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Abstract: The hydrophobicity of natural surfaces have drawn much attention of scientific 

communities in recent years. By mimicking natural surfaces, the manufactured biomimetic 

hydrophobic surfaces have been widely applied to green technologies such as self-cleaning 

surfaces. Although the theories for wetting and hydrophobicity have been developed, the 

mechanism of wetting transitions between heterogeneous wetting state and homogeneous 

wetting state is still not fully clarified. As understanding of wetting transitions is crucial for 

manufacturing a biomimetic superhydrophobic surface, more fundamental discussions in this 

area should be carried out. In the present work the wetting transitions are numerically studied 

using a phase field lattice Boltzmann approach with large density ratio, which should be helpful 

in understanding the mechanism of wetting transitions. The dynamic wetting transition 

processes between Cassie-Baxter state and Wenzel state are presented, and the energy barrier 

and the gravity effect on transition are discussed. It is found that the two wetting transition 

processes are irreversible for specific inherent contact angles and have different transition 

routes, the energy barrier exists on an ideally patterned surface and the gravity can be crucial 

to overcome the energy barrier and trigger the transition. 

Keywords: wetting transitions, biomimetic surfaces, energy barrier, gravity effect, numerical 

study, lattice Boltzmann method 

 

1 Introduction 

Inspired from natural surfaces with the property of water repellence, such as lotus leaves, rose 

petals and so forth, the wetting phenomena on natural or manmade rough surfaces have drawn 

much of researchers’ attentions over the past few decades [1-7]. After a considerable amount 

of work on theoretical and experimental investigations, it is already well understood that the 

roughness of surfaces, typically on the order of microns, plays a significant role in the 

enhancement of hydrophobicity [8-11]. The understanding of the wetting phenomena can be 

invaluable and the manufactured biomimetic surfaces with micro-structured roughness have 

been widely applied in industrial engineering including textile, coating, self-cleaning or 
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surfaces involving surface-tension-induced motion [12-15]. A droplet with a lower contact 

angle on a flat surface can achieve contact angles up to approximately 170° simply due to the 

geometrical patterning [16].    

Droplets can exist mainly in two wetting states on an ideal square-post patterned surface, 

Wenzel state and Cassie-Baxter state [5]. The Wenzel state is the homogeneous wetting state, 

where the grooves caused by the surface roughness are penetrated with water, while the Cassie-

Baxter state is the heterogeneous state where there is gas trapped between the droplet and the 

solid surface. Most of the theories describing wetting on rough surfaces over the past years are 

based on Young theory, Wenzel theory and Cassie-Baxter theory [17-19]. The Young equation 

reveals the relationship between surface tensions and contact angle on an ideal flat surface; for 

rough surfaces, Wenzel equation is used to calculate the apparent contact angle for the 

homogeneous wetting state; while Cassie-Baxter equation were proposed for the heterogeneous 

wetting state. Although the three theories can be used to explain wetting phenomena to some 

extent, it is not sufficient to use them to completely explain the mechanisms of wetting 

phenomena, such as the mechanism of wetting transitions between Wenzel and Cassie-Baxter 

wetting states, which is crucial for manufacturing superhydrophobic surfaces but still not fully 

understood [20]. Patankar, N. A. [21] studied the wetting transition from heterogeneous state 

to homogeneous state from the energy balance point of view, and discussed the energy barrier 

as well as the role of gravity in wetting transition via comparing his theory to Yoshimitsu et 

al.’s [22] experimental data. Gao N. et al. [23] analysed the equilibrium energy for both of the 

wetting states through a mathematical model. Zu Y. et al. [12,24] presented a modified 

roughness parameter and the critical transition angle. Gong W. et al. [25] discussed the 

transition energy curves theoretically based on the intermediate transition processes. The 

reverse transition, Wenzel-to-Cassie wetting transition were achieved experimentally by 

heating the rough surfaces to evaporate the droplet in the vicinity of the three phase line [26,27].  

