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Abstract		
Glioblastoma	multiforme	(GBM)	is	the	most	aggressive	and	common	malignant	brain	
and	central	nervous	system	tumour.	A	well-known	hallmark	of	GMB,	and	many	other	
tumours,	is	aerobic	glycolysis.	microRNAs	(miRNAs)	are	a	class	of	short	non-protein	
coding	sequences	that	exert	post-transcriptional	controls	on	gene	expression	and	
represent	critical	regulators	of	aerobic	glycolysis	in	GBM.	In	GBM,	miRNAs	regulate	the	
expression	of	glycolytic	genes	directly	and	via	the	regulation	of	metabolism-associated	
oncogenic	pathways,	such	as	the	PI3K/Akt	signalling	pathway.	The	aim	of	this	review	is	
to	establish	links	between	miRNA	expression	levels,	disease	grade	and	prognosis,	and	
the	glycolytic	phenotype	of	GBM.	In	this	review,	the	involvement	of	25	miRNAs	in	the	
regulation	of	glycolytic	metabolism	of	GBM	is	discussed.	Seven	of	these	miRNAs	have	
been	shown	to	regulate	glycolytic	metabolism	in	other	tumour	types.	Further	eight	
miRNAs,	which	have	been	shown	to	be	differentially	expressed	in	GBM,	were	also	
reported	to	play	a	regulatory	role	in	glycolysis	in	other	cancer	types.	Such	miRNAs	
could	serve	as	potential	glycolytic	regulators	in	GBM	but	require	functional	validation.	
This	review	concludes	with	presenting	a	number	of	glycolytic	regulatory	miRNAs	that	
have	demonstrated	their	therapeutic	potential	either	alone	or	as	adjuvants	in	GBM,	
despite	the	major	challenges	that	have	to	be	solved	before	miRNA-based	therapies	can	
widely	be	used	for	the	treatment	of	GBM	patients.	
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1. Introduction	
1.1	Glioblastoma	multiforme	
Glioblastoma	multiforme	(GBM)	represents	12-15%	of	all	intracranial	tumours.1	GBM	is	
the	most	common	and	aggressive	form	(World	Health	Organization	(WHO)	grade	IV)	of	
glioma,	an	umbrella	term	for	tumours	thought	to	originate	from	glial	progenitors	such	
as	 astrocytomas.2,3	 Primary	GBM,	which	 comprises	90%	of	 all	 diagnosed	GBM	cases,	
arises	 de	 novo,	 whilst	 pre-existing	 low-grade	 glioma:	 grade	 I	 (pilocytic	 astrocytoma)	
and	 grade	 II	 (diffuse	 astrocytoma)	 can	 develop	 into	 high-grade	 glioma:	 grade	 III	
(anaplastic	 astrocytoma)	 that	 give	 rise	 to	 secondary	 GBM	 which	 constitutes	 the	
remaining	 10%	 of	 GBM	 cases.3	 In	 general,	 GBM	 shows	 an	 increased	 incidence	 in	
Caucasian	 populations.4	 In	 the	 UK	 and	 the	 United	 States	 alone,	 the	 annual	 GBM	
incidence	 rate	 ranges	 between	 4.64-5.26		 per	 100,000	 people.5,6	 GBM	 treatment	
consists	 of	maximal	 surgical	 resection	 followed	by	 local	 radiotherapy	 in	 concurrence	
with	 adjuvant	 Temozolomide	(TMZ)	 chemotherapy.7,8	 However,	 GBM	 prognosis	
remains	poor	with	a	median	overall	survival	of	14	months	and	a	5-year	survival	rate	of	
less	than	10%.9,10	
1.2	Regulation	of	glycolytic	metabolism	by	oncogenic	signalling	in	GBM	
GBM	is	characterised	by	upregulated	aerobic	glycolysis	compared	to	normal	brain.11,12		
Aerobic	glycolysis,	also	known	as	the	Warburg	effect,	is	a	catabolic	process	that,	in	the	
presence	 of	 oxygen,	 converts	 one	 glucose	 molecule	 into	 two	 lactate	 molecules.13		
Aerobic	glycolysis	is	driven	by	several	molecular	mechanisms	(reviewed	in14).	A	major	
mechanism	 is	 the	overexpression	of	glycolytic	genes	caused	by	 somatic	mutations	 in	
the	encoding	genes	or	 in	 the	oncogenes	and	 tumour	 suppressor	genes	 that	 regulate	
the	 expression	 of	 glycolytic	 genes.	 Comprehensive	 genomic	 characterisation15	 using	
206	GBM	samples	performed	by	 The	Cancer	Genome	Atlas	 (TCGA)	Network	 showed	
that	 genetic	 alterations	 were	 frequently	 found	 within	 the	 oncogenic	
phosphatidylinositol	 3-kinase	 (PI3K)/	 protein	 kinase	 B	 (Akt)	 pathway.	 The	 PI3K/Akt	
pathway	plays	an	important	role	in	the	regulation	of	GBM	glycolytic	metabolism.	The	
PI3K/Akt	 role	 in	 glycolysis	 was	 supported	 by	 Elstrom	 et	 al.	 (2004)16	 who	 observed	
differences	in	the	glycolytic	rates	of	various	GBM	cell	lines	which	were	then	attributed	
to	the	differences	in	Akt	activity	levels	in	these	cells.	In	their	study,	two	GBM	cell	lines	
were	grown	in	normal	glucose	conditions;	LN18	cells	with	constitutive	Akt	activity,	as	
measured	 by	 Akt	 phosphorylation,	 showed	 higher	 rates	 of	 aerobic	 glycolysis	 than	
LN229	 cells	 with	 low	 Akt	 activity.	 The	 inhibition	 of	 the	 upstream	 regulator,	 PI3K,	
abolished	Akt	phosphorylation	and	reduced	the	glycolytic	rate	of	LN18	cells	while	the	
overexpression	 of	 Akt	 in	 LN299	 cells	 was	 sufficient	 to	 stimulate	 high	 rate	 of	
glycolysis.16	 Inter-tumour	 heterogeneity	 within	 the	 PI3K/Akt	 pathway	 was	 also	
suggested	to	be	responsible	for	the	different	clinical	outcomes	of	molecular	targeted	
therapy.	As	such,	it	was	proposed	that	GBM	can	be	classified	into	five	GBM	subgroups	
with	 different	molecular	 and	 clinical	 characteristics	 based	 on	 their	 distinct	 PI3K/Akt		
pathway	signature.17	
1.3	PI3K/Akt	signalling	in	GBM	
Using	91	GBM	samples,	the	TCGA	study	showed	that	within	the	PI3K/Akt	pathway,	the	
receptors	 tyrosine	 kinases	 (RTKs):	 hepatocyte	 growth	 factor	 receptor	 (encoded	by	c-



