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Second order total variation (SOTV) models have advantages for image restoration over their first order 
counterparts including their ability to remove the staircase artefact in the restored image. However, 
such models tend to blur the reconstructed image when discretised for numerical solution [1–5]. To 
overcome this drawback, we introduce a new tensor weighted second order (TWSO) model for image 
restoration. Specifically, we develop a novel regulariser for the SOTV model that uses the Frobenius 
norm of the product of the isotropic SOTV Hessian matrix and an anisotropic tensor. We then adapt the 
alternating direction method of multipliers (ADMM) to solve the proposed model by breaking down the 
original problem into several subproblems. All the subproblems have closed-forms and can be solved 
efficiently. The proposed method is compared with state-of-the-art approaches such as tensor-based 
anisotropic diffusion, total generalised variation, and Euler’s elastica. We validate the proposed TWSO 
model using extensive experimental results on a large number of images from the Berkeley BSDS500. 
We also demonstrate that our method effectively reduces both the staircase and blurring effects and 
outperforms existing approaches for image inpainting and denoising applications.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Anisotropic diffusion tensor can be used to describe the local 
geometry at an image pixel, thus making it appealing for various 
image processing tasks [6–13]. Variational methods allow easy in-
tegration of constraints and use of powerful modern optimisation 
techniques such as primal–dual [14–16], fast iterative shrinkage-
thresholding algorithm [17,18], and alternating direction method 
of multipliers [2–4,19–24]. Recent advances on how to automati-
cally select parameters for different optimisation algorithms [16,18,
25] dramatically boost performance of variational methods, leading 
to increased research interest in this field.

As such, the combination of diffusion tensor and variational 
methods has been investigated by researchers for image process-
ing. Krajsek and Scharr [7] developed a linear anisotropic regular-
isation term that forms the basis of a tensor-valued energy func-
tional for image denoising. Grasmair and Lenzen [8,9] penalised 
image variation by introducing a diffusion tensor that depends on 
the structure tensor of the image. Roussous and Maragos [10] de-
veloped a functional that utilises only eigenvalues of the structure 
tensor. Similar work by Lefkimmiatis et al. [13] used Schatten-
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norm of the structure tensor eigenvalues. Freddie et al. proposed 
a tensor-based variational formulation for colour image denoising 
[11], which computes the structure tensor without Gaussian con-
volution to allow Euler-equation of the functional to be elegantly 
derived. They further introduced a tensor-based functional named 
the gradient energy total variation [12] that utilises both eigenval-
ues and eigenvectors of the gradient energy tensor.

However, these existing works mentioned above only consider 
the standard first order total variation (FOTV) energy. A drawback 
of the FOTV model is that it favours piecewise-constant solutions. 
Thus, it can create strong staircase artefacts in the smooth re-
gions of the restored image. Another drawback of the FOTV model 
is its use of gradient magnitude to penalise image variations at 
pixel locations x, which uses less neighbouring pixel informa-
tion as compared to high order derivatives in a discrete space. 
As such, the FOTV has difficulties inpainting images with large 
gaps. High order variational models thus can be applied to remedy 
these side effects. Among these is the second order total varia-
tion (SOTV) model [1,2,22,26,27]. Unlike the high order variational 
models, such as the Gaussian curvature [28], mean curvature [23,
29], Euler’s elastica [21] etc., the SOTV is a convex high order ex-
tension of the FOTV, which guarantees a global solution. The SOTV 
is also more efficient to implement [4] than the convex total gen-
eralised variation (TGV) [30,31]. However, the inpainting results of 
130
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the model highly depend on the geometry of the inpainting region, 
and it also tends to blur the inpainted area [2,22]. Further, accord-
ing to the numerical experimental results displayed in [1–5] the 
SOTV model tends to blur object edges for image denoising.

In this paper, we propose a tensor weighted second order 
(TWSO) variational model for image inpainting and denoising. 
A novel regulariser has been developed for the TWSO that uses 
the Frobenius norm of the product of the isotropic SOTV Hessian 
matrix and an anisotropic tensor, so that the TWSO is a nonlinear 
anisotropic high order model which effectively integrates orien-
tation information. In numerous experiments, we found that the 
TWSO can reduce the staircase effect whilst improve the sharp 
edges/boundaries of objects in the denoised image. For image in-
painting problems, the TWSO model is able to connect large gaps 
regardless of the geometry of the inpainting region and it would 
not introduce much blur to the inpainted image. As the proposed 
TWSO model is based on the variational framework, ADMM can be 
adapted to solve the model efficiently. Extensive numerical results 
show that the new TWSO model outperforms the state-of-the-art 
approaches for both image inpainting and denoising.

The contributions of the paper are twofold: 1) a novel aniso-
tropic nonlinear second order variational model is proposed for 
image restoration. To the best of our knowledge, this is the first 
time the Frobenius norm of the product of the Hessian matrix and 
a tensor has been used as a regulariser for variational image de-
noising and inpainting; 2) A fast ADMM algorithm is developed for 
image restoration based on a forward-backward finite difference 
scheme.

The rest of the paper is organised as follows: Section 2 intro-
duces the proposed TWSO model and the anisotropic tensor T; 
Section 3 presents the discretisation of the differential operators 
used for ADMM based on a forward-backward finite difference 
scheme; Section 4 describes ADMM for solving the variational 
model efficiently. Section 5 gives details of the experiments us-
ing the proposed TWSO model and the state-of-the-art approaches 
for image inpainting and denoising. Section 6 concludes the paper.

2. The TWSO model for image restoration

2.1. The TWSO model

In [26], the authors considered the following SOTV model for 
image processing

min
u

{η

2
‖u − f ‖2

2 + ‖∇2u‖1

}
, (2.1)

where η > 0 is a regularisation parameter. ∇2u is the second order 
Hessian matrix of the form

∇2u =
(

∂x∂xu ∂y∂xu
∂x∂yu ∂y∂yu

)
, (2.2)

and ‖∇2u‖1 in (2.1) is the Frobenius norm of the Hessian matrix 
(2.2). By using such norm, (2.1) has several capabilities: 1) allow-
ing discontinuity of gradients of u; 2) imposing smoothness on u; 
3) satisfying the rotation-invariant property. Thought this high or-
der model (2.1) is able to reduce the staircase artefact associated 
with the FOTV for image denoising, it can blur object edges in the 
image [1–4]. For inpainting, as investigated in [2,22], though the 
SOTV has the ability to connect large gaps in the image, such abil-
ity depends on the geometry of the inpainting region, and it can 
blur the inpainted image. In order to remedy these side effects in 
both image inpainting and denoising, we propose a more flexible 
and generalised variational model, i.e., the tensor weighted second 
order (TWSO) model that takes advantages of both the tensor and 
the second order derivative. Specifically, the TWSO model is de-
fined as
min
u

{
η

p
‖1� (u − f )‖p

p + ‖T∇2u‖1

}
, (2.3)

where p ∈ {1,2} denotes the L1 and L2 data fidelity terms (i.e. 
‖1� (u − f )‖1 and ‖1� (u − f )‖2

2), and � is a subset of � (i.e. 
� ⊂ � ⊂ R2). For image processing applications, the � is normally 
a rectangle domain. For image inpainting, f is the given image 
in � = �\D , where D ⊂ � is the inpainting region with missing 
or degraded information. The values of f on the boundaries of D
need to be propagated into the inpainting region via minimisation 
of the weighted regularisation term of the TWSO model. For im-
age denoising, f is the noisy image and � = �. In this case, the 
choice of p depends on the type of noise found in f , e.g. p = 2 for 
Gaussian noise while p = 1 for impulsive noise.

