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Abstract 3 

Study of virus entry into host cells is important for understanding viral tropism and 4 

pathogenesis. Studying the entry of in vitro cultured viruses is not always practicable. Study 5 

of highly pathogenic viruses, viruses that do not grow in culture, and viruses that rapidly 6 

change phenotype in vitro can all benefit from alternative models of entry.  Retrovirus 7 

particles can be engineered to display the envelope proteins of heterologous enveloped 8 

viruses. This approach, broadly termed ‘pseudotyping’, is an important technique for 9 

interrogating virus entry. In this perspective we consider how retrovirus pseudotypes have 10 

addressed these challenges and improved our understanding of the entry pathways of 11 

diverse virus species, including Ebolavirus, human immunodeficiency virus and hepatitis C 12 

virus. 13 
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Executive Summary 19 

 The entry of a virion into a host cell is an essential step in viral life cycles. As such, entry is a 20 

potential target for clinical intervention. Viral entry pathways are also the target for 21 

neutralizing antibodies generated by immunization with vaccines possessing virion 22 

components. 23 

 Enveloped viruses cause a range of diseases in humans and animals, from acute infections 24 

such as Ebola and Influenza, to chronic infections such as hepatitis B virus, hepatitis C virus 25 

and human immunodeficiency virus. The entry pathways of these enveloped viruses are 26 

complex and vary between virus species. Greater understanding of the steps of cell binding, 27 

internalisation and fusion are important for designing novel therapies for virus infections. 28 

 The ability to experimentally generate retroviruses pseudotyped with heterologous 29 

envelope proteins provides a flexible platform for investigating the entry pathways of a wide 30 

range of genetically diverse viruses. While culture models exist for some viruses that permit 31 

investigation of entry there are examples of viruses where investigating entry in isolation is 32 

beneficial. 33 

 Entry of highly pathogenic viruses such as Ebolavirus and Rabies virus can be studied using 34 

retroviral pseudotypes as a surrogate entry model, without the safety concerns associated 35 

with working with full-length infectious viral genomes 36 

 In vitro culture of viruses with RNA genomes can lead to culture-associated adaptation and 37 

perturbation of the phenotype of the virus. The use of retroviral pseudotypes to study the 38 

entry pathways of these viruses can address this problem, using high-fidelity PCR to 39 

generate accurate representations of the envelope protein sequences from clinical 40 

specimens. 41 

 Retroviral pseudotypes can be used to study the entry pathways of viruses that do not 42 

readily replicate in culture, such as hepatitis C virus. 43 

 For those viruses that encode proteins in different overlapping open reading frames, the use 44 

of retroviral pseudotypes can facilitate specific investigation of the entry phenotype of 45 

mutants in isolation from the effects of coding changes in other virus-encoded proteins. 46 

 Retroviral pseudotypes can also be used to identify host factors that act as restriction factors 47 

that act on the entry pathways of diverse viral species. 48 

 49 

 50 

  51 



Introduction 52 

Viruses possessing host-derived envelope membranes make up a large number of viral 53 

human pathogens, including members of the positive-stranded and negative stranded RNA 54 

viruses. The on-going challenges of global eradication of chronic virus infections such as 55 

human immunodeficiency virus 1 (HIV-1), hepatitis B virus (HBV) and hepatitis C virus (HCV) 56 

demonstrate that new therapeutic approaches are required for these infections. In addition, 57 

recent zoonotic outbreaks such as new influenza virus variants, Ebola virus and Zika virus 58 

have highlighted the need for improved surveillance and greater understanding of the 59 

pathogenicity of emerging viruses.  Enveloped viruses important to human health are 60 

genetically diverse, for example members of the families Flaviviridae, Retroviridae, 61 

Filoviridae, Arenaviridae, Orthomyxoviridae and Coronaviridae. These virus families have 62 

distinct replication strategies and present unique challenges for therapy. However, 63 

expression of a virus-encoded trans-membrane protein that mediates the entry process is a 64 

common feature of all these virus species. As such, greater understanding of these distinct 65 

entry pathways may inform development of novel interventions for virus infections.  66 