Having been developed for about three decades, the lattice Boltzmann method becomes a very 

import tool for modelling of single and multiphase flow in mesoscale [28]. Dupuis and 

Yeomans [29] firstly used the lattice Boltzmann method to study the droplet motions on 

superhydrophobic surfaces, and then followed by other researchers who studied the Cassie-to-

Wenzel transition [30], contact angle hysteresis [31], droplet morphology [32], droplet 

influence[33] and droplet motion on hydrophobic surfaces [34,35]. A significant issue in most 

of their models is that the unwanted spurious currents cannot be eliminated and a large density 

ratio for liquid/gas system cannot be achieved. Connington et al. [36] proposed a new 

implementation of boundary conditions for the complex geometry in simulations of droplets 

on superhydrophobic surfaces, which can eliminate spurious currents, however, they did not 

accurately capture the transition between wetting states. Among all the lattice Boltzmann 

models, the phase field lattice Boltzmann model has been successfully applied in two phase 

flow simulation with large density ratio [37]. Yan & Zu [38] presented a phase field lattice 

Boltzmann scheme for two-phase flows involving partial wetting surfaces and large density 

ratio up to 1000 which combines the advantages of the two models presented by Briant [39,40] 

and Inamuro[41]. This model has been successfully used in simulation of the droplet motion 

on micro-structured rough surfaces [42,43]. Tanaka et al. [44] used this phase field model to 

conduct a 2-D simulation of dynamic behaviour of droplet on flat solid surfaces. 



The aim of this paper is using the phase field lattice Boltzmann method for large density ratio 

to study the wetting transitions between Wenzel state and Cassie-Baxter state on a square-post 

textured surface in mesoscale and to help understand the mechanism of wetting transitions.  

 

2 Numerical approach 

In this paper, the simulation is based on the phase field lattice Boltzmann approach for 

incompressible two-phase flows with large density ratio involving partial wetting surface [42]. 

As shown in Figure 1, the model is in three dimension and based on D3Q15 scheme. The 

velocity vectors are: 

[𝐜0, 𝐜1, 𝐜2, 𝐜3, 𝐜4, 𝐜5, 𝐜6, 𝐜7, 𝐜8, 𝐜9, 𝐜10, 𝐜11, 𝐜12, 𝐜13, 𝐜14]

= [
0   1   0   0  − 1   0   0   1  − 1   1   1  − 1   1  − 1  − 1
0   0   1   0   0  − 1   0   1   1  − 1   1  − 1  − 1   1  − 1
0   0   0   1   0   0  − 1   1   1   1  − 1  − 1  − 1  − 1   1

]                          (1) 

 

Fig. 1 D3Q15 scheme 

Two velocity distribution functions, 𝑓𝛼  and 𝑔𝛼 , are applied in this phase field model. The 

distribution function 𝑓𝛼 is applied for the calculation of the order parameter 𝜙 which is used to 

distinguish the gas/liquid two phases. While distribution function 𝑔𝛼  is employed as the 

distribution function of the predicted velocity 𝒖′, which needs to be corrected by pressure 

gradient of the two-phase system. The lattice Boltzmann equations including streaming and 

collision steps of particles can be written as: 

𝑓𝛼(𝒙 + 𝐜𝜶𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓𝛼(𝒙, 𝑡) −
1

𝜏𝑓
(𝑓𝛼(𝒙, 𝑡) − 𝑓𝛼

𝑒𝑞(𝒙, 𝑡))                 (2) 

𝑔𝛼(𝒙 + 𝐜𝜶𝛿𝑡, 𝑡 + 𝛿𝑡)

= 𝑔𝛼(𝒙, 𝑡) −
1

𝜏𝑔
(𝑔𝛼(𝒙, 𝑡) − 𝑔𝛼

𝑒𝑞(𝒙, 𝑡)) + 3ω𝛼
1

𝜌
∇ ∙ [𝜇(∇𝒖 + 𝒖∇)]

∙ 𝐜𝜶         (3) 

Where 𝒙 and 𝑡  are space position and time; 𝒖, 𝜇  , and 𝜌  are the macroscopic parameters, 

representing velocity, dynamic viscosity and density; 𝜏𝑓  and 𝜏𝑔  are dimensionless single 

relaxation times; 𝛿𝑡 = 1 is the time step; 𝑓𝛼
𝑒𝑞

 and 𝑔𝛼
𝑒𝑞

 are the equilibrium distribution functions 

for equilibrium states and defined as: 



