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ABSTRACT 
 

Gas turbine aero-engines employ fast rotating shafts that are supported by bearings at several axial 

locations along the engine. Due to extreme load and heat, oil is injected to the bearings to aid lubrication 

and cooling. The oil is then shed to the bearing chamber before it is extracted out by a scavenge pump. 

Scavenging oil from the bearing chamber is challenging due to high windage induced by the fast rotating 

shafts as well as the two-phase nature of the flow. A deep sump has been found to increase scavenge 

performance due to its ability to shelter the pooled oil from the bulk rotating air flow thus minimizing two-

phase mixing. However in many cases, a deep sump is not an option due to conflicting space requirements. 

The space limitation becomes more stringent with higher bypass ratio engines as the core becomes 

smaller. Therefore it is imperative to have a high performing shallow sump. However shape modification 

of a shallow sump is too constrained due to limited space and therefore has minimal impact on the 
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scavenge performance. This research presents several alternative concepts to improve scavenge 

performance of a generic baseline shallow sump by augmenting it with attachments or inserts. These 

augmentations attempt to exploit two known mechanisms for reducing the residence volume: momentum 

reduction and sheltering. The experimental results show that some augmentations are able to reduce the 

residence volume of a shallow sump by up to 50% or more in some cases. 

 

INTRODUCTION AND BACKGROUND 
 

Immediately after leaving the bearings, oil droplets in a bearing chamber are 

subjected to three-dimensional air flow while travelling from the rotating elements to 

the peripheral chamber wall. Upon impact with the wall, film is formed accompanied by 

splashing creating a turbulent frothy flow. Subsequent oil film flow is a result of the 

tangential momentum that the droplets bring to the impact, the shear of the air on the 

oil, and the impact or splashing of subsequent droplets. Other forces include gravity, as 

well as capillary effects. Ideally oil flows out of the bearing chamber without 

unnecessary delay. However high flow momentum, shaft windage and three-

dimensional air flows can often impede the oil flow exiting the chamber. In order to 

improve oil scavenge, a bearing chamber incorporates a geometric feature known as the 

sump to provide a collection point where oil can be captured and separated from the 

bulk rotating flow. Oil is then extracted out from the sump through an off-take port by a 

scavenge pump. Aero-engines usually operate with a significant amount of air leaving 

through the scavenge port along with the oil, giving rise to the concept of scavenge 

ratio, the ratio of the total volume flowrate at exit compared to the volume flowrate of 
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oil at exit.  Figure 1 shows a highly schematic illustration of a bearing chamber including 

the sump. 

The sump geometry can significantly affect the scavenge performance. It was 

observed that two-phase flow at exit including where there is dispersed gas in the liquid 

can severely reduce the scavenge pump effectiveness in extracting the oil out resulting 

in high oil residence time and volume. When both liquid and gas phases are present, the 

scavenge pump will often preferentially draw out the gas as it has less resistance due to 

the much lower density compared to the liquid. Therefore the sump is often designed 

with aim to minimize liquid-gas mixing. An ideal sump might be defined as one that can 

create a condition where no ingested air is present in the oil at the immediate vicinity of 

the scavenge off-take. In order to create such condition, the momentum of the liquid 

entering the sump must be reduced [1-3]. In addition, once the liquid is gathered in the 

sump, it needs to be sheltered from the bulk rotating flow to minimize stripping and 

entrainment. A deep sump such as that found in the internal gearbox of a 3-shaft civil 

aero-engine can easily achieve both the momentum reduction and the sheltering [4, 5], 

but a shallow sump can rarely manage to provide sufficient momentum reduction and 

sheltering. As a rough guide, a shallow sump is defined as a sump with sump depth of 

less than 10% of the chamber diameter. 

A parametric study of shallow sumps [6] has yielded an optimised shallow sump 

geometry. It was not a complete surprise that its shape is similar to that of the Rolls-

Royce AE3007 center sump (see Figure 2b) as this was the result of an extensive prior 

study [7]. The AE3007 center sump has curved walls both into and out of the sump, and 
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is also quite deep; it proved to have a superior scavenge performance compared to 

some other existing engine sumps. A prominent feature of the AE3007 sump is its 

downstream almost-vertical wall. Upon impact with this wall, the incoming liquid flow 

losses most of its momentum. In addition, the relatively deep pocketed region of the 

sump shelters the collected liquid from the bulk rotating air flow thus reducing the 

chance for stripping and entrainment. Kurz [8] studied experimentally a ramp sump 

fitted with a cover and showed significant reduction in wall film thickness. Recently, 

other variants of AE3007 sump were modelled and simulated numerically by Zhao et al. 