Entry pathways of enveloped viruses 67 

Understanding virus entry pathways is important for determining host range and tissue 68 

specificity of different virus infections. Enveloped viruses gain entry to a host cell by one of 69 

two main mechanisms, both of which require attachment of a virus particle to host-encoded 70 

receptors on the plasma membrane (reviewed in [1]).  Viruses can utilise the host 71 

endocytosis pathway to internalise particles into endosomes, leading to pH-dependent 72 

fusion of the viral envelope with the host cell membrane in early endosomes (e.g. Nipah 73 

virus [2]) or at lower pH after endosome fusion with lysosomes (e.g. Dengue virus [3]). 74 

Alternatively, viral fusion and entry can take place at the cell surface in a pH-independent 75 

manner, with receptor engagement triggering membrane rearrangement to result in 76 

internalisation of the viral nucleocapsid at the plasma membrane. HIV-1 has long been cited 77 

as an example of pH-independent plasma membrane fusion [4, 5]. More recent analyses 78 

have demonstrated that HIV-1 fusion occurs in endosomes [6], although this has been 79 

disputed [7]. Irrespective of the mechanism of entry, virus-encoded membrane-spanning 80 

proteins mediate these receptor binding and membrane fusion events, resulting in 81 

internalisation of the capsid into the cell cytoplasm. As such, the envelope proteins are the 82 

main target of neutralizing antibodies, which block receptor interactions and aggregate virus 83 

particles. In addition, envelope proteins are often highly glycosylated, which may help 84 

protect the virus from host immune recognition [8]. Intimate knowledge of entry pathways 85 

can inform development of new therapies for virus infections, and has already led to the 86 

development of clinically approved drugs targeting entry of HIV-1 [9] and respiratory 87 

syncytial virus (RSV) [10].  88 

It is important to note that the entry pathways of non-enveloped viruses is fundamentally 89 

different to that of enveloped viruses. Entry of these viruses does not involve membrane 90 

fusion and requires penetration of the virus particle through a host cell membrane 91 

(reviewed in [11]). This penetration is mediated by the virus’ outer capsid antigens, which 92 

typically form highly ordered, symmetrical structures that contribute to virion structure. A 93 



good example of this is the Bluetongue virus (BTV) particle, which is formed of concentric 94 

layers of VP3, VP7 and VP5, with the outer-most virus protein VP2 embedded into this 95 

layered structure [12]. The surface proteins of enveloped and non-enveloped viruses may 96 

share some biochemical characteristics, but the characteristic trans-membrane domain of 97 

enveloped-virus surface proteins is lacking in these viruses.  98 

While laboratory investigation of the entry pathways of many viruses can be performed 99 

using cultured virus isolates, there are situations where this is not desirable: 1) Highly 100 

pathogenic viruses that require high level containment facilities; 2) Viruses that rapidly 101 

accumulate mutations and culture adaptations, and where investigation of accurate 102 

representations of virus populations is important; 3) Viruses that do not readily grow in 103 

culture, or where host restriction in cultured cells occurs at a post-entry step; 4)  Viruses for 104 

which molecular clones are not available, or where reverse-genetics approaches are desired 105 

to manipulate the glycoproteins to investigate molecular determinants of entry pathways. 106 

This latter group includes viruses with overlapping reading frames, where mutations in the 107 

envelope proteins results in additional amino acid substitutions in other viral proteins. One 108 

possible approach to overcome the limitations of virus culture is the use of chimeric viruses. 109 

Because the envelope proteins are necessary and sufficient for entry, it is possible to study 110 

entry pathways using experimental models that reconstitute only the viral envelope protein 111 

binding to cell surfaces. This has led to the development of a range of experimental models 112 

with which to study viral tropism and entry, including infection with virus-like particles [13, 113 

14], infectious pseudotypes [15-17], protein binding assays [18, 19] and liposome fusion 114 

assays [20, 21]. These models also facilitate assessment of inhibitors that specifically target 115 

viral entry pathways in isolation from other steps of the replication cycle [22, 23]. 116 