𝑓𝛼
𝑒𝑞(𝒙, 𝑡) = H𝛼𝜙 + 𝐹𝛼 [𝑝0 − kf𝜙∇

2𝜙 −
kf
6
|∇𝜙|2] + 3ω𝛼𝜙(𝐜𝛼

′ ∙ 𝒖) + ω𝛼kf𝐜𝛼
′ ∙ 𝑮(𝜙)

∙ 𝐜𝜶                                                                                                                                  (4) 

𝑔𝛼
𝑒𝑞(𝒙, 𝑡) = ω𝛼 [1 + 3(𝐜𝛼

′ ∙ 𝒖) +
9

2
(𝐜𝛼
′ ∙ 𝒖)2 −

3

2
𝒖2 +

3

2
(𝜏𝑔 −

1

2
) 𝐜𝛼

′ ∙ (∇𝒖 + 𝒖∇) ∙ 𝐜𝜶] 

+ω𝛼
𝑘𝑓

𝜌
𝐜𝛼
′ ∙ 𝑮(𝜙) ∙ 𝐜𝜶 −

2

3
F𝛼
kf
𝜌
|∇𝜙|2 (5) 

where 

ω𝛼 =

{
 
 

 
 

2

9
          𝛼 = 0        

1

9
          𝛼 = 1,…6

1

72
           𝛼 = 7,… ,14

   

F𝛼 =

{
 
 

 
 −

7

3
            𝛼 = 0             

1

3
           𝛼 = 1,…6

1

24
            𝛼 = 7, … ,14

                                                 (6) 

H𝛼 = {
1, 𝛼 = 0
0, 𝛼 = 1,… ,14

 

and  

𝑮(𝜙) =
9

2
(∇𝜙)(𝜙∇) −

3

2
|∇𝜙|2𝐈                                                 (7) 

and as a constant, kf is  related to the strength of surface tension as well as the width of interface. 

With 𝛹(𝜙) as the bulk free-energy density, the equation of state of the fluid is: 

𝑝0 = 𝜙
𝜕𝛹

𝜕𝜙
− 𝛹                                                            (8) 

The macroscopic variables 𝜙, 𝒖′, 𝜌 and 𝜇 can be computed from the distribution functions by: 

𝜙 =∑𝑓𝛼
𝛼

, 𝒖′ =∑𝐜𝜶𝑔𝛼
𝛼

                                               (9) 

𝜌 =

{
 

 
𝜌𝐺 ,   𝜙 < 𝜙𝐺

𝜙 − 𝜙𝐺
𝜙𝐿 − 𝜙𝐺

(𝜌𝐿 − 𝜌𝐺) + 𝜌𝐺 , 𝜙𝐺 ≤ 𝜙 ≤ 𝜙𝐿

                                  𝜌𝐿 ,   𝜙 > 𝜙𝐿  

                        (10) 

𝜇 =
𝜌 − 𝜌𝐺
𝜌𝐿 − 𝜌𝐺

(𝜇𝐿 − 𝜇𝐺) + 𝜇𝐺                                       (11) 



where the subscript L means liquid and G represents gas. 

In this model, the precalculated velocity 𝒖′ does not meet the continuity condition (∇ ∙ 𝒖 = 𝟎), 
so 𝒖′ should be modified for a divergence free velocity by: 

𝒖 − 𝒖′ = −
∇𝑝

𝜌
                                                             (12) 

∇ ∙ 𝒖′ = ∇ ∙ (
∇𝑝

𝜌
)                                                           (13) 

where 𝑝 is the pressure. The Poisson equation is solved in this paper in the framework of lattice 

Boltzmann method: 

ℎ𝛼(𝒙 + 𝐜𝜶, 𝑚 + 𝟏) = ℎ𝛼(𝒙,𝑚) −
1

𝜏ℎ
[ℎ𝛼(𝒙,𝑚) − ω𝛼𝑝(𝒙,𝑚)] −

ω𝛼

3
∇ ∙ 𝒖′        (14)    

where 𝜏ℎ = 0.5 + 1/𝜌, and 𝑚 is the iteration number. The iterated pressure can be calculated 

as: 

𝑝(𝒙,𝑚 + 1) =∑ℎ𝛼(𝒙,𝑚 + 1)