Met)	and	platelet-derived	growth	factor	receptor-α	(PDGFRA),	are	aberrantly	activated	
in	4%	and	13%	of	GBMs,	 respectively.15	However,	 gain	of	 function	mutations	and/or	
amplification	in	the	epidermal	growth	factor	receptor	(EGFR)	are	the	most	common	in	
GBM	 (45%	 of	 GBM	 cases).15	 Active	 EGFR	 signals	 via	 multiple	 effector	 pathways	
including	RAS	and	PI3K	signalling	cascades.	The	cytoplasmic	domain	of	 	EGFR	recruits	
adaptor	proteins	 to	activate	RAS.18	Moreover,	 the	activation	of	RAS	signalling	can	be	
achieved	through	losing	the	expression	of	the	RAS	antagonist,	neurofibromin	1	(NF1),	
which	 is	 observed	 in	 about	 14%	 of	 GBM	 cases.15	 RAS	 activates	 PI3K	while	 PI3K	 can	
independently	be	activated	by	the	cytoplasmic	domain	of	EGFR.19,20	PI3K	is	aberrantly	
activated	 in	 15%	 of	 GBMs.15	 Activated	 PI3K	 catalyses	 the	 phosphorylation	 of	
phosphatidylinositol	 (4,5)-bisphosphate	 (PIP2)	 into	 phosphatidylinositol	(3,4,5)-
trisphosphate	(PIP3)21,	 which	 can	 be	 reversed	 by	 the	 phosphatase	 tensin	 and	
homologue22	 (PTEN;	 homozygous	 deletions	 and	 mutations	 are	 found	 in	 36%	 of	
GBMs).15	 Following	 its	 recruitment	 into	 the	 plasma	 membrane	 by	 PIP3,	 Akt	 is	
phosphorylated	by	 3-phosphoinositide-dependent	 protein	 kinase	 1	 (PDK1).23,24	 Akt	 is	
found	 to	 be	 amplified	 in	 2%	 of	 GBMs.15	 Activated	 Akt	 activates	 both	 the	 rapamycin	
sensitive	mTOR	complex	1	(mTORC1)	and	the	rapamycin	 insensitive	mTOR	complex	2	
(mTORC2).	 First,	 Akt	 phosphorylates	 the	 SIN1	 subunit	 of	mTORC2,	 thus,	 induces	 the	
activation	 of	 mTORC2.	 In	 a	 positive	 feedback	 loop,	 mTORC2	 phosphorylates	 and	
thereby	 fully	 activates	 Akt.25	 Second,	 Akt	 phosphorylates	 and	 inhibits	 TSC2	 thereby	
relieving	the	inhibitory	effects	of	the	TSC1-TSC2	complex	on	mTORC1.26–28	mTORC1	is	
also	negatively	regulated	by	the	energy-sensing	AMP-activated	protein	kinase	(AMPK).	
The	reduction	in	ATP	causes	an	increase	in	the	AMP:ATP	ratio	leading	to	the	activation	
of	AMPK.29,30	AMPK	mediates	an	activating	phosphorylation		of	TSC2	and	an	inhibitory	
phosphorylation	of	 the	 mTORC1	 subunit	 Raptor31,32	 (Figure	 1a).	 In	 GBM,	 PI3K/Akt	
signalling	 upregulates	 c-Myc33	 and	 the	 hypoxia	 induced	 factor	 (HIF),	 under	 aerobic	
conditions	and	independent	of	hypoxia34;	both	of	which	upregulate	glycolysis.35–38	
	