 117 

Retrovirus-based pseudotypes  118 

Retroviruses are excellent platforms for creating chimeric virus particles with which to 119 

investigate viral entry. In contrast to many viruses, retroviruses are able to incorporate 120 

foreign proteins into their envelope membrane, including host-derived proteins and 121 

envelope proteins of other viruses [24-29]. This promiscuous protein incorporation naturally 122 

results in phenotype mixing in cells infected with different species of retrovirus [30, 31]. The 123 

wide range of viral surface proteins that have been successfully incorporated into 124 

retroviruses has recently been reviewed [32]. Following infection retroviruses deliver and 125 

integrate a DNA copy of their RNA genome into the host genome of an infected cell during 126 

replication. This facilitates introduction of reporter genes into retroviral genomes along with 127 

strong promoters, resulting in expression of the integrated reporter genes. This permits 128 

design of rapid, sensitive quantitative infection assays that can be easily re-purposed for 129 

studying the entry of a range of enveloped viruses (Figure 1).  It should be noted that while 130 

we consider only retrovirus pseudotypes in this Perspective, heterologous viral 131 

glycoproteins have been successfully pseudotyped onto vesicular stomatitis virus (VSV) 132 

particles [33]. VSV pseudotypes, along with approaches using enveloped virus-like particles 133 

(VLPs) [34] have also made a significant contribution to our understanding of viral entry 134 

pathways. These experimental models are restricted to studying the surface proteins of 135 



enveloped viruses, as the surface capsid proteins of nonenveloped viruses cannot be readily 136 

incorporated into the chimeric retrovirus particles as they lack a trans-membrane domain. 137 

Retroviral pseudotyping provides an experimental model to investigate the early stages of 138 

entry of enveloped viruses without introducing sequence adaptations associated with in 139 

vitro culture and passage of viruses. In addition, this experimental system provides a robust 140 

model with which to rapidly investigate the phenotype of envelope proteins representing 141 

diverse viral variants. It is important to distinguish between pseudotypes generated with the 142 

two main groups of retrovirus packaging constructs: lentiviruses and gammaretroviruses.  143 

Pseudotypes based on lentiviruses such HIV-1 and simian immunodeficiency virus (SIV) are 144 

able to infect and integrate into terminally-differentiated cells.  In contrast, those based on 145 

gammaretroviruses such as murine leukaemia virus (MLV) and gibbon ape leukaemia virus 146 

(GALV) generally require nuclear membrane degradation during mitosis to deliver and 147 

integrate their genome into that of the host cell, limiting investigations of virus entry 148 

pathways to actively dividing cells [35]. However, pseudotypes of the gammaretrovirus 149 

Friend MLV (F-MLV) may transduce non-dividing cells under certain conditions [36]. Despite 150 

these differences both HIV-1 and MLV have been popular choices for pseudotype virus 151 

production, with optimised protocols for both species [37, 38].  152 

Retroviral pseudotyping was originally applied to investigations into retrovirus entry using 153 

surface proteins encoded by the env gene (surface glycoprotein; SU and transmembrane 154 

protein; TM) [25, 27]. These retroviruses were also found to incorporate heterologous viral 155 

surface proteins [28, 39], permitting analysis of a wide range of variants [24]. Glycoproteins 156 

recovered from a range of retrovirus species have been pseudotyped onto heterotypic 157 

retrovirus backbones, including gammaretroviruses (ecotropic and amphotropic MLV and 158 

GALV), and lentiviruses. These studies revealed that different retrovirus species can possess 159 

pH-dependent or pH-independent entry pathways [40, 41], suggesting that different 160 

retroviruses use distinct entry pathways. 161 

The methodological approaches for the generating retroviral pseudotypes for studies of 162 

virus entry have been described and reviewed many times [42-44]. Here we discuss how 163 

retrovirus pseudotypes have contributed to the understanding of receptor usage, the cell 164 

biology of viral entry, and the consequences of genetic diversity on envelope protein 165 

function. 166 

Application of retroviral pseudotypes to investigating entry of highly pathogenic viruses  167 