In the regularisation term ‖T∇2u‖1 of (2.3), T is a symmet-
ric positive semi-definite 2×2 diffusion tensor whose four com-
ponents are T11, T12, T21, and T22. They are computed from the 
input image f . It is worth pointing out that the regularisation term 
‖T∇2u‖1 is the Frobenius norm of a 2 by 2 tensor T multiplied by 
a 2 by 2 Hessian matrix ∇2u, which has the form of(

T11∂x∂xu + T12∂x∂yu T11∂y∂xu + T12∂y∂yu
T21∂x∂xu + T22∂x∂yu T21∂y∂xu + T22∂y∂yu

)
, (2.4)

where the two orthogonal eigenvectors of T span the rotated co-
ordinate system in which the gradient of the input image is com-
puted. As such T can introduce orientations to the bounded Hes-
sian regulariser ‖∇2u‖1. The eigenvalues of the tensor measure the 
degree of anisotropy in the regulariser and weight the four sec-
ond order derivatives in ∇2u in the two directions given by the 
eigenvectors of the structure tensor introduced in [32]. It should 
be noting that the original SOTV (2.1) is an isotropic nonlinear 
model while the proposed TWSO (2.3) is an anisotropic nonlinear 
one. As a result, the new tensor weighted regulariser ‖T∇2u‖1 is 
powerful for image inpainting and denoising, as illustrated in the 
experimental section. In the next section, we shall introduce the 
derivation of the tensor T.

2.2. Tensor estimation

In [32], the author defined the structure tensor Jρ of an im-
age u

Jρ (∇uσ ) = Kρ ∗ (∇uσ ⊗ ∇uσ ) , (2.5)

where Kρ is a Gaussian kernel whose standard deviation is ρ and 
∇uσ is the smoothed version of the gradient convolved by Kσ . 
The use of (∇uσ ⊗ ∇uσ ) := ∇uσ ∇uT

σ as a structure descriptor is 
to make Jρ insensitive to noise but sensitive to change in orien-
tation. The structure tensor Jρ is positive semi-definite and has 
two orthonormal eigenvectors v1 || ∇uσ (in the direction of gra-
dient) and v2 || ∇uσ (in the direction of the isolevel lines). The 
corresponding eigenvalues μ1 and μ2 can be calculated from

μ1,2 = 1

2

(
j11 + j22 ±

√
( j11 − j22)

2 + 4 j2
12

)
, (2.6)

where j11, j12 and j22 are the components of Jρ . They are given 
as

j11 = Kρ ∗ (∂xuσ )2, j12 = j21 = Kρ ∗ (
∂xuσ ∂yuσ

)
, j22

= Kρ ∗ (
∂yuσ

)2
. (2.7)

The eigenvalues of Jρ describe the ρ-averaged contrast in the 
eigendirections, meaning: if μ1 = μ2 = 0, the image is in homo-
geneous area; if μ1 � μ2 = 0, it is on a straight line; and if 
μ1 > μ2 � 0, it is at objects’ corner. Based on the eigenvalues, 
we can define the following local structural coherence quantity

Coh = (μ1 − μ2)
2 = ( j11 − j22)

2 + 4 j2 . (2.8)
12
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This quantity is large for linear structures and small for homoge-
neous areas in the image. With the derived structure tensor (2.5)
we define a new tensor T = D

(
Jρ (∇uσ )

)
whose eigenvectors are 

parallel to the ones of Jρ(∇uσ ) and its eigenvalues λ1 and λ2 are 
chosen depending on different image processing applications. For 
denoising problems, we need to prohibit the diffusion across image 
edges and encourage strong diffusion along edges. We therefore 
consider the following two diffusion coefficients for the eigenval-
ues

λ1 =
{

1 s ≤ 0

1 − e
−3.31488

(s/C)8 s > 0
, λ2 = 1, (2.9)

with s := |∇uσ | the gradient magnitude and C the contrast param-
eter. For inpainting problems, we want to preserve linear structures 
and thus regularisation along isophotes of the image is appropri-
ate. We therefore consider the weights that Weickert [32] used for 
enhancing the coherence of linear structures. With μ1, μ2 being 
the eigenvalues of Jρ as before, we define

λ1 = γ , λ2 =
{

γ μ1 = μ2

γ + (1 − γ ) e− C
Coh else

, (2.10)

where γ ∈ (0, 1), γ 
 1. The constant γ determines how steep 
the exponential function is. The structure threshold C affects how 
the approach interprets local structures. The larger the parame-
ter value is, the more coherent the method will be. With these 
eigenvalues, the regularisation is stronger in the neighbourhood of 
coherent structures (note that ρ determines the radius of neigh-
bourhood) and weaker in homogeneous areas, at corners, and in 
incoherent areas of the image.

3. Discretisation of differential operators

In order to implement ADMM for the proposed TWSO model, it 
is necessary to discretise the derivatives involved. We note that dif-
ferent discretisation may lead to different numerical experimental 
results. In this paper, we use the forward–backward finite differ-
ence scheme. Let � denote the two dimensional grey scale image 
of size MN, and x and y denote the coordinates along image col-
umn and row directions respectively. The discrete second order 
derivatives of u at point (i, j) along x and y directions can be then 
written as

∂+
x ∂−

x ui, j = ∂−
x ∂+

x ui, j =⎧⎨
⎩

ui,N − 2ui, j + ui, j+1 if 1 ≤ i ≤ M, j = 1
ui, j−1 − 2ui, j + ui, j+1 if 1 ≤ i ≤ M, 1 < j < N
ui, j−1 − 2ui, j + ui,1 if 1 ≤ i ≤ M, j = N

, (3.1)

∂+
y ∂−

y ui, j = ∂−
y ∂+

y ui, j =⎧⎨
⎩

uM, j − 2ui, j + ui+1, j if i = 1, 1 ≤ j ≤ N
ui−1, j − 2ui, j + ui+1, j if 1 < i < M, 1 ≤ j ≤ N
ui−1, j − 2ui, j + u1, j if i = M, 1 ≤ j ≤ N

, (3.2)

∂+
x ∂+

y ui, j = ∂+
y ∂+

x ui, j =⎧⎪⎪⎨
⎪⎪⎩

ui, j − ui+1, j − ui, j+1 + ui+1, j+1 if 1 ≤ i < M, 1 ≤ j < N
ui, j − u1, j − ui, j+1 + u1, j+1 if i = M, 1 ≤ j < N
ui, j − ui+1, j − ui,1 + ui+1,1 if 1 ≤ i < M, j = N
ui, j − u1, j − ui,1 + u1,1 if i = M, j = N

,

(3.3)
Fig. 1. Discrete second order derivatives.