1.4	MicroRNAs	
microRNAs	 (miRNAs)	 are	 a	 class	 of	 small	 non-coding	 RNA	 that	 regulate	 gene	
expression	 at	 the	 post-transcriptional	 level.39	 The	 primary	 transcripts	 of	miRNA	 (pri-
miRNA)	are	processed	by	Drosha,	 a	nuclear	RNAse	 III	 enzyme,	 into	20-22	nucleotide	
RNA	 duplexes	 called	 precursor	miRNAs	 (pre-miRNAs).40	 Pre-miRNAs	 are	 exported	 to	
the	cytoplasm	for	 further	processing	by	Dicer,	a	cytoplasmic	RNAse	 III	enzyme.41	The	
result	 for	each	pre-miRNA	 is	a	mature	miRNA	strand	that	 is	 loaded	onto	the	miRNA-
induced	 silencing	 complex	 (miRISC)	 and	 a	 passenger	 strand	 that	 is	 degraded.42	 Post-
transcriptional	 gene	 silencing	 is	 arbitrated	 by	 the	 complementary	 binding	 of	 the	
mature	miRNA	 strand	within	miRISC	 to	 the	 target	mRNA	 3’-untranslated	 region	 (3’-
UTR).42	 In	GBM,	besides	acting	as	biomarkers43,	miRNAs	regulate	glucose	metabolism	
by	 targeting	mRNAs	of	 the	glycolytic	genes	and	 the	signalling	proteins	 that	drive	 the	
expression	of	glycolytic	genes.		
This	 review	 aims	 to	 establish	 links	 between	miRNA	 expression	 levels,	 disease	 grade	
and	prognosis,	and	the	glycolytic	phenotype	of	GBM.	First,	the	review	will	discuss	the	
role	of	miRNAs	 in	regulating	GBM	glycolytic	metabolism	by	targeting	glycolytic	genes	
(Figure	 1b)	 and	 via	 the	 PI3K/Akt	 pathway	 (Figure	 1a).	 The	 review	 will	 then	 present	



differentially	 expressed	miRNAs	 in	 GBM	which	 were	 reported	 to	 be	 involved	 in	 the	
regulation	 of	 glycolytic	 metabolism	 in	 other	 tumours.	 Such	 miRNAs	 could	 serve	 as	
potential	glycolytic	regulators	in	GBM,	yet	to	be	experimentally	validated.	Finally,	the	
review	 will	 conclude	 with	 the	 discussion	 of	 the	 potential	 of	 targeting	 glycolytic	
metabolism	with	miRNA-based	therapy	in	GBM.	
2.	miRNA	regulation	of	glycolytic	metabolism	in	GBM		
2.1	miRNA	regulation	of	glycolytic	transporters		
Akt	controls	the	flux	of	glucose	through	glycolysis	by	regulating	the	expression	and	the	
membrane	translocation	of	glucose	transporter	1	and	3	(GLUT1	and	GLUT3)	which	are	
upregulated	in	GBM.44,45	miR-106a	targets	SLC2A3	which	encodes	GLUT3.46	miR-106a	is	
downregulated	in	GBM	compared	 to	normal	brain.46	 The	 low	miR-106a	expression	 is	
associated	with	shorter-term	survival	of	GBM	patients.46–48	Moreover,	the	expression	
of	miR-106a	in	high-grade	glioma	is	lower	than	that	in	low-grade	glioma,	an	expression	
pattern	 that	 is	 opposite	 to	 GLUT3.45,46,49	 Thus,	 miR-106a	 downregulation	 promotes	
glycolysis	by	releasing	the	suppression	on	GLUT3.	
2.2	miRNA	regulation	of	glycolytic	enzymes		
Akt	 regulates	 glycolysis	 by	 enhancing	 the	 activity	 and	 the	 cellular	 localisation	 of	 the	
cancer-predominant	 isoform	of	 the	 first	glycolytic	enzyme,	hexokinase	 II	 (HKII).50	The	
expression	of	glycolytic	enzymes,	 is	also	regulated	by	miRNAs.	miR-143	targets	HKII51	
and	is	found	to	be	downregulated	in	GBM	compared	to	low-grade	glioma	and	normal	
brain.51,52	 miR-143	 expression	 is	 negatively	 correlated	 with	 HKII	 levels51	 which	 is	
associated	with	poor	prognosis.53	 	 Another	 glycolytic	 enzyme,	PKM2,	 is	 regulated	by	
the	miRNA,	 let-7a.54	 PKM2	 is	 the	M2	 isoform	 of	 pyruvate	 kinase	 (PK),	 the	 terminal	
glycolytic	enzyme	which	converts	phosphoenolpyruvate	(PEP)	to	pyruvate.55		PKM2	has	
a	relatively	decreased	enzymatic	activity	which	leads	to	the	accumulation	of	upstream	
glycolytic	 intermediates	 that	 can	 be	 channelled	 into	 the	 biosynthetic	 pathways.56		
PKM2	is	selectively	expressed	at	low	levels	in	GBM		but	is	completely	absent	in	normal	
brain.30	 c-Myc,	 which	 is	 also	 targeted	 by	 let-7a,	 upregulates	 the	 expression	 of	 the	
heterogeneous	nuclear	ribonucleoprotein	A1	(hnRNPA1)	splicing	factor	which,	in	turn,	
downregulates	 let-7a	 in	 a	 positive	 feedback	 loop.54	 hnRNPA1	 binds	 to	 the	 pri-let-7a	
and	blocks	 its	processing	by	Drosha.57	 In	addition,	HnRNPA1	mediates	 the	splicing	of	
PK	into	the	PKM2	isoform	as	well	as	that	of	the	Myc-interacting	partner	Max	into	the	
Delta	Max	isoform.	Delta	Max	forms	a	complex	with	c-Myc	to	drive	the	transcription	of	
the	 c-Myc	 target	 genes,	 including	 hnRNPA1.58–61	 As	 such,	 let-7a/c-
Myc/hnRNPA1/PKM2	regulatory	loop	ensures	the	downregulation	of	let-7a	in	order	for	
PKM2	 to	 be	 expressed	 in	 GBM.	 Another	 miRNA	 which	 targets	 PKM2,	 miR-326,	 is	
downregulated	 in	 GBM	 compared	 to	 normal	 brain	 as	 a	 result	 of	 the	 decreased	
transcription	of	its	host	gene,	β-arrestin1.30,62	In	GBM	cells,	the	overexpression	of	miR-
326	or	 the	 knock-down	of	 its	 target,	 PKM2,	 reduced	 cellular	proliferation,	metabolic	
activity	 and	 ATP	 levels.30	 Such	 decrease	 in	 ATP	 levels	 was,	 however,	 rescued	 by	
transfecting	 GBM	 cells	 with	 PKM2	 mRNA	 lacking	 the	 3ʹ-UTR	 which	 renders	 them	
insensitive	 to	 miR-326.30	 Therefore,	 miR-326	 mediates	 its	 effects	 on	 tumour	
metabolism	by	repressing	PKM2	expression.		