Filovirus infections, including Ebolavirus, are a major cause of haemorrhagic fevers and are 168 

increasingly studied after the unprecedented 2013-16 outbreak in West Africa. The entry 169 

pathways of haemorrhagic filoviruses are important targets for intervention, with a cocktail 170 

of therapeutic antibodies (Zmapp) being successfully used to protect against infection [45]. 171 

While Ebolavirus (EBOV) and Marburg virus (MARV) have demonstrated the ability to rapidly 172 

emerge in resource-limited settings, other members of this family result in lower 173 

pathogenicity infections in humans. Their highly pathogenic nature makes investigations of 174 

Ebolaviruses restricted to containment level 4 laboratories. As such, retroviral pseudotypes 175 

provide a safe, flexible platform for investigating the entry pathways of these viruses. 176 

Filoviruses express two glycoproteins, GP1 and GP2, cleaved from a single precursor [46], 177 



which mediate receptor binding and fusion, respectively. Retroviruses pseudotyped with the 178 

EBOV/MARV glycoproteins have been used to investigate the entry pathway in great detail 179 

[15, 16].  The folate receptor α was initially proposed as a co-factor in the entry pathways of 180 

both viruses [47], but this has subsequently been queried [48]. T cell immunoglobulin and 181 

mucin domain 1 (TIM-1) was more recently identified as an entry factor for both viruses by 182 

assessing EBOV pseudotype entry in a panel of transformed cell lines with defined gene 183 

expression [49].  A similar approach identified members of the Tyro3 transmembrane 184 

tyrosine kinases (Axl, Dtk and Mer) as entry cofactors [50]. Differences in entry of EBOV and 185 

MARV were also revealed using pseudotypes. MARV pseudotype entry was resistant to 186 

glycosylation inhibitors in target cells, in contrast to the tunicamycin- and Endoglycosidase 187 

H-sensitive entry of EBOV [51]. This highlighted differences in cellular receptors for these 188 

two related viruses. Retrovirus pseudotypes have recently been applied to identifying the 189 

Niemann-Pick C1 (NPC1) protein as the major GP-binding receptor for Ebolavirus [52, 53]. 190 

They have also been used to identify molecular determinants of receptor tropism in 191 

different strains [54]. Together, these studies demonstrate that retrovirus pseudotypes are 192 

a powerful tool for investigating the receptor-mediated entry pathway of a range of 193 

filoviruses, which would otherwise require high-containment laboratories. These models 194 

have accelerated Ebolavirus research and recently assisted with defining the mode of action 195 

of antiviral antibodies that target the entry pathway [55].  196 

Rhabdovirus glycoproteins, including those of rabies virus, have been readily pseudotyped 197 

onto retrovirus backbones, including infectious equine anaemia virus and HIV-1 [56, 57]. 198 

These pseudotypes have been used to investigate the neuronal transport of virions 199 

mediated by the rabies virus glycoprotein [58]. Retrovirus pseudotypes of rabies, VSV and 200 

mokola viruses (as well as EBOV and lymphocytic choriomeningitis virus – LCMV) enabled 201 

investigation of neuronal cell tropism in vivo. Injection of these pseudotypes into the brains 202 

of mice facilitated post-mortem identification of permissive cell types by staining for the 203 

beta-galactosidase reporter enzyme packaged by the pseudotypes [59]. A similar technique 204 

has been used for skin cell tropism of VSV [60]. Furthermore, lentivirus pseudotyping of 205 

chimeric glycoproteins comprising domains of rabies G and VSV G enabled phenotyping of 206 

fusion glycoproteins possessing unique entry characteristics and neuronal cell tropism for 207 

use in retrograde transduction systems [61]. 208 

 209 

Applications with highly diverse virus populations 210 

An important use of retrovirus pseudotypes is accurate assessment of the phenotypes of 211 

envelope proteins recovered from viruses that undergo rapid mutation and selection in vivo. 212 