∂−
x ∂−

y ui, j = ∂−
y ∂−

x ui, j =⎧⎪⎪⎨
⎪⎪⎩

ui, j − ui,N − uM, j + uM,N if i = 1, j = 1
ui, j − ui, j−1 − uM, j + uM, j−1 if i = 1, 1 < j ≤ N
ui, j − ui,N − ui−1, j + ui−1,N if 1 < i ≤ M, j = 1
ui, j − ui, j−1 − ui−1, j + ui−1, j−1 if 1 < i ≤ M, 1 < j ≤ N

.

(3.4)

Fig. 1 summarises these discrete differential operators. Based on 
the above forward–backward finite difference scheme, the second 
order Hessian matrix ∇2u in (2.2) can be discretised as

∇2u =
(

∂−
x ∂+

x u ∂+
y ∂+

x u
∂+

x ∂+
y u ∂−

y ∂+
y u

)
. (3.5)

In (3.1)–(3.5), we assume that u satisfies the periodic boundary 
condition so that the fast Fourier transform (FFT) solver can be ap-
plied to solve (2.3) analytically. The numerical approximation of 
the second order divergence operator div2 is based on the follow-
ing expansion

div2(P) = ∂+
x ∂−

x (P1)+ ∂−
y ∂−

x (P2)+ ∂−
x ∂−

y (P3)+ ∂+
y ∂−

y (P4), (3.6)

where P is a 2 × 2 matrix whose four components are P1, P2, 
P3 and P4, respectively. For more detailed description of the dis-
cretisation of other high order differential operators, we refer the 
reader to [3,4]. More advanced discretisation on a staggered grid 
can be found in [21,33,34].

Finally, we address the implementation problem of the first 
order derivatives of uσ in (2.7). Since the differentiation and con-
volution are commutative, we can take the derivative and smooth 
the image in either order. In this sense, we have

∂xuσ = ∂x Kσ ∗ u, ∂yuσ = ∂y Kσ ∗ u. (3.7)

Alternatively, the central finite difference scheme can be used to 
approximate ∂xuσ and ∂yuσ to satisfy the rotation-invariant prop-
erty. Once all necessary discretisation is done, the numerical com-
putation can be implemented.

4. Numerical optimisation algorithm

It is nontrivial to directly solve the TWSO model due to the 
facts: 1) it is nonsmooth; 2) it couples the tensor T and Hessian 
matrix ∇2u in ‖T∇2u‖1 as shown in (2.4), making the resulting 
high order Euler–Lagrange equation drastically difficult to discre-
tise to solve computationally. To address these two difficulties, we 
present an efficient numerical algorithm based on ADMM to min-
imise the variational model (2.3).

4.1. Alternating Direction Method of Multipliers (ADMM)

ADMM combines the decomposability of the dual ascent with 
superior convergence properties of the method of multipliers. Re-
cent research [20] unveils that ADMM is also closely related to 
Douglas–Rachford splitting, Spingarn’s method of partial inverses, 
Dykstra’s alternating projections, split Bregman iterative algorithm 
etc. Given a constrained optimisation problem



JID:YDSPR AID:2153 /FLA [m5G; v1.219; Prn:17/07/2017; 11:02] P.4 (1-13)

4 J. Duan et al. / Digital Signal Processing ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
min
x,z

{ f (x) + g (z)} s.t. Ax + Bz = c, (4.1)

where x ∈ Rd1 , z ∈ Rd2 , A ∈ Rm×d1 , B ∈ Rm×d2 , c ∈ Rm , and both f (·)
and g (·) are assumed to be convex. The augmented Lagrange func-
tion of problem (4.1) can be written as

LA (x, z;ρ) = f (x) + g (z) + β

2
‖Ax + Bz − c − ρ‖2

2, (4.2)

where ρ is an augmented Lagrangian multiplier and β > 0 is 
an augmented penalty parameter. At the kth iteration, ADMM at-
tempts to solve problem (4.2) by iteratively minimising LA with 
respect to x and z, and updating ρ accordingly. The resulting opti-
misation procedure is summarised in Algorithm 1.

Algorithm 1 ADMM.
1: Initialization: Set β > 0, z0 and ρ0.
2: while a stopping criterion is not satisfied do

3: xk+1 = arg minx

{
f (x) + β

2 ‖Ax + Bzk − c − ρk‖2
2

}
.

4: zk+1 = arg minz

{
g (z) + β

2 ‖Axk+1 + Bzk − c − ρk‖2
2

}
.

5: ρk+1 = ρk − (
Axk+1 + Bzk+1 − c

)
.

6: end while

4.2. Application of ADMM to solve the TWSO model

We now use ADMM to solve the minimisation problem of the 
proposed TWSO model (2.3). The basic idea of ADMM is to first 
split the original nonsmooth minimisation problem into several 
subproblems by introducing some auxiliary variables, and then 
solve each subproblem separately. This numerical algorithm ben-
efits from both solution stability and fast convergence.

In order to implement ADMM, one scalar auxiliary variable ũ
and two 2 × 2 matrix-valued auxiliary variables W and V are in-
troduced to reformulate (2.3) into the following constraint optimi-
sation problem

min
ũ,u,W,V

{
η

p
‖1�

(
ũ − f

)‖p
p + ‖W‖1

}
s.t. ũ = u,V = ∇2u,W = TV,

(4.3)

where W = (
W11 W12
W21 W22

), V = (
V11 V12
V21 V22

). The constraints ũ = u and 

W = TV are respectively applied to handle the non-smoothness of 
the data fidelity term (p = 1) and the regularisation term, whilst 
V = ∇2u decouples T and ∇2u in the TWSO. The three constraints 
together make the calculation for each subproblem point-wise and 
thus no huge matrix multiplication or inversion is required. To 
guarantee an optimal solution, the above constrained problem (4.3)
can be solved through ADMM summarised in Algorithm 1. Let 
LA

(
ũ, u,W,V; s,d,b

)
be the augmented Lagrange functional of 

(4.3), which is defined as follows

LA
(
ũ, u,W,V; s,d,b

)
= η

p
||1�

(
ũ − f

) ||p
p + ||W||1 + θ1

2
||ũ − u − s||22

+ θ2

2
||V − ∇2u − d||22 + θ3

2
||W − TV − b||22, (4.4)

where s, d = (
d11 d12
d21 d22

) and b = (
b11 b12
b21 b22

) are the augmented 

Lagrangian multipliers, and θ1, θ2 and θ3 are positive penalty con-
stants controlling the weights of the penalty terms.