2.3	miRNA	regulation	of	RTKs	
c-Met	 is	a	target	of	miR-410,	which	is	downregulated	in	GBM	compared	to	low-grade	
glioma	 and	 normal	 brain.63	 c-Met	 is	 also	 targeted	 by	 miR-144-3p	 which	 is	
downregulated	 in	 GBM.64	miR-144-3p	 expression	 is	 inversely	 correlated	with	 glioma	
grade	 and	 overall	 patient	 survival.64	 The	 expression	 of	 miR-34a,	 another	 negative	
regulator	of	c-Met,	is	also	inversely	correlated	with	glioma	grade.65–68		Moreover,	miR-
34a	 expression	 in	 GBM	 is	 supressed	 by	 PDGFRA,	 which	 is	 targeted	 by	miR-34a	 in	 a	
negative	 feedback	 loop.65	 The	 administration	 of	 imatinib,	 an	 inhibitor	 developed	 for	
BCR-ABL	which	can	also	inhibit	PDGFR,	KIT	and	ARG69,70,	reversed	the	negative	effect	of	
PDGFRA	on	miR-34a	expression.65	 Furthermore,	miR-128,	which	 targets	PDGFRA	 and	
EGFR71,	 is	 downregulated	 in	 GBM	 relative	 to	 low-grade	 glioma.72–76	 EGFR	 is	 also	
targeted	 by	 miR-219-5p,	 which	 is	 downregulated	 in	 GBM.77,78	 In	 addition,	 EGFR	 is	
indirectly	 regulated	 by	 miR-21	 which	 targets	 the	 EGFR	 transcriptional	 activator	
STAT3.79,79–82	The	expression	of	miR-21	 is	positively	correlated	with	glioma	grade	and	
decreased	 patient	 survival.77,79,83–95	 Further	 links	 between	 miRNA	 and	 the	 glycolysis	
regulating	PI3K/Akt	 signalling	pathway	 in	GBM	were	suggested	by	Kefas	et	al.	 (2008)	
and	Webster	 et	 al.	 (2009)	who	 proposed	 that	EGFR	 is	 targeted	 by	miR-7.96,97	miR-7	
shows	 a	 brain-specific	 expression,	 however,	 miR-7	 shows	 a	 relatively	 decreased	
expression	 in	GBM.98	Although,	pri-miR-7	 levels	 are	 similar	 in	both	GBM	and	normal	
brain,	pre-miR-7	levels	are	decreased	in	GBM.	This	suggests	that	changes	of	regulatory	
mechanisms	that	control	the	processing	of	pri-miR-7	to	pre-miR-7	could	be	responsible	
for	the	decrease	in	miR-7	expression	in	GBM.96	
2.4	miRNA	regulation	of	the	RAS	and	its	antagonist,	NF1	
One	of	 the	effectors	of	 the	RTK	signalling	 is	 the	RAS	pathway.	RAS	 is	antagonised	by	
NF1	which	is	regulated	by	miR-9.99	miR-9	is	upregulated	in	GBM	and	is	associated	with	
poor	 prognosis.99,100	 Furthermore,	 N-RAS	 is	 regulated	 by	 miR-143101,	 which	 targets	
HKII51,	 and	by	miR-340,	which	 is	 downregulated	 in	GBM.102,103	miR-340	expression	 is	
associated	with	poor	prognosis.102,103	Moreover,	K-RAS	is	regulated	by	let-7a105,	which	
regulates	both	PKM2	and	c-Myc54.		K-RAS	is	also	regulated	by	miR-134,	which	is	found	
to	be	downregulated	in	GBM.104	
2.5	miRNA	regulation	of	PI3K/Akt	and	the	PI3K	antagonist,	PTEN	
miR-7,	mentioned	 above	 to	 regulate	 EGFR,	 also	 targets	PI3K.	 The	 overexpression	 of	
miR-7	 was	 shown	 to	 downregulate	 PI3K	 expression	 in	 a	 dose-dependent	 fashion.98		
miR-542-3p,	 which	 targets	 Akt	 (specifically	 Akt1),	 is	 downregulated	 in	 GBM	 and	 is	
negatively	 correlated	 with	 glioma	 grade	 and	 is	 associated	 with	 poor	 prognosis.105	
Another	 EGFR	 	 regulator,	 miR-21,	 regulates	 the	 PI3K	 antagonist,	 PTEN.79	 miR-21	 in	
GBM	 targets	 and	downregulates	PTEN	while	 the	 knock-down	of	miR-21	 leads	 to	 the	
upregulation	 of	 PTEN.79	 In	 GBM,	 PTEN	 is	 also	 targeted	 by	 miR-26a,	 which	 is	
upregulated	 by	 c-Myc.106	 However,	 copy	 number	 amplification	mainly	 underlies	 the	
upregulation	of	miR-26a	 in	GBM.72,107,108	Another	 negative	 regulator	 of	PTEN	 is	miR-
1908	which	is	upregulated	in	GBM	relative	to	normal	brain	and	low-grade	glioma	and	
is	associated	with	poor	prognosis.109	The	expression	of	PTEN	is	also	repressed	by	miR-
494-3p	and	miR10a/10b,	which	are	upregulated	in	GBM.110,111	Moreover,	the	high	miR-
10b	expression	levels	correlates	with	poor	prognosis	in	GBM	patients.112	Furthermore,	