Passaging these viruses in cell culture can often result in rapid adaptation to culture, as the 213 

absence of the constraining environment of the natural host cell and immune responses 214 

alters the selection pressures acting on a viral quasispecies. Isolating viral envelope protein 215 

gene sequences with high-fidelity approaches allows accurate assessment of the properties 216 

of circulating variants with pseudotypes [62, 63]. Studies of HIV-1 entry provide a good 217 

example of this approach. The error-prone nature of the virus-encoded reverse 218 

transcriptase facilitates rapid adaptation in tissue culture with mutations in the envelope 219 



glycoprotein gene env resulting in phenotypic changes [64, 65]. This hindered research into 220 

HIV entry, as receptor usage of laboratory-adapted, cultured strains was inconsistent with 221 

those naturally infecting human hosts. Retroviruses pseudotyped with HIV-1 envelope 222 

glycoproteins were used to identify host receptors as determinants of entry. HIV variants 223 

have differential usage of CD4 and the chemokine receptors CXCR4 and CCR5 [66-68], and it 224 

was recently demonstrated that CD4 usage by HIV-1 pseudotypes is linked to breadth of 225 

tropism [69].  226 

HIV-1 constructs pseudotyped with envelope glycoproteins that mediate pH-independent 227 

entry were also demonstrated to be enhanced by the action of the HIV-1 nef protein, 228 

revealing a role for nef in entry [70]. The entry properties of genetically diverse HIV-1 env 229 

clones were assessed using pseudotyped virus infection of peripheral blood mononuclear 230 

cells (PBMCs) [71]. The development of rapid HIV-1 pseudotype screening assays [72] has 231 

more recently facilitated assessment of entry of genetically diverse strains of HIV-1 for 232 

studies of entry inhibition [73].  233 

Applications to viruses that do not grow in culture 234 

Study of the hepatitis C virus (HCV) entry pathway presents additional challenges to that of 235 

HIV-1, as HCV is not readily propagated in vitro. Only one strain of HCV (JFH-1) robustly 236 

replicates in tissue culture without the requirement for culture adaptations. Laboratory-237 

generated chimeric viruses based on JFH-1 rapidly accumulate in vitro adaptations [74]. The 238 

error-prone replication of HCV coupled with the persistent, chronic nature of infection 239 

results in extreme levels of diversity between isolates identified in different host 240 

backgrounds [75]. The diversity observed between different HCV genotypes far exceeds that 241 

observed for other chronic infections, such as HIV-1 [76]. HCV encodes two envelope 242 

proteins, E1 and E2, which are necessary and sufficient for mediating entry of the virus. 243 

However, these genes are able to tolerate extreme genetic diversity (reviewed in [75]), and 244 

are common sites of in vitro culture adaptations. Nucleotide sequence variation approaches 245 

40% between individual viruses. Early studies of the entry pathway of HCV were severely 246 

limited by the lack of robust cell culture models in transformed hepatoma cultures. The 247 

introduction of retroviruses pseudotyped with the HCV E1 and E2 proteins (hepatitis C virus 248 

pseudoparticles; HCVpp) facilitated rapid developments in our understanding of the 249 

complex receptor cascade required for HCV entry (see Figure 1) [77, 78]. These studies 250 

initially identified CD81 and SR-BI as key receptors for entry [79], and later identified tight 251 

junction proteins including claudins [80, 81] and occludin [82] as key entry factors that play 252 

a role in the entry cascade. HCVpp were also used to identify the sequential order of events 253 

in the entry cascade [83-85]. E2 is the major receptor binding protein, while E1 plays a role 254 

in chaperoning the folding of the E2 protein and contributes to envelope membrane fusion 255 

[86]. HCVpp were used to map the interactions between these glycoproteins and receptors 256 

to the amino acid level by studies using panels of individual point-mutation variants in 257 

controlled genetic backgrounds [87-90]. The fusion mechanism for HCV is yet to be 258 

completely resolved, but studies have located elements in both the E1 and E2 proteins that 259 

contribute to fusion [86, 91]. More recently, mutations that affect the pH-dependent nature 260 



of HCV entry have been tested using pseudotypes, implicating the hypervariable 1 (HVR-1) 261 

in pH-dependent fusion [92].  262 

HCV tissue tropism has been investigated with HCVpp. These particles have been found to 263 

enter neuroblastoma cell lines [93] and neuroepithelioma cells [94]. Pseudotypes were also 264 