𝛼

                                            (15) 

and the iteration residual should meet the following condition before the modified velocity can 

be used for calculation: 

|𝑝(𝒙,𝑚 + 1) − 𝑝(𝒙,𝑚)| < 𝜀                                              (16) 

Landau free-energy equation is used in this model for partial wetting boundary condition: 

𝛹 = ∫ 𝑑𝑉 [𝛹(𝜙) +
kf(∇𝜙)

2

2
]

 

𝑉

                                          (17) 

The free-energy density 𝛹(𝜙) can be rewritten as follows in terms of isothermal system: 

𝛹(𝜙) = β(𝜙 − 𝜙𝐺)
2(𝜙 − 𝜙𝐿)

2 + 𝜇𝑏𝜙 − 𝑝𝑏                         (18) 

where β  is a constant parameter concerned with the interfacial thickness; 𝑝𝑏  is the bulk 

pressure. The chemical potential is defined as 

𝜇𝑐 =
𝜕𝛹

𝜕𝜙
= 4β(𝜙 − 𝜙𝐿)(𝜙 − 𝜙𝐺)(𝜙 − 𝜙𝑀) + 𝜇𝑏                    (19) 

where 𝜙𝑀 = (𝜙𝐿 + 𝜙𝐺)/2; 𝜇𝑏 is the bulk chemical potential. 

By combination of Eq. (19) and Eq. (8), here is 

𝑝0 =  β(𝜙 − 𝜙𝐿)(𝜙 − 𝜙𝐺)(3𝜙
2 − 𝜙𝜙𝐿 − 𝜙𝜙𝐺 − 𝜙𝐿𝜙𝐺) + 𝑝𝑏        (20) 

The interface thickness D is represented as 

𝐷 =
4

𝜙𝐿−𝜙𝐺
√
kf
2β
                                                       (21) 

The liquid-gas surface tension 𝜎𝐿𝐺 is given by 



𝜎𝐿𝐺 =
(𝜙𝐿−𝜙𝐺)

3

6
√2kfβ                                                 (22) 

Given that wetting potential 

𝛺 =
4𝜆

(𝜙𝐿 − 𝜙𝐺)2√2kfβ
                                             (23) 

The following equations for surface tensions can be obtained, and details for the derivation of 

surface tensions can be found from Zu Y.Q. [42] 

𝜎𝑆𝐺 = −𝜆
𝜙𝐿+𝜙𝐺
2

+
𝜎𝐿𝐺
2
−
𝜎𝐿𝐺
2
(1 − 𝛺)

3
2                                         (24) 

𝜎𝑆𝐿 = −𝜆
𝜙𝐿+𝜙𝐺
2

+
𝜎𝐿𝐺
2
−
𝜎𝐿𝐺
2
(1 + 𝛺)

3
2                                        (25) 

The wetting angle then can be given as 

cos𝜃𝑌 =
[(1 + 𝛺)

3
2 − (1 − 𝛺)

3
2]

2
                                                    (26) 

For a given wetting angle the wetting potential 𝛺 can be calculated as 

𝛺 = 2sgn (
𝜋

2
− 𝜃𝑌) {cos (

𝛾

3
) [1 − cos (

𝛾

3
)]}

1
2
                                 (27) 

Where 

𝛾 = arccos(sin2𝜃𝑌)                                                       (28) 

and sgn(𝜉) is to give the sign of 𝜉. 

To implement the partial wetting boundary condition for the phase field lattice Boltzmann 

model, the order parameter gradient near the wall should satisfy the follow condition: 

𝒏 ∙ ∇𝜙 = −
𝜆

kf
                                                            (29) 

where 𝒏 is the unit vector denoting the normal direction of the wall. 