PTEN	 is	 targeted	 by	 miR-221/-222,	 clustered	 in	 Xp11.3,	 which	 is	 found	 to	 be	
upregulated	in	high-grade	relative	to	low-grade	glioma.72,113		
2.6	miRNA	regulation	of	AMPK/mTOR	
mTORC1,	a	positive	regulator	of	c-Myc,	is	negatively	regulated	by	AMPK	which	in	turn	
is	 negatively	 regulated	 by	 miR-451.114	 The	 expression	 of	 miR-451	 is	 found	 to	 be	
elevated	 in	GBM	patient	 samples	which	correlated	with	poor	prognosis.	 .114	miR-451	
targets	CAB39,	the	binding	partner	for	the	protein	kinase	LKB1	which	phosphorylates	
and	activates	AMPK.114	 The	high	expression	 levels	of	miR-451	are	maintained	by	 the	
activity	of	the	transcription	factor	OCT1.115	This	forms	a	positive	feedback	loop	where	
low	AMPK	activity	caused	by	miR-451	upregulations	allows	OCT1	to	further	drive	miR-
451	expression.115	Furthermore,	the	expression	of	mTORC1	and	mTORC2	 is	supressed	
by	 miR-199a-3p	 which	 is	 downregulated	 in	 GBM	 compared	 to	 normal	 brain.116	
However,	the	expression	of	miR-199a-3p	was	not	significantly	different	between	low-
grade	 and	 high-grade	 glioma.116	 Moreover,	 the	 mTORC2	 binding	 partner	 Rictor	 is	
targeted	by	miR-34a.66,117	miR-34a	expression,	which	is	downregulated	in	GBM65–68,	is	
negatively	correlated	with	Rictor	expression,	which	is	associated		with	shorter	patients’	
survival.66	
2.7	miRNA	regulation	of	FoxO3a/c-Myc	
mTORC2	 positively	 regulates	 c-Myc	 expression	 by	 supressing	 FoxO3a.	 FoxO3a	
enhances	 the	expression	of	miR-34c	which	directly	 targets	c-Myc.33	mTORC2	 inhibits	
the	phosphorylation	of	class	IIa	histone	deacetylases	(HDACs)	rendering	them	inactive.	
As	 such,	 FoxO3a	 remains	 in	 its	 acetylated	 inactive	 form.	 Thus,	 the	 inactivation	 of	
FoxO3a	 relieves	 the	 miR-34c-mediated	 suppression	 on	 c-Myc.33	 In	 addition	 to	 its	
suppression	 by	 mTORC2,	 the	 expression	 of	 FoxO3a	 is	 supressed	 by	 miR-mediated	
mechanisms	 in	 GBM.	 FoxO3a	 is	 negatively	 regulated	 by	 miR-27a,	 which	 is	 highly	
expressed	in	GBM	relative	to	low-grade	glioma	and	normal	brain	and	is	associated	with	
faster	disease	progression	and	shorter	patient	survival.118	miR-155	is	another	negative	
regulator	of	FOXO3a	which	is	upregulated	in	GBM		compared	to	normal	brain.119		The	
expression	 of	 miR-155	 positively	 correlates	 with	 glioma	 grade	 and	 poor	
prognosis.120,121	
Overall,	each	component	of	 the	PI3K/Akt	pathway	 is	 tightly	 regulated	by	miRNAs.	As	
such,	miRNAs	 that	 supress	 glycolytic	metabolism	 directly	 (Figure	 1b)	 or	 through	 the	
PI3K/Akt	pathway	(Figure	1a)	are	downregulated	while	those	that	promote	glycolysis	
are	upregulated	 in	GBM	as	 seen	 from	the	above	discussion.	The	expression	 levels	of	
these	miRNAs	are	either	(i)	invariant	across	the	different	grades	of	glioma,	suggesting	
that	 the	 expression	 change	 of	 a	 particular	miRNA	might	 signify	 a	 key	early	 event	 in	
gliomagenesis,	 or	 (ii)	 can	 distinguish	 different	 glioma	 grades,	 thereby	 serving	 as	 a	
potential	biomarkers	of	glioma	progression.118,122		
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Figure	 1.	 miRNA	 regulation	 of	 glycolysis	 in	 GBM.	 (a)	 miRNAs	 regulating	 PI3K/Akt	
pathway	 in	 GBM.	 (b)	 miRNA	 regulating	 glycolytic	 enzymes	 in	 GBM.	 Arrowheads	
designate	positive	 regulation.	Blunt	ends	designate	negative	 regulation.	Dashed	 lines	
indicate	indirect	effects.	Green	and	red	ovals	indicate	upregulated	and	downregulated	
miRNAs.	P:	phosphate.	P-:	phospho-.	BP:	bisphosphate.	PDK:	pyruvate	dehydrogenase	
kinase.	PKM2:	pyruvate	kinase	type	M2.	
	