used to analyse the contribution of kinases in the HCV entry pathway [95], the process of 265 

endocytosis in the entry cascade [96] and the importance of cell polarity in HCV receptor 266 

association [97]. The discovery that human serum enhances infection of HCVpp into 267 

hepatocytes led to investigations of lipoprotein-mediated HCV infection. High-density 268 

lipoprotein (HDL) was discovered to enhance infection by accelerating endocytosis [98], 269 

through interactions with the SR-BI receptor [99] and the HVR-1 region of the HCV E2 270 

glycoprotein [100].  271 

The use of HCVpp to interrogate the properties of genetically diverse viral isolates has 272 

revealed that while all genotypes of HCV use conserved entry pathways [101], entry 273 

phenotypes vary considerably between isolates [102, 103]. Closely related members of an 274 

individual quasispecies can have significantly different entry efficiencies into host cells [38, 275 

104]. These entry assays revealed different phenotypes of variants that are preferentially 276 

transmitted between hosts [63]. By comparing E1/E2 nucleotide sequences of genetically 277 

diverse functional HCVpp, discontinuous conserved receptor binding regions were proposed 278 

[87]. Interrogation of these regions with point mutations identified critical residues involved 279 

in the interaction with CD81. The success of this approach was revealed when core crystal 280 

structures of the E2 protein became available [105, 106], confirming the discontinuous 281 

nature of the conserved amino acids constituting the CD81 binding site. 282 

Application to viruses with overlapping reading frames. 283 

The hepatitis B virus (HBV) life cycle has been studied in detail. However, the entry cascade 284 

has only recently been characterised at a molecular level [107]. HBV possesses a variable 285 

genome, with 8-10% difference observed on the nucleotide level between strains. HBV is 286 

categorised into at least 8 distinct genetic types, which differ in geographic distribution and 287 

pathogenicity [108]. The HBV envelope protein (HBV surface antigen - HBsAg) is expressed 288 

in three forms, with a common C-terminus but three separate initiation sites that encode 289 

the large (L), medium (M) and small (S) forms of the protein. The major sites of variability 290 

are in the surface antigen, particularly the antigenic region present in an external loop near 291 

the C-terminus. This provides the first challenge to investigating HBV entry, as culture 292 

models for rapidly assessing the phenotype of naturally occurring variants are not available 293 

[109]. In addition, the HBV genome possesses overlapping coding regions in all three 294 

translation frames. Mutations in the surface antigen can simultaneously introduce 295 

important mutations in the viral polymerase. As such, it is difficult to individually phenotype 296 

the properties of HBsAg variation in cell culture models. Retrovirus pseudotypes facilitated 297 

investigation of the HBV entry pathway [110, 111]. Initial studies identified that HBV 298 

infected primary human hepatocytes, but not hepatoma cell lines [110, 111], and illustrated 299 

the advantages of using lentivirus constructs for studies in terminally differentiated primary 300 

cells [110]. These studies also investigated the contributions of the large and small forms of 301 

the HBsAg in entry. With the discovery of the sodium taurocholate co-transporting 302 



polypeptide (NTCP) as a major entry factor [112] the models of HBV entry have rapidly 303 

advanced. Retroviruses pseudotyped with the HBsAg have recently been used to interrogate 304 

the steps in NTCP-mediated HBV entry [17], mapping NTCP binding sites to the N-terminus 305 

of the large surface antigen. 306 

Application to identifying restriction factors 307 

Retrovirus pseudotypes have been extensively employed for serology screening and analysis 308 

of neutralising antibodies [32]. They have also been important for the investigation of host 309 

cell restriction factors, such as interferon-induced transmembrane proteins (IFITMs). IFITM 310 

proteins were originally identified during siRNA screening for inhibitors of highly-pathogenic 311 

avian influenza A virus (IAV) replication. However, IFITMs have also been shown to restrict a 312 

range of viruses at a replication-independent stage using retrovirus pseudotypes [113-115]. 313 