3 Results and discussion 

The droplet motion on a square-post patterned micro surface, as shown in Fig. 2, is simulated 

in a liquid/gas two-phase system. The roughness parameters in this model are set as a = b =

h = 5μm. −3ω𝛼𝐜𝛼3(1 − 𝜌𝐺/𝜌)g is added to the right side of Eq. (5) for simulation of gravity 

effect, and 𝑔 means the nondimensional gravitational acceleration. The densities of liquid and 

gas are 𝜌𝐿 = 1000, 𝜌𝐺 = 1.29, and the viscosities of the two phase fluids are 𝜇𝐿 = 10, 𝜇𝐺 =

0.1935, respectively. To achieve the real liquid/gas two phase system, the physical parameters 

are calculated with the transformational relations between the lattice units and the physical 

units: the lattice length unit 𝐿0 = 1 × 10−6m, the lattice time unit 𝑇0 = 1 × 10−8s, and the 

lattice mass unit 𝑀0 = 1 × 10
−18kg . With the transformational relations, the natural 

dimensional physical parameters can be obtained: 𝜌𝐿̅̅ ̅ = 1000kg m
−3, 𝜌𝐺̅̅ ̅ = 1.29kg m−3, 𝜇𝐿̅̅ ̅ =



1 × 10−3kg m−1s−1, 𝜇𝐺̅̅ ̅ = 1.935 × 10
−5kg m−1s−1 and g̅ =  9.8m s−2. The initial diameter 

of a spherical droplet is 60μm.  The computational domain including solid surface and liquid 

droplet surrounded by gas are divided into 37 × 37 × 75 , which is quarter of the whole 

simulation region with symmetrical boundary condition applied. Unless otherwise specified, 

within a cuboid computational domain, the boundary conditions for the following simulation 

are set as: free outflow/inflow boundary conditions on the left, front and upper surfaces, 

symmetrical boundary conditions on the right and back surfaces, and non-slip boundary 

condition on the solid surfaces. The residual in Eq. (16) is 𝜀 = 1 × 10−6. The apparent contact 

angles for a droplet can be calculated by the following equations: 

Young equation: 

cos𝜃𝑌 =
𝜎𝑆𝐺 − 𝜎𝑆𝐿
𝜎𝐿𝐺

                                                        (30) 

Wenzel equation: 

cos𝜃𝑤 = 𝑟cos𝜃𝑌                                                              (31) 

Cassie-Baxter equation: 

cos𝜃𝐶𝐵 = 𝑟𝑓𝑓cos𝜃𝑌 + 𝑓 − 1                                               (32) 

Critical angle: 

cos𝜃𝐶 =
1 − 𝑓

𝑟𝑓𝑓 − 𝑟
                                                            (33) 

where 𝜎  is the surface tension which represents the energy per unit area of the interface 

between solid/gas, solid/liquid or liquid/gas, 𝑓 is the area fraction on the horizontal projected 

plane of the liquid-solid contact over the total area of solid-liquid and liquid-gas contact, 𝑟𝑓 is 

the ratio of the actual wetted area over the projected area, and 𝑟 is the ratio of the actual surface 

area with respect to the projected structure surface. The critical Young's angle calculated by 

Eq. (43) in our model is 115.4°, therefore Young's angles of 105° for Wenzel state preferable 

and 130° for Cassie-Baxter state preferable are tested in this paper. The following figures in 2-

D view are the density distributions on the cross section where y-coordinate is 36μm. 

 

Fig. 2 Structure of the square-post patterned micro surface 



 

3.1 Validation of the numerical model 

To validate the numerical model, firstly the apparent contact angles of water droplets on a flat 

surface are tested after the two phase systems reach static equilibrium in a  37 × 37 × 56 

computational domain. As shown in Fig. 3, the equilibrium contact angles are approximately 

105° and 130°, which are almost the same as previously set. Following the apparent contact 

angles of water droplets on a square-post patterned surface are tested as well, as shown in Fig. 

4. For the first case where Young’s angle is 105°, smaller than the critical angle, the wetting 

state is Wenzel state with the apparent contact angle of 119° in Fig. 4(a), and the theoretical 

contact angle calculated by Eq. (41) is 121.2°; while when Young’s angle is 130° and the 

wetting state is Cassie-Baxter state preferable, the simulated equilibrium apparent contact angle 

in Fig. 4(b) is 160°, which is also very close to the theoretical value of 155.6° by Eq. (42). Fig. 

4(c) and Fig. 4(d) present the droplets in 3-D view, from where it can be clearly seen that the 

grooves caused by roughness is waterlogged for the Wenzel state, while there is gas trapped 

between water liquid and solid surface for the Cassie-Baxter state. Hence, the numerical model 

can be used to study the wetting phenomena.     