3.	miRNA	regulating	aerobic	glycolysis	in	other	tumour	types	are	also	differentially	
expressed	in	GBM.	
Many	cancers	appear	to	rely	on	aerobic	glycolysis	to	fulfil	their	bioenergetic	and	
anabolic	requirements,	evade	apoptosis	and	counteract	oxidative	stress.123–127	Here,	
we	attempt	to	link	several	miRNAs	that	regulate	the	PI3K/Akt	signalling	in	GBM,	as	
mentioned	above,	to	their	documented	metabolic	regulatory	role	in	different	cancers;	
these	include	miR-144,	miR-143/miR-155,	miR-128,	miR-34a,	miR-340	and	miR-26a	as	
discussed	below	(Figure	2).	miR-144,	which	is	downregulated	in	GBM64,	was	found	to	

(b)	



target	GLUT1	in	lung	cance.128	The	overexpression	of	miR-144	in	lung	cancer	cell	lines	
has	resulted	in	the	reduction	of	glucose	uptake	and	lactate	production.128	
Furthermore,	miR-143,	which	is	downregulated	in	GBM51,52,	has	been	identified	as	a	
direct	regulator	of	HKII	in	head	and	neck	squamous	cell	carcinoma	(HNSCC)	and	in	
colon	and	lung	cancer.	Like	in	GBM,	miR-143	expression	is	downregulated	in	these	
tumours.129–131	Moreover,	in	breast	cancer,	miR-155	was	shown	to	indirectly	
upregulate	HKII	by	repressing	the	miR-143	transcriptional	activator,	CCAAT/enhancer	
binding	protein	(C/EBP)	β.132	miR-155	was	also	shown	to	promote	HKII	transcription	by	
upregulating	the	expression	of	the	HKII	transcriptional	activator,	STAT3.132	Similar	to	
GBM,	miR-155	expression	is	elevated	in	breast	cancer	and	correlated	with	short	
survival	and	unfavourable	clinical	outcomes.121,133	miR-128,	which	is	downregulated	in	
GBM72–76,	was	reported	to	target	PFK	in	lung	cancer.134	miR-128	expression	is	
downregulated	in	lung	cancer	and	is	associated	with	poor	prognosis.134	Another	
miRNA,	miR-34a,	which	is	downregulated	in	GBM65–68,	is	also	expressed	at	low	levels	in	
breast	cancer.135,136	In	breast	cancer,	miR-34a	targets	Lactate	dehydrogenase	A	
(LDHA).135,136	In	addition,	in	colon	cancer,	the	PK	alternative	splicing	proteins,	
hnRNPI/hnRNAPA1/hnRNAPA2,	are	targeted	by	miR-340,	miR-124	and	miR-137,	which	
are	downregulated	in	GBM.102,103,137	In	GBM,	miR-137	downregulation	is	associated	
with	poor	prognosis.137–141	In	colon	cancer,	these	three	miRNAs,	miR-340,	miR-124	and	
miR-137,	which	target	hnRNPI/hnRNAPA1/hnRNAPA2,	are	downregulated	in	order	to	
promote	the	mutually	exclusive	alternative	splicing	of	PK	into	the	PKM2,	which	is	a	key	
glycolytic	adaptation	in	cancer.142	Finally,	miR-26a,	which	is	upregulated	in	GBM72,106–