[9] and these have also shown superior performance especially the deeper variant. 

In most cases, the optimised shallow sump has lower residence volume 

compared to other shallow sump variants tested in the parametric study. Its vertical 

downstream wall, albeit shorter than that of AE3007 sump, is able to reduce the flow 

momentum of the incoming liquid. However it lacks the depth of the AE3007 sump and 

therefore cannot provide a sufficient sheltering mechanism. 

Initial attempts utilizing augmentations to improve scavenge performance of a 

shallow sump proved to be successful [10] in varying degrees. Four different types of 

augmentations were tested experimentally: grille cover, stepped spillway, perforated 

plate, and porous insert. In general, the flow regime in a bearing chamber can be 

described as a combination of two extremes: wall film and airborne droplets [11]. The 

wall film flow regime is mostly gravity dominated and occurs at lower shaft speeds. 

However the airborne droplets flow regime becomes windage dominated at high shaft 
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speed [12]. The effectiveness of each augmentation can therefore vary depending on 

the flow regime and the shaft speed. 

Further efforts to improve the effectiveness of three types of augmentations 

(grille cover, stepped spillway, and perforated plate) are presented in this paper. Based 

on the lessons learned, modifications were proposed and tested experimentally. The 

residence volume was used as the main indicator. Greater reduction in the residence 

volume compared to baseline is implied as an improvement of the scavenge 

performance. 

 
EXPERIMENTAL SETUP 

 

Water, rather than oil is used in this experiment. The density and viscosity of 

water at room temperature are similar to those of oil (Mobil Jet Oil II) at 150°C (typical 

bearing chamber temperature). It is acknowledged however that the surface tension of 

water at room temperature is much higher than that of oil at engine operating 

condition. In previous work by Radocaj [13], surfactant was added to the water to 

reduce its surface tension. It was noted that general flow behaviors with and without 

surfactant were indistinguishable. This is due to fact that the film is highly disturbed and 

strongly driven by the shearing air flow resulting in high Bond number flow. 

Furthermore, surfactant may trigger severe foaming. Therefore a decision was taken 

here that surfactant would not be added to the water. 

In the test rig, water runs in a closed loop and air runs through an open loop as 

shown in Figure 3. The test chamber is made of transparent acrylic to provide visual 
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access (Figure 4). There is a breather hole on the chamber face to allow air to freely flow 

into or out of the chamber. Without this breather hole, the suction from the scavenge 

pump will reduce the chamber pressure. The volumetric flowrate of the ingested air is 

assumed to be equivalent to that of the escaping air in the reservoir which acts as a 

separator. 

The scavenge ratio, SR is defined as SR = 1 + Qg /Ql. In an aero-engine the 

scavenge ratio is largely controlled by the speed of scavenge pump because positive 

displacement pumps are used, driven at a speed proportional to shaft speed. Ideally the 

pump speed, hence the pump required power should be as low as possible. However 

setting the scavenge ratio to one may risk flooding as air bubbles in the fluid are 

inevitable. Therefore the scavenge ratio is always set to higher than one (scavenge ratio 

of four is a typical value for an aeroengine at cruise). With increased scavenge ratio 

more air is ingested until scavenge performance is not improving or in some cases 

becomes worse. A good sump would require minimum scavenge ratio but is still able to 

sustain effective scavenge.  Scavenge ratio is one of the experimental variables in the 

experiments reported here. 

The scavenge effectiveness can be determined by two parameters: residence 

time and residence volume. The residence time indicates how long the oil stays in the 

chamber, while the residence volume indicates how much oil is present in the chamber 

at an instantaneous time. A minimum residence time and volume are necessary to allow 

the oil to perform its secondary functions such as chamber wall heat transfer. However, 

keeping the residence time and volume from becoming excessive is not trivial. Excessive 
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residence time would lead to oil degradation and potentially coking, while excessive 

residence volume may cause flooding and leakage. In this experiment, residence volume 

is used as the primary indicator of the scavenge performance. It is obtained by utilizing 

several pneumatic pinch valves to divert the inlet flow and isolate the water in the 

chamber. Future work may include residence time measurement. 