  

   (a)                                                                   (b) 

Fig. 3 Droplets on flat surfaces with different Young’s angles (a) 𝜃𝑌 = 105° (b) 𝜃𝑌 = 130°   



  

    (a)                                                                   (b) 

 

(c)                                                                   (d) 

Fig. 4 Droplets on square-post patterned surfaces with different Young’s angles (a) 𝜃𝑌 =

105°, 2-D view (b) 𝜃𝑌 = 130°, 2-D view (c) 𝜃𝑌 = 105°, 3-D view (d) 𝜃𝑌 = 130°, 3-D view   

3.2 Wetting transitions 

The Cassie-to-Wenzel wetting state transition is firstly simulated with a Wenzel state 

preferable Young’s angle of 105°, as shown in Fig. 5. To overcome the energy barrier[5], an 

initial velocity of 0.001m/s is given and the initial height of the centre of the droplet is 60μm. 

From the pictures it can be seen that after about 1ms of the initial condition the droplet touches 

the upper surface of the square posts, presenting a Cassie-Baxter wetting state, and then the 

transition occurs. While the transition is in process, the droplet lower surface moves downward, 

keeping nearly horizontal until the inner parts touch the bottom solid surface. After 

approximately 2.4ms the transition process is completed. In the 1.4ms of the wetting transition 

process from Cassie-Baxter state to Wenzel state (1.00ms – 2.40ms), the time spent in moving 

down is about 1.34ms while the remaining 0.06ms is for soaking the bottom solid surface, 

which means the latter process diminishes the free energy much more, in another word, the 

energy barrier is main exist in the moving down process. This is consistent with the theoretical 



analysis in Patankar, N. A. [45] Moreover, in our simulation the Cassie-to-Wenzel transition 

occurs only by depinning of the three-phase line, but the “sag transition” with pinning the three-

phase line, which was predicted by Patankar, N. A. [46] was not observed.    

 

𝑡 = 0.00ms                  𝑡 = 0.60ms                  𝑡 = 1.00ms                  𝑡 = 1.50ms 

 

𝑡 = 1.80ms                  𝑡 = 2.00ms                  𝑡 = 2.20ms                  𝑡 = 2.30ms 

 

𝑡 = 2.34ms                  𝑡 = 2.38ms                  𝑡 = 2.39ms                  𝑡 = 2.40ms 

Fig. 5 Cassie-to-Wenzel wetting transition process, 𝜃𝑌 = 105° 

 

The reverse transition from Wenzel state to Cassie-Baxter state, which is difficult to implement 

by experiment due to the unachievable initial state, is then tested with a Cassie-Baxter state 

preferable Young’s angle of 130° in the numerical simulation, as shown in Fig. 6. The droplet 

is placed on the patterned surface with an initial condition of Wenzel state with water filled in 

the grooves, as shown in the first picture when 𝑡 = 0ms   It can be seen that the reverse 

transition route is quite different from the Cassie-to-Wenzel transition, which has a moving 

down process followed by the soaking bottom surface process  The reverse transition proceeds 

from the outer side of the post grooves to the inner side, and the liquid-solid-gas triple line 

moves in both horizontal and vertical directions  The whole transition takes places in around 

1.60ms  This result indicate that the Wenzel-to-Cassie wetting transition process can occur 



spontaneously without any external forces such as heating so long as the inherent contact angle 

is large enough  

  

𝑡 = 0.00ms                  𝑡 = 0.50ms                  𝑡 = 0.60ms                  𝑡 = 0.70ms 

 

𝑡 = 0.80ms                  𝑡 = 1.10ms                  𝑡 = 1.20ms                  𝑡 = 1.30ms 

 

𝑡 = 1.40ms                  𝑡 = 1.50ms                  𝑡 = 1.60ms                  𝑡 = 1.80ms 

Fig. 6 Wenzel-to-Cassie wetting transition process, 𝜃𝑌 = 130° 

It is generally agreed that the wetting transitions are irreversible [47]. For each case of our 

simulation work, the transition occurs along the same direction, from Cassie-Baxter state to 

Wenzel state for a large Young’s angle or the reverse transition for a smaller Young’s angle, 

irreversible when no extra forces are loaded to the droplets.   