Transduction efficiency of pseudotypes bearing the glycoproteins of filo-, corona-, flavi-, 314 

rhabdo- or orthomyxo-viruses were shown to be variously inhibited at an entry or 315 

membrane-fusion stage by different IFITM proteins. Upregulation of homologous or 316 

orthologous IFITM isoforms using lentivirus transduction demonstrated the likelihood of a 317 

shared entry pathway or feature by these enveloped RNA viruses. Retrovirus pseudotyping 318 

is uniquely suited allow scrutiny of virus entry in isolation from replication enabling the 319 

rapid and direct comparative analysis of how this restriction mechanism effects different 320 

viruses.  321 

Limitations to using retroviral pseudotypes. 322 

While retroviral pseudotypes have proven to be a valuable tool to interrogate the entry 323 

pathways of a wide range of virus species, there are potential problems that must be taken 324 

into consideration when using this experimental model. The glycoproteins of some virus 325 

species are refractive to incorporation into functional retrovirus pseudotypes, leading to 326 

undetectable infection, even when using sensitive reporter assays (unpublished data). Even 327 

where viral envelope proteins can be successfully pseudotyped, single amino acid 328 

substitutions in the viral glycoprotein can have an impact on the conditions required to 329 

generate infectious particles [38]. Attempts to pseudotype flaviviruses such as West Nile 330 

virus (WNV) and Zika virus have proven difficult, despite related viruses such as HCV being 331 

amenable to pseudotype manufacture. This may be linked to the structural role of the 332 

envelope glycoproteins in virus species of the genera such as Flavivirus, while the 333 

glycoproteins of hepaciviruses such as HCV do not appear to play such a structural role in 334 

virions [116].   335 

Envelope glycoproteins can display different phenotypes when present on a retrovirus 336 

envelope rather than their natural virion. The neutralization phenotype of HIV-1 strains 337 

differs between primary virus isolates and their pseudotyped equivalents [73]. Point 338 

mutations in the HCV E1/E2 genes do not always result in the same phenotype when 339 

pseudotypes are compared to cell-cultured virus [90, 117]. Also, due to the nature of the 340 

producer cell lines, some post-translational modifications might not be accurately modelled 341 

by pseudotypes. An example of this is the complex of apolipoproteins that form when HCV 342 

is assembled in hepatocytes. Without producing the pseudotyped viruses in hepatocytes 343 



these essential modifications, particularly incorporation of Apolipoprotein E, do not occur 344 

[118, 119]. This could generate misleading data, especially if these virion components 345 

impact on the entry pathway of the virus. 346 

When preparing pseudotype entry assays for analysing virus entry pathways, it is important 347 

to optimise the assay for the envelope protein being tested (reviewed in [44]). Variables 348 

such as the type and source of producer cells, the amount and type of plasmids required to 349 

generate infectious particles, and the reporter gene all influence the outcome of infection 350 

experiments. Of particular importance is the selection of packaging plasmids. Differences in 351 

the assembly of murine leukemia virus and human immunodeficiency virus appear to 352 

influence incorporation of heterologous viral envelope proteins, and can determine if 353 

infection is successful [38]. The selection of appropriate target cells expressing necessary 354 

virus entry molecules also influences the ability to assay infection [78].  Together these 355 

considerations can impose practical limitations on assay setup, as glycoproteins from 356 

different virus species can behave very differently in these assays. Protocols for generation 357 

of particles can impact on the function of the expressed particles, with small changes being 358 

sufficient to alter function of a pseudotyped envelope protein [38].  359 

Finally, there have been concerns about potential contamination of cell lines used for these 360 

experiments with ecotropic retroviruses, which may affect results of infectivity assays with 361 

pseudotyped retroviruses. However, at least for HIV-1 infection assays, it has been 362 

demonstrated that these contaminants do not affect the results of infection assays [120]. 363 