108,	is	also	upregulated	and	can	target	pyruvate	dehydrogenase	protein	X	component	
(PDHX)	in	colon	cancer.143	This	would,	therefore,	promote	glycolysis	and	inhibit	
oxidative	phosphorylation	(OXPHOS)	by	supressing	the	expression	of	PDHX	in	order	to	
block	the	conversion	of	pyruvate	into	acetyl	coenzyme	A;	thereby	preventing	the	entry	
of	pyruvate	into	the	citric	acid	cycle.143	
Other	differentially	expressed	miRNAs	in	GBM	have	been	shown	to	be	involved	in	the	
regulation	of	 glycolytic	 transporters	 in	other	 tumours.	miR-1291,	 for	example,	which	
targets	GLUT1,	is	downregulated	in	several	cancers	including	renal	cell	carcinoma	(RCC)	
and	 GBM.144	 In	 bladder	 cancer,	 miR-195-5p,	 which	 targets	 GLUT3,	 is	 also	
downregulated.145		 Moreover,	 miR-195-5p	 overexpression	 was	 shown	 to	 decrease	
glucose	uptake.145	In	GBM,	miR-195-5p	is	downregulated	and	its	decreased	expression	
is	 associated	 with	 poor	 prognosis.83,146	 In	 tongue	 squamous	 cell	 carcinoma	 (TSCC),	
another	 glycolytic	 enzyme,	 PKM2,	 is	 targeted	 by	 miR-133a/133b,	 which	 are	
downregulated	 in	 TSCC	 and	 in	 GBM.147–149	 Moreover,	 miR-122,	 which	 also	 targets	
PKM2,	 is	 downregulated	 in	 hepatocellular	 carcinoma	 (HCC)150	 and	 GBM,	 where	 it	
correlates	with	shorter	patients	survival.151	Moreover,	the	overexpression	of	miR-122	
was	 shown	 to	 switch	 HCC	 cell	 metabolism	 from	 aerobic	 glycolysis	 to	 OXPHOS.150	
Furthermore,	miR-124,	which	is	downregulated	in	GBM139,	has	been	found	to	also	be	
downregulated	 in	 medulloblastoma	 (MB).152	 miR-124	 was	 reported	 to	 regulate	 the	
transport	 of	 lactate	 into	 the	 extracellular	 space	 by	 targeting	 the	 lactate	
monocarboxylate	transporter	1	(MCT1)	in	MB.152	Of	interest,	miR-124	was	reported	to	
target	STAT3	in	GBM.153	Since	STAT3	is	a	transcriptional	activator	for	HKII	in	colorectal	
and	esophageal	cancer154,155,	miR-124	downregulation	in	GBM	could	be	speculated	as	



another	 miR-mediated	 mechanism	 of	HKII	 upregulation.	 Another	 glycolytic	 enzyme,	
PFK,	which	is	targeted	by	miR-128	as	mentioned	above,	is	also	targeted	by	miRNA-320	
in	 lung	 cancer.	 156	 miR-320	 expression	 is	 downregulated	 in	 both	 lung	 cancer156	 and	
GBM.157	 A	 final	 example	 of	 differentially	 expressed	 miRNAs	 in	 GBM	 that	 regulate	
glycolysis	in	other	cancers	is	miR-375,	which	targets	LDHB	in	maxillary	sinus	squamous	
cell	carcinoma	(MSSCC).158–160	miR-375	is	downregulated	in	MSSCC	and	GBM,	and	this	
associates	with	low	survival	rate.158–160		
Together,	these	miRNAs	which	regulate	glucose	metabolism	in	different	tumours	can	
serve	 as	 potential	 glycolytic	 regulators	 in	 GBM.	 It	 must	 be	 noted,	 however,	 that	
despite	 their	differential	expression	 in	GBM,	which	could	suggest	a	similar	metabolic	
regulatory	role	in	GBM	tumours,	these	miRNAs	have	not	yet	been	described	in	relation	
to	GBM	glycolysis.	 Thus,	 carrying	 out	 functional	 validation	 studies	 in	GBM	would	 be	
necessary	 in	order	to	establish	such	links	between	miRNA	expression	levels	and	their	
regulatory	role	in	glucose	metabolism.	
	

	
Figure	2.	Differentially	expressed	miRNA	in	GBM	which	are	involved	in	the	regulation	
of	glycolysis	in	other	tumours.	Downregulated	miRNAs	are	shown	in	red	ovals.	Blunt	
ends	designate	negative	regulation.	Double	lines	represent	cell	membrane.	Dashed	red	



lines	denote	indirect	regulation.	Dashed	black	lines	indicate	that	several	steps	have	
been	omitted.		
	