 

3.3 Energy barrier 

Although it has been observed in experiments that the Wenzel state and Cassie-Baxter state of 

droplets can coexist on the same surface [48], the manufactured surface cannot be as ideal as 

people expect, and the roughness of the manufactured posts or the hierarchy structure that 

cannot be eliminated completely may have influence on the existence of the energy barrier. 

However, in the numerical simulation there is no such a problem, as all the posts are ideally 

patterned. Two droplets are placed on the same surface with the same Young’s angle of 105°, 



with Wenzel wetting state and Cassie-Baxter wetting sate as the initial wetting conditions, 

respectively. No external forces such as initial velocity or pressure but gravity is loaded to the 

droplets. When achieving equilibrium states, as shown in Fig. 7, the Wenzel state and Cassie-

Baxter state coexist, and no wetting transition happens spontaneously between the two droplets. 

This wetting phenomenon is firstly achieved by numerical simulation in our paper, and it 

proves that the energy barrier exists from the simulation point of view by eliminating the factor 

of roughness on each post of any manufactured surface.   

 

Fig. 7 Wenzel state and Cassie-Baxter state coexist on the same surface, 𝜃𝑌 = 105° 

3.4 Gravity effect on wetting transition 

In the microscale, gravity does not have an significant effect on the shape of a water droplet, 

but may be crucial to wetting transition.[45] During the Cassie-to-Wenzel transition process, 

the barycentre of the droplet declines, causing a decrease of the energy of the droplet, which 

can be a factor that overcomes the energy barrier. However, the gravity effect on wetting 

transition cannot be approved by experiments. In the numerical simulation, gravity can be 

loaded on the droplet or not just by changing the value of acceleration of gravity. Fig. 8 presents 

a specific case that the wetting transition is affected by the gravity effect when 𝜃𝑌 = 102° after 

0.90ms. Gravity is not loaded to the system in Fig. 8(a) and loaded in Fig. 8(b). It can be seen 

that after the same period of time, the wetting transition occurs for the droplet involving gravity 

but the other droplet is still in a Cassie-Baxter state. Although in our simulation the droplet 

without gravity in Fig. 8(a) finally transited to Wenzel state, which may be triggered by the 

pseudo currents on the wall or a small velocity field caused by initialization, the results still 

indicate that gravity has a significant effect on wetting transition because the transition occurs 

much faster for the droplet with gravity. 



  

   (a)                                                                   (b) 

Fig. 8 Gravity effect on wetting transition, 𝜃𝑌 = 102° , 𝑡 = 0.90ms (a) without gravity (b) 

with gravity  

4 Conclusions 

In this paper, the water droplet wetting transitions on square-patterned surfaces by mimicking 

the natural hydrophobic surfaces, which are difficult to be observed in experimental 

investigations, are achieved with a phase field lattice Boltzmann method in a two-phase system 

with large density ratio. The current work is very helpful in understanding the mechanism of 

wetting transitions, which is crucial for the development of superhydrophobic surfaces. The 

numerical model is firstly validated by comparing the apparent contact angles of both 

homogeneous and heterogeneous wetting states with the famous Wenzel equation and Cassie-

Baxter equation, and the simulation results are in good agreement with the theoretical results. 

Then the Cassie-to-Wenzel wetting transition and the Wenzel-to-Cassie transition processes, 

the energy barrier and the gravity effect on wetting transition are studied. Following 

conclusions can be drawn from the numerical investigation: 

(1) For the Cassie-to-Wenzel transition, it takes much more time of the droplet on moving 

down along the posts side surfaces than soaking the bottom solid surface, which means the 

energy barrier is mainly on the vertical transition process.  

(2) The Wenzel-to-Cassie transition can be achieved spontaneously if an initial condition of 

homogeneous wetting state can be given on a surface with large Young’s angle  

(3) Cassie-to-Wenzel transition and the reverse transition have different routes: the former 

occurs mainly in the vertical direction, while the reverse transition is primarily an outer-to-

inner process.  

(4) For the cases tested in our work, the wetting transitions are irreversible without any external 

forces. 



(5) The two wetting states can coexist on a Wenzel state preferable surface excluding the effect 

from smaller scale of roughness than the scale of posts for manufactured surfaces, which means 

the energy barrier exists. 

(6) Although gravity does not have a significant influence on the shape of the droplet in 

microscale, it can be a crucial factor to wetting transition.  
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