The water is introduced to the chamber via one of two methods, either a Film 

Generator (FG) or droplet generating system integrated into the rotating shaft here 

referred to as the Rotating Inlet Distributor (RID). Some details of those inlet injection 

systems are in previous publication [11]. Each injection system simulates a flow regime 

in the bearing chamber. FG creates a wall film flow regime, whereas RID creates an 

airborne droplets flow regime. Those two flow regimes represent two extremes of flow 

regimes occurring in a bearing chamber. A typical bearing chamber flow is likely to be a 

combination of wall film and airborne droplets. However, as an initial step towards 

understanding the fundamentals, it is useful to study the flow in each of these extreme 

flow regimes. 

The baseline shallow sump is the same as the one used in the previous work 

[10]. The geometry is shown in Figure 5. The chamber axial length is a quarter of its 

diameter. The sump depth is 8% of the chamber diameter. The upstream and 

downstream walls’ radius of curvature is the same as the sump depth. The off-take 

diameter is 8 mm and is located at the centre of the sump base. The shaft diameter is 

half of the chamber diameter. 
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For each flow regime, the residence volume of the baseline shallow sump was 

measured at different liquid inlet flow rates, scavenge ratios, and shaft speeds (see 

Table 1). It is clear that the sump performs better in the wall film flow regime. This is 

true for many sump geometries due to higher flow complexity in the airborne droplets 

flow regime. 

The first type of augmentation is the grille cover (Figure 6). Grille Cover 1 has 

been tested previously [10]. The design was proposed to reduce the momentum of the 

incoming flow as well as to encourage drainage from the top surface of the cover. It 

features inline slats with triangular profile. In addition, the cover is expected to provide 

some sheltering mechanism. Grille Cover 2 is a new design. It incorporates 

perpendicular slats to encourage further momentum reduction. 

The second type of augmentation is the stepped spillway (Figure 7). Stepped 

Spillway 1 can reduce the residence volume only in the airborne droplets flow regime 

and gravity dominated [10]. It was noticed that the wall film became detached upon 

impact with the first step. Stepped Spillway 2 is a new design. It features shallower 

angled steps with each step pointing towards the centre of the next. Furthermore, it 

features far fewer steps than the first iteration. These modifications were based on civil 

hydraulics dam design to obtain more energy dissipation by encouraging nappe flow 

instead of skimming flow [14]. 

The third type of augmentation is the perforated plate (Figure 8). Perforated 

Plate 1 reduces the residence volume of the baseline shallow sump in airborne droplets 

flow regime [10]. In the wall film flow regime, the effect is negligible because the film is 
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thinner than the plate stand-off distance and therefore the film simply flows 

underneath the plate unhindered. Perforated Plate 1S is the next iteration of the 

optimization process. It has the same formation and porosity but is positioned on top of 

the sump. In addition to reducing the momentum of the incoming flow, Perforated Plate 

1S also functions as a cover to provide a sheltering mechanism. 

 
RESULTS AND DISCUSSION 

 

Grille Covers 
 

The residence volumes were measured and compared to the values of the 

baseline shallow sump. The differential residence volumes with the grille covers are 

shown in Figure 9 (wall film flow regime) and Figure 10 (airborne droplets flow regime). 

In the wall film flow regime, Grille Cover 1 performs well. It reduces the residence 

volume in all variations of flow rate, scavenge ratio, and shaft speed. Further reduction 

of up to 50% is achieved by Grille Cover 2. More prominent reduction is achieved at high 

shaft speed. This indicates the effectiveness of the perpendicular slats to enhance 

momentum reduction. 

In the airborne droplets flow regime, Grille Cover 2 helps to further reduce the 

residence volume at low shaft speed. Similar to Grille Cover 1, the residence volume 

also increases at high shaft speed although not as severely. This behaviour suggests that 

the grille covers are beneficial only in gravity dominated flow (low shaft speed). In a 

windage dominated flow (high shaft speed), the perpendicular slats help to reduce the 

flow momentum but not enough to cause reduction in the residence volume. It is not 
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clear whether the grille covers can provide sufficient sheltering mechanism in windage 

dominated flow. The increase in residence volume may be attributed to droplets’ 

atomization upon high speed impact with the slats thus more droplets are trapped in 

the bulk rotating flow. 

 

Stepped Spillways 
 

The differential residence volumes with the stepped spillways are shown in 

Figure 11 and Figure 12 for the wall film flow regime and the airborne droplets flow 

regimes respectively. In the wall film flow regime, the graph show that both stepped 

spillways generally do not perform well. In almost all cases, Stepped Spillway 2 performs 

better than Stepped Spillway 1. This confirms that a nappe flow can dissipate more 

energy than a skimming flow. However the achieved reduction in residence volume is 

considered insignificant. Although a stepped spillway helps to dissipate more energy, it 

can encourage aeration thus more air bubbles are trapped in the film flow [14]. 

