three-component reaction between 

an oxo component, an isocyanide, and a nucleophile for post-

polymerization functionalization, polycondensation polymeri-

zations and novel monomer syntheses. In addition, the chemis-

tries underlying the Passerini reaction serve to install ester and 

amide linkages in the polymer backbone, thereby generating 

sites which can be hydrolytically or enzymatically cleaved. As 

a consequence, polymers prepared using these routes are of 



 

great potential interest as biodegradable materials with applica-

tions ranging from structural components to medical devices 

and therapeutics.  

In this work, the Passerini multicomponent reaction was used 

as a facile and versatile method for the introduction of new 

functionalities onto a pre-existing RAFT chain transfer agent. 

Through this strategy, functionalized RAFT agents displaying 

different chemistries could be achieved without the need for 

synthesizing new RAFT agents each time, by utilizing a carbox-

ylic acid terminated CTA. To our knowledge, this is the first 

example to demonstrate the combination of RAFT polymeriza-

tion and the Passerini multicomponent reaction in this way.  

In order to demonstrate this concept, the synthesis of new 

functional RAFT chain transfer agents (CTAs) through the Pas-

serini multicomponent reaction was undertaken using simple 

and commercially available molecules. This allowed for ease of 

characterization of the new RAFT agent structures, while still 

demonstrating the versatility of this approach towards function-

alized RAFT agents. Three new CTAs were proposed through 

Passerini multicomponent reactions. The first was a simple 

modification to the starting CTA through reaction of the termi-

nal carboxylic acid group to further functionalize the CTA (Fig-

ure 1A). For this reaction, benzaldehyde and tert-butyl isocya-

nide were chosen for the aldehyde and isocyanide functionali-

ties respectively. The reaction was carried out in an equimolar 

ratio of all components in DCM at 30 °C for 48 hours, after 

which the product was purified by column chromatography and 

characterized. The use of the phenyl and tert-butyl functionali-

ties provided distinct proton NMR signals for the additional 

components for ease of characterization of the final product. . 

 

Scheme 1. A) Representative synthetic scheme for the synthe-
sis of the Passerini RAFT agents showing CTA-P1, B) the struc-
ture of CTA-P2 and C) the structure of CTA-P3 

The successful synthesis of CTA-P1 was confirmed by NMR, 

Mass Spectrometry, FT-IR and Elemental Analysis (SI). Fol-

lowing this initial modification of the starting CTA, two further 

synthetic targets were proposed, CTA-P2 and CTA-P3. These 

were designed to test the capability of this approach to form 

more complex, bi-functional RAFT agents. For both of these 

syntheses, the Passerini reaction was utilized to couple two 

CTAs together to form a bis-RAFT agent. For CTA-P2, CTA 

and benzaldehyde were reacted in a 2:1 ratio with 1,6-diisocya-

nohexane in order to achieve a bifunctional RAFT agent with 

an alkyl linking chain (Figure 1B). This approach was also car-

ried out with the bifunctionality provided by a bis-aldehyde, 

with CTA-P3 being synthesized from CTA and tert-butyl iso-

cyanide in a 2:1 ratio with hexane-1,6-dial (Figure 1C). The 

successful synthesis of both of these products demonstrated the 

feasibility of the Passerini reaction to couple two CTA mole-

cules together through either a bis-isocyanide or a bis-aldehyde, 

showing an equal reactivity of both functional groups.  

Following the synthesis of the three Passerini-modified 

CTAs, extensive characterization of the purified products was 

carried out to confirm the proposed structures. The proton and 

carbon NMR spectra were fully consistent with the expected 

structures, and mass spectrometry and elemental analysis con-

firmed the purity of the products. The Passerini reaction brings 

together an acid, an aldehyde and an isocyanide to produce an 

amide and an ester bond, with a tertiary carbon situated in be-

tween. The formation of these new moieties could be seen in 

the NMR spectra, as shown in Figure 2, which shows the 1H 

NMR spectra of CTA-P3 as a representative 1H NMR spectra 

of the modified CTAs. The peaks at 5.0 ppm (Figure 2, peak f) 

and 5.7 ppm (Figure 2, peak n) were assigned as the proton on 

the central tertiary carbon and the amide proton that result from 

a successful Passerini reaction respectively. In the 13C NMR 

spectra (SI), the signals at 165-172 ppm are typical of carbonyl 

species, and were assigned to the amide and ester carbonyls 

generated during the reaction. These, in addition to characteris-

tic signals from the CTA in the purified product, such as the 

nitrile carbon at 120 ppm and the thiocarbonyl carbon at 218 

ppm, verified that the proposed reaction occurred. 