We will now decompose the optimisation problem (4.4) into 
four subproblems with respect to ũ, u, W and V, and then update 
the Lagrangian multipliers s, d and b until the optimal solution is 
found and the process converges.
1) ũ-subproblem: This problem ũk+1 ← minũLA
(
ũ, uk,Wk,Vk;

sk,dk,bk
)

can be solved by considering the following minimisation 
problem

ũk+1 = arg min
ũ

{
η

p
||1�

(
ũ − f

) ||p
p + θ1

2
||ũ − uk − sk||22

}
. (4.5)

The solution of (4.5) depends on the choice of p. Given the domain 
� for image denoising or inpainting, the closed-form formulae for 
the minimisers ũk+1 under different conditions are{

ũk+1 = (
1�η f + θ1

(
uk + sk

))/
(1�η + θ1) if p = 2

ũk+1 = f + max
(
|ψk| − 1�η

θ1
,0

)
◦ sign

(
ψk

)
if p = 1

, (4.6)

where ψk = uk +sk − f . ◦ and sign symbols denote the component-
wise multiplication and signum function, respectively.

2) u-subproblem: We then solve u-subproblem uk+1 ←
minuLA

(
ũk+1, u,Wk,Vk; sk,dk,bk

)
by minimising the following 

problem.

uk+1 = arg min
u

{
θ1

2
||ũk+1 − u − sk||22 + θ2

2
||Vk − ∇2u − dk||22

}
,

(4.7)

whose closed-form can be obtained using the following FFT under 
the assumption of the circulant boundary condition (Note that to 
benefit from the fast FFT solver for image inpainting problems, the 
introduction of ũ is compulsory due to the fact that F(1�u) 
=
1�F(u))

uk+1 = F−1

(
F

(
θ1

(
ũk+1 − sk

) + θ2div2
(
Vk − dk

))
θ1 + θ2F

(
div2∇2

)
)

, (4.8)

where F and F−1 respectively denote the discrete Fourier trans-
form and inverse Fourier transform; div2 is a second order diver-
gence operator whose discrete form is defined in (3.6); “—” stands 
for the pointwise division of matrices. The values of the coefficient 
matrix F(div2∇2) equal 4(cos 2πq

N + cos 2πr
M − 2), where M and N

respectively stand for the image width and height, and r ∈ [0, M)

and q ∈ [0, N) are the frequencies in the frequency domain. Note 
that in addition to FFT, AOS and Gauss–Seidel iteration can be ap-
plied to minimise the problem (4.7) with very low cost.

3) W-subproblem: We now solve the W-subproblem Wk+1 ←
minWLA

(
ũk+1,uk+1,W,Vk; sk,dk,bk

)
. Note that the unknown 

matrix-valued variable W is componentwise separable, which can 
be effectively solved through the analytical shrinkage operation, 
also known as the soft generalised thresholding equation

Wk+1 = arg min
W

{
‖W‖1 + θ3

2
‖W − TVk − bk‖2

2

}
,

whose solution Wk+1 is given by

Wk+1 = max

(∣∣∣TVk + bk
∣∣∣ − 1

θ3
,0

)
◦ TVk + bk∣∣TVk + bk

∣∣ , (4.9)

with the convention that 0 · (0/0) = 0.
4) The V-subproblem: Given fixed uk+1, Wk+1, dk , bk , the solu-

tion Vk+1 of the V-subproblem Vk+1 ← minVLA
(
ũk+1,uk+1, Wk+1,

V; sk, dk, bk
)

is equivalent to solving the following least-square op-
timisation problem

Vk+1 =arg min
V

{
θ2

2
||V − ∇2uk+1 − dk||22

+ θ3 ||Wk+1 − TV − bk||22
}
,

2
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which results in the following linear system with respect to each 
component in the variable Vk+1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R11Vk+1
11 + R21Vk+1

21 = θ2(∂
−
x ∂+

x uk+1 + dk
11)− θ3(T11Q11 + T21Q21)

R12Vk+1
11 + R22Vk+1

21 = θ2(∂
+
x ∂+

y uk+1 + dk
21)− θ3(T12Q11 + T22Q21)

R11Vk+1
12 + R21Vk+1

22 = θ2(∂
+
y ∂+

x uk+1 + dk
12)− θ3(T11Q12 + T21Q22)

R12Vk+1
12 + R22Vk+1

22 = θ2(∂
−
y ∂+

y uk+1 + dk
22)− θ3(T12Q12 + T22Q22)

, (4.10)

where we define R11 = θ3(T2
11 + T2

21) + θ2, R12 = R21 =
θ3 (T11T12 + T21T22), R22 = θ3

(
T2

12 + T2
22

) + θ2; Q11 = bk
11 − Wk+1

11 , 
Q12 = bk

12 − Wk+1
12 , Q21 = bk

21 − Wk+1
21 and Q22 = bk

22 − Wk+1
22 . Note 

that the closed-forms of Vk+1
11 and Vk+1

21 can be calculated from the 
first two equations in (4.10), whilst the last two equations lead to 
the analytical solutions of Vk+1

12 and Vk+1
22 .

5) s, d and b update: At each iteration, we update the aug-
mented Lagrangian multiplies s, d and b as shown from Step 09 
to 11 in Algorithm 2.

Algorithm 2 ADMM for the proposed TWSO model for image 
restoration.
01: Input: f , 1� , p, ρ , σ , γ , C, C , η and (θ1, θ2, θ3).
02: Initialise: u = f , W0 = 0, V0 = 0, d0 = 0, b0 = 0.
03: while some stopping criterion is not satisfied do
04: Compute ũk+1 according to (4.6).
05: Compute uk+1 according to (4.8).
06: Compute Wk+1 according to (4.9).
07: Compute Vk+1 according to (4.10).
08: Compute Tk+1 = D

(
Jρ

(∇uk+1
σ

))
according to (2.9) or (2.10).

09: Update Lagrangian multiplier sk+1 = sk + uk+1 − ũk+1.
10: Update Lagrangian multiplier dk+1 = dk + ∇2uk+1 − Vk+1.
11: Update Lagrangian multiplier bk+1 = bk + (TV)k+1 − Wk+1.
12: end while

In summary, an ADMM-based iterative algorithm was devel-
oped to decompose the original nonsmooth minimisation problem 
into four simple subproblems, each of which has a closed-form 
solution that can be point-wisely solved using the efficient nu-
merical methods (i.e. FFT and shrinkage). The overall numerical 
optimisation algorithm of our proposed method for image restora-
tion can be summarised in Algorithm 2. We note that in order to 
obtain better denoising and inpainting results, we iteratively re-
fine the diffusion tensor T using the recovered image (i.e. uk+1 as 
shown in Step 8 in Algorithm 2). This refinement is crucial as it 
provides more accurate tensor information for the next round iter-
ation, thus leading to more pleasant restoration results. Due to the 
reweighed process the convergence of the algorithm is not guaran-
teed. However, the algorithm is still fast and stable, as evident in 
our experiments.