4.	miRNA	 targeting	 as	 a	 therapeutic	 approach	 against	 GBM	 glycolytic	metabolism.	
Targeting	miRNAs,	which	can	simultaneously	target	multiple	genetic	pathways,	has	the	
potential	 to	 disrupt	 glycolytic	 metabolism	 and	 overcome	 the	 limitations	 in	 current	
GBM	therapy.161,162	However,	the	potential	of	off-target	effects,	low	stability	and	short	
half-life	 in	plasma	of	miRNAs163	and	the	 lack	of	efficient	delivery	systems	for	miRNA-
based	 therapy164	 present	 major	 challenges	 that	 would	 need	 to	 be	 solved	 before	
miRNA-based	therapies	can	widely	be	used	for	the	treatment	of	GBM	patients.		
In	 spite	of	 the	major	 challenges,	a	number	of	glycolysis	 regulating	miRNAs	discussed	
above	have	 in	vitro	 or/and	 in	vivo	demonstrated	their	therapeutic	potential	 in	GBM.	
Therapeutic	 targeting	 of	 miRNAs	 may	 be	 accomplished	 by:	 the	 inhibition	 of	 the	
overexpressed	 miRNAs	 or	 the	 replacement	 of	 downregulated	 miRNAs,	 as	 described	
below.	In	the	first	strategy,	miRNA	antagonists	(antagomiRs	or	anti-miRs)	are	used	to	
inhibit	 miRNA	 function.	 Anti-miRs	 are	 antisense	 oligonucleotides	 which	 are	
complementary,	 and	 bind	 to,	 the	mature	miRNAs	 in	 order	 to	 prevent	 its	 interaction	
with	the	miRISC	complex.165	Corsten	et	al.	 (2007)	transfected	GBM	cell	 lines	with	 	an	
anti-miR-21,	implanted	them	into	mice	intracranially	and	monitored	their	growth	over	
6	 days.95	The	 knockdown	 of	 miR-21	 resulted	 in	 a	 remarkable	 reduction	 in	 tumour	
volume.95	Moreover,	anti-miR-21	can	also	increase	the	chemo-sensitivity	of	GBM	cells	
as	shown	by	Wong	et	al.	(2012).166	They	developed	TMZ-resistant	GBM	sub-clones	and	
treated	 them	either	with	 anti-miR-21	 and	 TMZ	or	with	 TMZ	 alone.	 The	 inhibition	 of	
miR-21	supressed	 the	growth	of	 the	TMZ-resistant	cells	and,	 in	 the	presence	of	TMZ	
treatment,	cells	treated	with	anti-miR-21	showed	a	further	increase	in	their	apoptotic	
rate	 compared	 to	 those	 that	 were	 not	 treated	with	 anti-miR-21.166	 Another	 in	 vitro	
study	also	showed	that	cells	transfected	with	anti-miR-21	prior	to	TMZ	treatment	had	
an	 increased	 TMZ-induced	 cell	 death	 compared	 to	 cells	 treated	 with	 TMZ	 alone.167	
Similarly,	 miR-21	 inhibition	 has	 been	 shown	 to	 increase	 sensitivity	 of	 GBM	 cells	 to	
paclitaxel	(taxol,	an	anti-microtubule	agent)168,	teniposide	(VM-26,	a	topoisomerase	II	
inhibitor)169,	 and	 5-fluorouracil	 (a	 pyrimidine	 analogue)170,	 three	 chemotherapeutic	
agents	which	are	being	investigated	for	the	treatment	of	GBM.171–173	
The	alternative	concept	in	miRNA-based	therapy,	miRNA	replacement,	aims	to	restore	
the	 expression	 of	 downregulated	 miRNA	 via	 introducing	 vectors	 expressing	 these	
miRNAs.174	 For	 instance,	 systemic	 administration	 of	 miR-7-expressing	 vectors	 to	
orthotopic	GBM	xenografts	resulted	in	decreased	tumour	growth.175	Moreover,	miRNA	
re-expression	 in	 GBM	 cells	 was	 shown	 to	 enhance	 the	 effectiveness	 of	 targeted-
therapeutics.	 miR-451,	 for	 example,	 was	 reported	 to	 cooperatively	 supress	 GBM	
neurosphere	formation	when	administered	in	combination	with	imatinib.176	
Furthermore,	 combinatorial	 approaches	 of	 miRNA-based	 therapeutics	 have	 been	
proposed	 using	 in	 vivo	 systemic	 administration	 of	 both	 anti-miR21	 and	 miR34a	
mimetics.	 The	 treatment	 with	 anti-miR21	 and	 miR34a	 combination	 significantly	
increased	apoptosis	and	senescence	compared	to	treatment	with	either	anti-miR21	or	
miR34a	alone.177	



Since	 the	 above	 mentioned	 miRNAs	 are	 involved	 in	 the	 regulation	 of	 glycolytic	
metabolism	in	GBM,	one	can	consider	miRNA-based	therapy	as	a	new	way	forward	to	
target	glycolysis	and	disrupt	the	metabolic	homeostasis	in	GBM	cells.	

	

5.	Conclusion	
Aerobic	glycolysis	is	a	hallmark	of	GBM	tumours.	To	date,	great	advances	have	been	
made	to	understand	the	role	of	miRNAs	in	the	regulation	of	glycolytic	metabolism	in	
GBM.	miRNAs	regulate	glycolytic	metabolism	by	regulating	the	expression	of	glycolytic	
genes	and	the	signalling	proteins,	in	the	PI3K/Akt	pathway,	that	regulate	
glycolysis.	Several	miRNAs	regulating	the	PI3K/Akt	pathway	in	GBM	have	also	been	
shown	to	directly	regulate	components	of	the	glycolytic	pathway	in	other	cancers.	
Moreover,	other	differentially	expressed	miRNAs	in	GBM,	which	have	not	yet	been	link	
to	GBM	glycolytic	metabolism,	play	metabolic	regulatory	roles	in	other	tumours.	
Although	the	differential	expression	of	these	miRNAs	in	GBM	could	suggest	a	similar	
metabolic	regulatory	role	in	GBM,	functional	validation	studies	would	be	necessary	
before	such	links	can	be	established.	
In	GBM,	and	in	multiple	types	of	cancer,	miRNAs	that	function	to	supress	or	promote	
glycolytic	metabolism	are	found	to	be	down-	or	upregulated,	respectively.	Emerging	
evidence	in	GBM	suggest	that	inhibition	of	upregulated	or	the	replacement	of	
downregulated	miRNAs	could	be	a	promising	therapeutic	strategy	to	target	glycolytic	
metabolism	in	GBM.	Moreover,	the	combination	of	miRNA-based	therapy	with	
molecular	targeted	therapy	or	conventional	chemotherapy	has	been	demonstrated	to	
exert	additive	or	synergistic	effects.	Nevertheless,	measures	should	be	employed	to	
ensure	the	stability	of	miRNA-based	therapeutics,	improve	targeted	delivery	systems	
and	understand	and	control	of	off-target	effects	of	miRNA	therapeutics	before	they	
can	widely	be	used	in	clinic.		
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