 

Scheme 2: Representative 1H NMR of the Passerini RAFT 
agents demonstrating the characterisation of CTA-P3. Assign-
ments and integrals confirm the synthesis of the proposed 
structure. 

To confirm these NMR assignments, 2D NMR experiments 

were performed on all three products. Figure 3 shows the HSQC 

and HMBC experiments for CTA-P3 as representative spectra. 

The HSQC experiment was able to confirm a single bond cor-

relation between the carbon signal at 74 ppm and the proton 

signal at 5.0 ppm. The ppm range in both the proton and carbon 

NMR for these signals agrees with predicted values, and the 

single bond correlation between the two confirms the assign-

ment in both spectra that these signals are associated with the 

central tertiary carbon formed by the Passerini reaction. The 

HMBC experiment further supported these assignments, as well 

as confirming the identity of the two carbonyl carbon species 

between 168 – 170 ppm in the carbon NMR. There was a mul-

tiple-bond correlation between the carbon at 168 ppm and the 

amide proton species at 5.8 ppm, indicating the carbon as the 

carbonyl of the amide bond formed from the Passerini reaction. 

The carbonyl of the ester bond displayed multiple-bond corre-



 

lations between the carbon at 170 ppm and the neighboring pro-

ton species at 5.0 ppm (the tertiary carbon) and the ethylene 

protons from the CEPA RAFT agent (2.3 – 2.7 ppm). These 

results, in addition to all other characterization data obtained for 

the synthesized CTAs, confirmed the modification of the origi-

nal CTA using this strategy. 

 

Figure 1. Representative 2D NMR spectra demonstrating the 
confirmation of peak assignments for CTA-P3. A) HSQC and 
B) HMBC with correlations relevant for positive structure con-
firmation highlighted. 

Next, the ability for the modified RAFT agents to control rad-

ical polymerizations was investigated, to ensure that the modi-

fications to the original CTA would not significantly interfere 

with the reaction kinetics or ability for the CTA to control the 

growth of the propagating polymer species. In order to investi-

gate this, each new CTA, as well as the original unmodified 

CTA, was used for the homopolymerization of both a hydro-

philic monomer (TEGMA) and a hydrophobic monomer 

(MMA). Each polymerization was conducted for 6 hours, tar-

geting a DP of 25. As shown in Figure 4, each CTA was able to 

control the homopolymerization of both monomers. All poly-

mers were synthesized to a DP range of 20-27, with dispersities 

below 1.2. 

 

Figure 2. A) Data for each synthesised polymer and B) GPC 
traces of a) MMA homopolymers and b) TEGMA homopoly-
mers synthesised utilising the Passerini RAFT agents. 

The synthesized polymers utilizing CTAs P2 and P3 demon-

strated polymerizations could take place with bis-RAFT agents. 

This meant that the growing chains propagated from both sides 

of the CTA during the polymerization, however, the GPC data 

showed that the polymerizations were well controlled, despite 

having two propagating chains per CTA.  

We believe that this strategy for forming CTAs with two or 

more functional chain transfer groups could prove a useful 

method for the synthesis of amphiphilic block polymers, simply 

by changing the components of the Passerini reaction. Addi-

tionally, this method could be applied towards the synthesis of 

star or branched polymers by utilizing the CTA as the core unit. 

In this short communication we have demonstrated the principle 

of coupling two orthogonal reaction chemistries to generate 

small/intermediate size chain transfer agents and methacrylate-

based polymers, but the methodology could be adapted to mac-

romonomers and long-chain RAFT agents from Passerini-type 

oligomers and pre-polymers. 

 



 

Conclusions 

In this work, the Passerini reaction was employed as a facile 

method for the functionalization of RAFT chain transfer agents. 

This method does not require the synthesis of new individual 

RAFT agents, but instead allows for the modification of a single 

CTA to include new functionalities. The Passerini reaction has 

a wide functional group tolerance, and therefore it is possible to 

modify the RAFT agents to include a very wide range and com-

bination of functional groups. Additionally, the modified CTAs 

were able to control the RAFT polymerization of both a hydro-

philic and hydrophobic monomer, as well as demonstrating ap-

plicability for the synthesis of amphiphilic or branched poly-

mers. 
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