5. Numerical experiments

We conduct numerical experiments to compare the TWSO 
model with state-of-the-art approaches for image inpainting and 
denoising. The images used in this study are normalised to [0,255] 
before inpainting and denoising. The metrics for quantitative eval-
uation of different methods are the peak signal-to-noise ratio 
(PSNR) and structure similarity index map (SSIM). The higher PSNR 
and SSIM a method obtains the better the method will be. In or-
der to maximise the performance of all the compared methods, we 
carefully adjust their built-in parameters such that the resulting 
PSNR and SSIM by these methods are maximised. In the following, 
we shall introduce how to select these parameters for the TWSO 
model in detail.
5.1. Parameters

For image inpainting, there are 8 parameters in the proposed 
model: the standard deviations ρ and σ in (2.5), the constant γ
and structure threshold C in (2.10), the regularisation parameter η
in (4.4), and the penalty parameters θ1, θ2 and θ3 in (4.4).

The parameter ρ averages orientation information and helps 
to stabilise the directional behaviour of the diffusion. Large inter-
rupted lines can be connected if ρ is equal or larger than the gap 
size. The selection of ρ for each example has been listed in Table 1. 
σ is used to decrease the influence of noise and guarantee nu-
merical stabilisation and thereby gives a more robust estimation of 
the structure tensor Jρ in (2.5). γ in (2.10) determines how steep 
the exponential function is. Weickert [32] suggested γ ∈ (0, 1) and 
γ 
 1. Therefore γ is fixed at 0.01. The structure threshold C
affects how the method understands local image structures. The 
larger the parameter value is, the more sensitive the method will 
be. However, if C goes to infinity, our TWSO model reduces to 
the isotropic SOTV model. C ’s selection for different examples is 
presented in Table 1. The regularisation parameter η controls the 
smoothness of the restored image. Smaller η leads to smoother 
restoration, and it should be relatively large to make the inpainted 
image close to the original image. The value of η is chosen as 100 
for all the inpainting experiments.

We now illustrate how to choose the penalty parameters θ1, 
θ2 and θ3. Due to the augmented Lagrangian multipliers used, 
different combinations of the three parameters will provide sim-
ilar inpainting results. However, the convergence speed will be 
affected. In order to guarantee the convergence speed, we use 
the rule introduced in [35] to tune θ1, θ2 and θ3. Namely, the 
residuals Rk

i (i = 1,2,3) defined in (5.1), the relative errors of the 
Lagrangian multipliers Lk

i (i = 1,2,3) defined in (5.2) and the rel-
ative errors of u defined in (5.3) should reduce to zero with nearly 
the same speed as the iteration proceeds. For example, in all the 
inpainting experiments, setting θ1 = 0.01, θ2 = 0.01 and θ3 = 0.001
gives a good convergence speed as each pair of curves in Fig. 2 (a) 
and (b) decrease to zero with very similar speed. In addition, Fig. 2
(d) shows that the numerical energy of the TWSO model (2.3) has 
reached to a steady state after only a few iterations. Fig. 2 shows 
the plots for a real inpainting example in Fig. 7.

The residuals Rk
i (i = 1,2,3) are defined as

(
Rk

1, Rk
2, Rk

3

)
=

(
1

|�| ‖ũk − ũk‖L1 ,
1

|�| ‖Vk − ∇2uk‖L1 ,
1

|�| ‖Wk − TVk‖L1

)
,

(5.1)

where ‖ · ‖L1 denotes the L1-norm on the image domain �. 
The relative errors of the augmented Lagrangian multipliers Lk

i
(i = 1,2,3) are defined as(

Lk
1, Lk

2, Lk
3

)

=
(

||sk − sk−1||L1

||sk−1||L1
,

||dk − dk−1||L1

||dk−1||L1
,

||bk − bk−1||L1

||bk−1||L1

)
. (5.2)

The relative errors of u are defined as

Rk
u = ||uk − uk−1||L1

||uk−1||L1
. (5.3)

In summary, there are only two built-in parameters ρ and C
that need to be adjusted for inpainting different images (see Ta-
ble 1 for their selections). Consequently, the proposed TWSO is a 
very robust model in terms of parameter tuning.
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Fig. 2. Plots of the residuals (5.1), the relative errors of the Lagrangian multipliers (5.2), the relative errors of the function u in (5.3), and the energy of the proposed model 
(2.3) against number of iterations for the real inpainting example in Fig. 7.

Fig. 3. Plots of the residuals (5.1), relative errors of the Lagrangian multipliers (5.2), relative errors of the function u in (5.3), and the energy of the TWSO model (2.3) against 
the number of iterations for the synthetic image in Fig. 9.
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Table 1
Parameters used in the TWSO model for the examples in Figs. 4–7 and Figs. 9–10.

Parameter Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 9 Fig. 10

1st, 2nd columns 3rd, 4th columns 5th, 6th columns All rows

ρ 10 10 10 10 10 5 1 1
σ 1 1 1 1 1 1 1 1
γ 0.01 0.01 0.01 0.01 0.01 0.01 – –
C/C 10 1 5 1 1 1 5 5
η 100 100 100 100 100 100 0.04 0.05
θ1 0.01 0.01 0.01 0.01 0.01 0.01 5 5
θ2 0.01 0.01 0.01 0.01 0.01 0.01 5 5
θ3 0.001 0.001 0.001 0.001 0.001 0.001 10 10
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Fig. 4. Performance comparison of the SOTV and TWSO models on some degraded 
images. The red regions in the first row are inpainting domains. The second and 
third rows show the corresponding inpainting results by the SOTV and the TWSO 
models, respectively. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 5. Test on a black stripe with different geometries. (a): Images with red inpaint-
ing regions. The last three inpainting gaps have the same width but with different 
geometry; (b–f): results of TV, SOTV, TGV, Euler’s elastica, and TWSO, respectively. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

For image denoising, there are 7 parameters in the TWSO 
model: ρ and σ in (2.5), the contrast parameter C in (2.9), and 
η, θ1, θ2 and θ3 in (4.4). Each parameter plays a similar role as 
its counterpart in the inpainting model. However, in contrast to 
inpainting, ρ here should be small because we do not need to con-
nect gaps for image denoising. We have also found that σ = 1 is 
sufficient for the cases considered in this paper. C determines how 
much anisotropy the TWSO model will bring to the resulting im-
age. We illustrate the effect of this parameter using the example 
in Fig. 10. The regularisation parameter η should be small when 
image noise level is high. The three penalty parameters are cho-
sen based on the quantities defined in (5.1), (5.2) and (5.3). Fig. 3
shows that using θ1 = 5, θ2 = 5 and θ3 = 10 leads to fast conver-
gence speed for the synthetic image in Fig. 9 and these values are 
used for the rest of image denoising examples. Finally, the param-
eters selected are given in the last two columns in Table 1.