Future applications for retroviral pseudotypes 364 

Pseudotypes have proven to be a robust experimental system to investigate the entry 365 

pathways of a wide range of genetically diverse virus species. The current interest in the 366 

potential for emerging (and re-emerging) viral pathogens means that retroviral pseudotypes 367 

could be deployed rapidly to identify receptor usage and tropism of newly-discovered 368 

pathogens. In addition, there is still plenty to learn about the entry pathways of established 369 

viral pathogens such as HCV and HBV. Retroviral pseudotypes will continue to be an 370 

essential experimental model for these studies. 371 

As viral entry has been highlighted as a potential target for clinical intervention in a wide 372 

variety of virus infections, the development of broadly-active inhibitors using these entry 373 

models may contribute to preparedness for viral epidemics. Retroviral pseudotypes 374 

facilitate high-throughput entry inhibitor screening without the requirement to understand 375 

the complexities of entry of a specific virus species. Characterising the interactions between 376 

entry inhibitors (such as neutralizing antibodies) and viral envelope proteins will also 377 

provide useful tools for investigating the molecular biology of virus entry. 378 

Retroviral pseudotypes have contributed to our knowledge of the entry pathways of a wide 379 

range of viruses. In addition to the examples given here, there are many studies of virus 380 

entry that utilise this model, including those of coronaviruses and Influenza viruses. While 381 

this Perspective article cannot hope to exhaustively cover each application, we hope that 382 

the examples provided here illustrate the versatility of pseudotypes as models of virus 383 

entry. 384 



 385 

Figures 386 

Figure 1. Generation of retroviruses pseudotyped with heterologous viral envelope 387 

proteins. A) In second-generation pseudotype models, retroviral pseudotypes are produced 388 

using genes encoded on three separate plasmids; a packaging vector possessing the entire 389 

retroviral gag/pol open reading frame of a specific retrovirus (usually HIV-1 or MLV; blue), a 390 

reporter vector possessing a reporter gene (usually either luciferase, green fluorescent 391 

protein, or β-galactosidase; green), the 3’ and 5’ LTRs of a retrovirus matched to the 392 

packaging vector, along with a strong promoter and a retrovirus packaging signal (ψ); and a 393 

plasmid encoding the glycoprotein(s) of a heterologous virus of interest (yellow/orange). 394 

When transfected together into a suitable producer cell line (such as the human embryonic 395 

kidney cell line 293T), protein over-expression is driven by the strong CMV immediate-early 396 

promoter upstream of each gene. Retroviral particles are produced possessing the desired 397 

viral glycoprotein, and are released from the transfected cells into the surrounding media. 398 

B) In this way the envelope protein-encoding plasmid can be exchanged to produce particles 399 

mimicking different virus species.  400 

Figure 2. Retrovirus pseudotypes can be used to reveal many aspects of a virus entry 401 

cascade. The entry pathway of hepatitis C virus provides an excellent example of how 402 

retroviral pseudotypes can be used to dissect the complex series of events that result in 403 

internalisation of a virus into a host cell. 1. Studies utilising retrovirus pseudotypes were 404 

used to identify essential molecular interactions between viral proteins and host cell 405 

receptors. CD81 and SR-B1 were identified as key receptors that initiate early events in the 406 

entry cascade [79]. 2. The dynamic nature of interactions between receptor complexes can 407 

also be investigated. For HCV, tight junction proteins were identified as co-factors for entry, 408 

interacting dynamically with CD81 to traffic virus particles from the cell’s apical surface to 409 

tight junctions [80, 81, 85]. 3.   Species-specific receptors can be identified. Another tight 410 

junction protein, occludin, was found to be species-specific requirement for HCV entry [82].  411 

4. Pseudotypes can reveal the sequence of events that result in entry of the virus genome 412 

into the cell. HCV binding and entry involves sequential recruitment of host cell co-factors  413 

[83]. 5. Host factors other than viral receptors can contribute to virus entry. For HCV, 414 

interaction between high density lipoprotein (HDL) and the SR-B1 receptor enhances 415 

infectivity [98-100]. 6. Specific events leading to fusion of virus envelope and host 416 

membrane can be interrogated. pH-dependent membrane fusion was found to be mediated 417 

by specific regions of the HCV glycoproteins using retroviral pseudotype models [91]. 7. In 418 

addition, specific conserved amino acids were found to be involved in E1-E2 interactions and 419 

receptor binding events [87, 88]. 420 
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