5.2. Image inpainting

In this section we test the capability of the TWSO model for 
image inpainting and compare it with several state-of-the-art in-
painting methods such as the TV [36], TGV [37], SOTV [2,22], and 
Euler’s elastica [21,38] models. We denote the inpainting domain 
as D in the following experiments. The region � in equation (2.3)
is �\D . We use p = 2 for all examples in image inpainting.

Fig. 4 illustrates the importance of the tensor T in the proposed 
TWSO model. The damaged images overlaid with the red inpaint-
ing domains are shown in the first row. Second row and third row 
show that the TWSO performs much better than SOTV. SOTV in-
troduces blurring to the inpainted regions, whilst TWSO recovers 
these shapes very well without causing much blurring. In addition 
to the capability of inpainting large gaps, the TWSO interpolates 
smoothly along the level curves of the image in the inpainting 
domain, indicating the effectiveness of tensor in TWSO for inpaint-
ing.

In Fig. 5, we show how different geometries of the inpainting 
region affect the results by different methods. Column (b) illus-
trates that TV performs satisfactorily if the inpainting area is thin. 
However, it fails in images that contain large gaps. Column (c) indi-
cates that the inpainting result by SOTV depends on the geometry 
of the inpainting region. It is able to inpaint large gaps but at the 
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Fig. 6. Inpainting a smooth image with large gaps. First row from left to right are the original image, degraded image, inpainting results of TV, SOTV, TGV, Euler’s elastica, 
and TWSO, respectively; Second row shows the intermediate results obtained by the TWSO model. Image is from [33].
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Fig. 7. Real example inpainting. “Cornelia, mother of the Gracchi” by J. Suvee (Louvre). From left to right are degraded image, inpainting results of TV, SOTV, TGV, Euler’s 
elastica, and TWSO, respectively; Second row shows the local magnification of the corresponding results in the first row.

Table 2
Comparison of PSNR and SSIM of different methods in Figs. 5–7.

PSNR test SSIM value

Figure # Fig. 5 Fig. 6 Fig. 7 Fig. 5 Fig. 6 Fig. 7

1st row 2nd row 3rd row 4th row 1st row 2nd row 3rd row 4th row

Degraded 18.5316 12.1754 11.9285 11.6201 8.1022 14.9359 0.9418 0.9220 0.8778 0.8085 0.5541 0.8589
TV Inf 12.7107 12.7107 12.7107 14.4360 35.7886 1.0000 0.9230 0.9230 0.9230 0.6028 0.9936
SOTV 28.7742 14.1931 18.5122 12.8831 14.9846 35.6840 0.9739 0.9289 0.9165 0.8118 0.6911 0.9951
TGV 43.9326 12.7446 12.7551 13.4604 14.0600 36.0854 0.9995 0.9232 0.9233 0.8167 0.6014 0.9941
Euler’s elastica 70.2979 54.0630 51.0182 13.0504 14.8741 34.3064 1.0000 0.9946 0.9982 0.8871 0.6594 0.9878
TWSO Inf Inf Inf 43.3365 27.7241 41.1400 1.0000 1.0000 1.0000 0.9992 0.9689 0.9976

Table 3
Mean and standard deviation (SD) of PSNR and SSIM calculated using 5 different methods for image inpainting over 100 images from the Berkeley database BSDS500 with 4 
different random masks.

PSNR value (Mean±SD) SSIM value (Mean±SD)

Missing 40% 60% 80% 90% 40% 60% 80% 90%

Degraded 9.020 ± 0.4208 7.250 ± 0.4200 6.010 ± 0.4248 5.490 ± 0.4245 0.05 ± 0.0302 0.03 ± 0.0158 0.01 ± 0.0065 0.007 ± 0.003
TV 31.99 ± 3.5473 28.68 ± 3.3217 24.61 ± 2.7248 20.94 ± 2.2431 0.92 ± 0.0251 0.84 ± 0.0412 0.67 ± 0.0638 0.48 ± 0.0771
TGV 31.84 ± 3.9221 28.70 ± 3.8181 25.52 ± 3.6559 23.32 ± 3.5221 0.93 ± 0.0310 0.87 ± 0.0580 0.75 ± 0.1023 0.64 ± 0.1372
SOTV 32.43 ± 4.9447 29.39 ± 4.5756 26.38 ± 4.2877 24.41 ± 4.0720 0.94 ± 0.0308 0.89 ± 0.0531 0.80 ± 0.0902 0.71 ± 0.1204
Euler’s elastica 32.12 ± 4.0617 29.21 ± 3.9857 26.30 ± 3.8194 24.34 ± 3.6208 0.94 ± 0.0288 0.88 ± 0.0526 0.78 ± 0.0901 0.69 ± 0.1208
TWSO 34.33 ± 3.4049 31.12 ± 3.0650 27.66 ± 3.6540 25.26 ± 3.2437 0.95 ± 0.0204 0.90 ± 0.0456 0.82 ± 0.0853 0.73 ± 0.1061
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cost of introducing blurring. Mathematically, TGV is a combination 
of TV and SOTV, so its results, as shown in Column (d), are similar 
to those of TV and SOTV. TGV results also seem to depend on the 
geometry of the inpainting area. The last column shows that TWSO 
inpaints the images perfectly without any blurring and regardless 
local geometry. TWSO is also slightly better than Euler’s elastica, 
which has proven to be very effective in dealing with larger gaps.

We now show an example of inpainting a smooth image with 
large gaps. Fig. 6 shows that all the methods, except the TWSO 
model, fail in inpainting the large gaps in the image. This is due 
to the fact that TWSO integrates the tensor T with its eigenval-
ues defined in (2.10), which makes it suitable for restoring linear 
structures, as shown in the second row of Fig. 6.

Fig. 7 compares the inpainting of a real image by all the meth-
ods. The inpainting result of the TV model seems to be more satis-
factory than those of SOTV and TGV, though it produces piecewise 
constant restoration. From the second row, neither TV nor TGV is 
able to connect the gaps on the cloth. SOTV reduces some gaps 
but blurs the connecting region. Euler’s elastica performs better 
than TV, SOTV and TGV, but no better than the proposed TWSO 
model. Table 2 shows that the TWSO is the most accurate among 
all the methods compared for the examples in Figs. 5–7.

Finally, we evaluate TV, SOTV, TGV, Euler’s elastica and TWSO 
on the Berkeley database BSDS500 for image inpainting. We use 4 
random masks (i.e. 40%, 60%, 80% and 90% pixels are missing) for 
each of the 100 images randomly selected from the database. The 
performance of each method for each mask is measured in terms 
of mean and standard derivation of PSNR and SSIM over all 100 
images. The results are demonstrated in the following Table 3 and 
Fig. 8. The accuracy of the inpainting results obtained by different 
methods decreases as the percentage of missing pixels region be-
comes larger. The highest averaged PSNR values are again achieved 
by the TWSO, demonstrating its effectiveness for image inpainting.

5.3. Image denoising

For denoising images corrupted by Gaussian noise, we use p =
2 in (2.3) and the � in (2.3) is the same as the image domain 
�. We compare the proposed TWSO model with the Perona–Malik 
(PM) [39], coherent enhancing diffusion (CED) [32], total variation 
(TV) [40], second order total variation (SOTV) [1,22,26], total gen-
eralised variation (TGV) [30], and extended anisotropic diffusion 
model4 (EAD) [11] on both synthetic and real images.

Fig. 9 shows the denoised results on a synthetic image (a) by 
different methods. The results by the PM and TV models, as shown 
in (c) and (e), have a jagged appearance (i.e. staircase artefact). 

4 Code: http://liu.diva-portal.org/smash/get/diva2:543914/SOFTWARE01.zip
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Fig. 8. Plots of mean and standard derivation in Table 3 obtained by 5 different methods over 100 images from the Berkeley database BSDS500 with 4 different random 
masks. (a) and (b): mean and standard derivation plots of PSNR; (c) and (d): mean and standard derivation plots of SSIM.

Fig. 9. Denoising results of a synthetic test image. (a) Clean data; (b) Image corrupted by 0.02 variance Gaussian noise; (c–i): Results of PM, CED, TV, SOTV, TGV, EAD, and 
TWSO, respectively. Second row shows the isosurface rendering of the corresponding results above.
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However, the scale-space-based PM model shows much stronger 
staircase effect than the energy-based variational TV model for de-
noising piecewise smooth images. Due to the anisotropy, the result 
(d) by the CED method displays strong directional characteristics. 
Due to the high order derivatives involved, the SOTV, TGV and 
TWSO models can reduce the staircase artefact. However, because 
the SOTV imposes too much regularity on the image, it smears 
the sharp edges of the objects in (f). Better results are obtained 
by the TGV, EAD and TWSO models, which show no staircase 
and blurring effects, though TGV leaves some noise near the dis-
continuities and EAD over-smooths image edges, as shown in (g) 
and (h).

Fig. 10 presents the denoised results on a real image (a) by dif-
ferent methods. Both the CED and the proposed TWSO models use 
the anisotropic diffusion tensor T. CED distorts the image while 
TWSO does not. The reason for this is that TWSO uses the eigen-
values of T defined in (2.9), which has two advantages: i) it allows 
us to control the degree of the anisotropy of TWSO. If the contrast 
parameter C in (2.9) goes to infinity, the TWSO model degenerates 
to the isotropic SOTV model. The larger C is, the less anisotropy 
TWSO has. The eigenvalues (2.10) used in CED however are not 
able to adjust the anisotropy; ii) it can determine if there exists 
diffusion in TWSO along the direction parallel to the image gra-
dient. The diffusion halts along the image gradient direction if λ1

in (2.9) is small and encouraged if λ1 is large. By choosing a suit-
able C , (2.9) allows TWSO to diffuse the noise along object edges 
and prohibit the diffusion across edges. The eigenvalue λ1 used in 
(2.10) however remains small (i.e. λ1 
 1) all the time, meaning 
that the diffusion along image gradient in CED is always prohib-
ited. CED thus only prefers the orientation that is perpendicular to 
the image gradient, which explains why CED distorts the image.

In addition to qualitative evaluation of different methods in 
Fig. 9 and 10, we also calculate the PSNR and SSIM values for 
these methods and show them in Table 4 and Fig. 11. These met-
rics show that the PDE-based methods (i.e. PM and CED) perform 
worse than the variational methods (i.e. TV, SOTV, TGV, EAD and 
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Fig. 10. Noise reduction results of a real test image. (a) Clean data; (b) Noisy data corrupted by 0.015 variance Gaussian noise; (c–i): Results of PM, CED, TV, SOTV, TGV, EAD, 
and TWSO, respectively. The second row shows local magnification of the corresponding results in the first row.

Table 4
Comparison of PSNR and SSIM using different methods on Fig. 9 and 10 with different noise variances.

Fig. 9 Fig. 10

PSNR value SSIM value PSNR value SSIM value

Noise variance 0.005 0.01 0.015 0.02 0.025 0.005 0.01 0.015 0.02 0.025 0.005 0.01 0.015 0.02 0.025 0.005 0.01 0.015 0.02 0.025

Degraded 23.1328 20.2140 18.4937 17.3647 16.4172 0.2776 0.1827 0.1419 0.1212 0.1038 23.5080 20.7039 19.0771 17.9694 17.1328 0.5125 0.4167 0.3625 0.3261 0.3009
PM 26.7680 23.3180 20.0096 19.4573 18.9757 0.8060 0.7907 0.7901 0.7850 0.7822 25.8799 24.0247 22.4998 22.0613 21.1334 0.7819 0.7273 0.6991 0.6760 0.6579
CED 29.4501 29.2004 28.4025 28.2601 27.7806 0.9414 0.9264 0.9055 0.8949 0.8858 23.8593 21.3432 20.2557 20.1251 20.0243 0.6728 0.6588 0.6425 0.6375 0.6233
TV 32.6027 29.9910 28.9663 28.3594 27.1481 0.9387 0.9233 0.9114 0.9017 0.8918 27.3892 25.5942 24.4370 23.5511 22.8590 0.8266 0.7826 0.7529 0.7331 0.7149
SOTV 32.7415 31.1342 30.1882 29.4404 28.3784 0.9653 0.9552 0.9474 0.9444 0.9332 26.1554 24.6041 23.5738 23.2721 22.5986 0.8252 0.7841 0.7546 0.7367 0.7201
TGV 36.1762 34.6838 33.1557 32.0843 30.6564 0.9821 0.9745 0.9688 0.9644 0.9571 27.5006 25.6966 24.5451 23.6456 22.9540 0.8375 0.7937 0.7659 0.7456 0.7386
EAD 34.8756 33.7161 32.6091 31.6987 30.6599 0.9764 0.9719 0.9678 0.9610 0.9548 27.0495 25.0156 24.1903 23.4999 23.2524 0.8232 0.7791 0.7606 0.7424 0.7382
TWSO 36.3192 34.7220 33.4009 32.7334 31.5537 0.9855 0.9771 0.9726 0.9704 0.9658 27.5997 25.8511 24.9060 24.1328 23.4983 0.8437 0.8063 0.7811 0.7603 0.7467

Fig. 11. Quantitative image quality evaluation for Gaussian noise reduction in Table 4. (a) and (b): PSNR and SSIM values of various denoised methods for Fig. 9 (a) corrupted 
by different noise levels; (c) and (d): PSNR and SSIM values of various denoised methods for Fig. 10 (a) corrupted by different noise levels.
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Table 5
Mean and standard deviation (SD) of PSNR and SSIM calculated using 7 different methods for image denoising over 100 images from the Berkeley database BSDS500 with 5 
different noise variances.

PSNR value (Mean±SD) SSIM value (Mean±SD)

Noise variance 0.005 0.01 0.015 0.02 0.025 0.005 0.01 0.015 0.02 0.025

Degraded 23.19 ± 0.2173 20.28 ± 0.2831 18.61 ± 0.3203 17.44 ± 0.3492 16.55 ± 0.3683 0.49 ± 0.1229 0.37 ± 0.1164 0.31 ± 0.1078 0.27 ± 0.1004 0.24 ± 0.0941
PM 26.39 ± 1.8442 24.70 ± 1.9644 23.30 ± 1.6893 22.73 ± 2.0353 21.92 ± 2.0287 0.73 ± 0.0656 0.67 ± 0.0798 0.62 ± 0.0787 0.59 ± 0.1091 0.56 ± 0.1221
CED 25.06 ± 3.2078 24.71 ± 2.9300 24.39 ± 2.7133 24.09 ± 2.5376 23.80 ± 2.3884 0.66 ± 0.1060 0.64 ± 0.0976 0.62 ± 0.0907 0.60 ± 0.0856 0.58 ± 0.0811
TV 27.86 ± 2.8359 27.20 ± 2.5462 26.40 ± 2.1771 25.57 ± 1.8715 24.82 ± 1.6308 0.76 ± 0.0859 0.75 ± 0.0735 0.71 ± 0.0591 0.66 ± 0.0508 0.62 ± 0.0510
SOTV 26.50 ± 3.1114 26.13 ± 2.9269 25.75 ± 2.7474 25.37 ± 2.5885 25.00 ± 2.4484 0.72 ± 0.1055 0.71 ± 0.1024 0.69 ± 0.0985 0.68 ± 0.0947 0.66 ± 0.0909
TGV 27.84 ± 2.8632 27.23 ± 2.5818 26.42 ± 2.1958 25.59 ± 1.8814 24.84 ± 1.6360 0.76 ± 0.0875 0.75 ± 0.0757 0.71 ± 0.0603 0.66 ± 0.0513 0.62 ± 0.0512
EAD 28.90 ± 3.6852 28.17 ± 3.7699 27.14 ± 2.5467 26.14 ± 3.2178 25.00 ± 2.2179 0.79 ± 0.1027 0.77 ± 0.1033 0.72 ± 0.2609 0.67 ± 0.2571 0.63 ± 0.0571
TWSO 29.65 ± 2.6622 28.24 ± 2.2530 27.19 ± 2.0262 26.40 ± 1.8969 25.95 ± 1.9856 0.81 ± 0.0669 0.78 ± 0.0609 0.73 ± 0.0581 0.70 ± 0.0580 0.69 ± 0.0676

Fig. 12. Plots of mean and standard derivation in Table 5 obtained by 7 different methods over 100 images from the Berkeley database BSDS500 with 5 different noise 
variances. (a) and (b): mean and standard derivation plots of PSNR; (c) and (d): mean and standard derivation plots of SSIM.
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TWSO). The TV model introduces staircase effect, SOTV blurs the 
image edges, and EAD tends to over-smooth the image structure. 
The proposed TWSO model performs well in all the cases, showing 
its effectiveness for image denoising.

We now evaluate PM, CED, TV, SOTV, TGV, EAD and TWSO on 
the Berkeley database BSDS500 for image denoising. 100 images 
are randomly selected from the database and each of the cho-
sen images is corrupted by Gaussian noise with zero-mean and 
5 variances ranging from 0.005 to 0.025 at 0.005 interval. The per-
formance of each method for each noise variance is measured in 
terms of mean and standard derivation of PSNR and SSIM over all 
the 100 images. The final quantitative results are shown in Table 5
and Fig. 12. The mean values of PSNR and SSIM obtained by the 
TWSO remain the largest in all the cases. The standard derivation 
of PSNR and SSIM are smaller and relatively stable, indicating that 
the proposed TWSO is robust against the increasing level of noise 
and performs the best among all the 7 methods compared for im-
age denoising.

In addition to demonstrating TWSO for Gaussian noise removal, 
Fig. 13 and Table 6 show the denoising results of images with salt-
and-pepper noise by different methods. Here, we use p = 1 in (2.3)
and � in (2.3) is the same as the domain of the noise in the image. 
We compare our TWSO method with another two state-of-the-art 
methods (i.e. media filter and TVL1 [41]) that have been widely 
employed in salt-and-pepper noise removal. From the first and 
second row of Table 6, it is clear that all three methods perform 
very well when the noise level is low. As the noise level increases, 
the media filter and TVL1 become increasingly worse, introducing 
more and more artefacts to the resulting images, and both fail in 
restoring the image when the noise level reaches 90%. In contrast, 
TWSO has produced visually more pleasing results against increas-
ing noise and its PSNR and SSIM remain the highest in all the 
cases, as the introduction of tensor in TWSO offers richer neigh-
bourhood information.

6. Conclusion

In this paper, we present the TWSO model for image process-
ing which introduces an anisotropic diffusion tensor to the SOTV 
model. Specifically, the model integrates a novel regulariser to the 
SOTV model that uses the Frobenius norm of the product of the 
SOTV Hessian matrix and the anisotropic tensor. The advantage of 
the TWSO model includes its ability to reduce both the staircase 
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Fig. 13. Denoising results on a real colour image from Berkeley database BSDS500. First row: Images (from top to bottom) corrupted by salt-and-pepper noise of 20%, 40%, 
60%, 80% and 90%; Second row: Media filter results; Third row: TVL1 results; Last row: the new TWSO results.

Table 6
Comparison of PSNR and SSIM using different methods on Fig. 13 with different noise levels.

PSNR value SSIM value

Noise density 20% 40% 60% 80% 90% 20% 40% 60% 80% 90%

Degraded 11.9259 8.92250 7.16820 5.92240 5.41430 0.2490 0.1304 0.0714 0.0317 0.0164
Media filter 24.1623 22.6650 20.1166 16.8871 12.0975 0.8582 0.8146 0.7620 0.6639 0.3265
TVL1 27.9226 25.0812 23.1954 20.8760 17.7546 0.9405 0.8850 0.8328 0.7544 0.6427
TWSO 59.6130 29.8168 27.7261 25.1963 23.3120 0.9985 0.9614 0.9373 0.8911 0.8427
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and blurring artefacts in the restored image. To avoid numerically 
solving the high order PDEs associated with the TWSO model, we 
develop a fast alternating direction method of multipliers based 
on a discrete finite difference scheme. Extensive numerical exper-
iments demonstrate that the proposed TWSO model outperforms 
several state-of-the-art methods for image restoration for differ-
ent applications. Future work will combine the capabilities of the 
TWSO model for image denoising and inpainting for medical imag-
ing, such as optical coherence tomography [42].
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