In the airborne droplets flow regime, both stepped spillways perform similarly. 

The stepped spillways do not provide a sheltering mechanism and therefore their 

effectiveness in airborne droplet flow regime can be limited. Significant residence 

volume reduction (up to 25%) is shown only at Ql = 4 lpm and Ω = 5,000 rpm. At this 

high liquid flow rate but low shaft speed (gravity dominated flow), a higher liquid 

proportion is in the wall film thus a stepped spillway is more effective in reducing the 

flow momentum. 
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Perforated Plates 
 

Figure 13 and Figure 14 shows the differential residence volumes with the 

perforated plates in the wall film and airborne droplets flow regimes. In the wall film 

flow regime, Perforated Plate 1 does not affect the flow since it is essentially not 

interacting with the film (its stand-off distance is higher than the film thickness). Some 

improvement can be gained with Perforated Plate 1S. This minor improvement can be 

attributed to the shielding mechanism provided by Perforated Plate 1S. With the plate 

positioned on top of the sump where liquid pooling occurs, chance for stripping and 

entrainment is reduced. Moreover if the incoming film flow misses the sump, it will be 

scooped and directed to the sump. 

In the airborne droplets flow regime, Perforated Plate 1 improves scavenge 

performance consistently throughout all tested conditions. Up to 30% reduction in 

residence volume can be achieved. Perforated Plate 1S can further improve the 

scavenge performance at low shaft speed (gravity dominated flow). However at high 

shaft speed (windage dominated flow), Perforated Plate 1S increases the residence 

volume. Previous work on downstream perforated plates also shows increased 

residence volume at high shaft speed [10]. This suggests that in a windage dominated 

flow, the perforated plate needs to be located upstream of the sump. Putting it on top 

of the sump, although it will provide shielding, is not overall beneficial as the reduced 

momentum flow seems to “miss” the sump. 

 

Comparing the Augmentations 
 



Journal of Engineering for Gas Turbines and Power 

 

GTP-17-1185, Chandra, page 12 

 

A fundamental challenge with a study of this kind is that each of the 

augmentation proposed performs differently in the different flow regimes – but an 

aeroengine operates across a whole range of conditions.  The question then is whether 

any of these augmentations is worthy of future development. A high percentage 

reduction in residence volume is obviously a good indicator, but if the baseline is already 

low then such a reduction may be less valuable than a smaller percentage of a larger 

initial value. 

To quantify the overall effect of each augmentation, it is necessary to consider 

some kind of bulk parameter.  Looking at Table 1 it is apparent that the airborne 

droplets flow regime is the more challenging with residence volumes here being 

typically three times those of the wall film regime.  Focusing on the airborne droplets 

flow regime we can calculate the average reduction in residence volume across all the 

cases (2 levels of liquid flow rate, 2 levels of scavenge ratio, and 2 levels of shaft speed) 

and represent this as a percentage of the average residence volume for the airborne 

droplets baseline cases (167.3 ml).  So, for example, the average change in residence 

volume for all droplets regime cases for grille 2 is -14.9 ml giving a percentage change of 

-9%.  This is made up of some cases where residence volume is reduced and some 

where it is increased.  Calculating values for all the augmentations yields the data in 

Table 2.  A larger negative value represents a larger average reduction in residence 

volume. 

Examination of Table 2 shows us that for the challenging airborne droplets flow 

regime the two perforated plates and Grille Cover 2 look the most promising. It is 
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perhaps here also worth noting that Grille Cover 2 is essentially a more open perforated 

plate and it is not so surprising that it yields data close to that of Perforated Plate 1S.  

The interesting result here is that Perforated Plate 1, positioned upstream of the sump 

and not in any way covering it, is the one that yields consistently the best performance 

in the droplets regime.  It is therefore strongly suggested that further work is conducted 

that combines perforated plates 1 and 1S, providing an element of modification to the 

film flow and droplet film impact behavior both upstream of the sump and over it.  

Further optimization work could also include investigating variations of porosity, 

perforation shape and size, scoop design, and plate length. 

 
CONCLUDING REMARKS 

 

Three types of augmentations (grille cover, stepped spillway, and perforated 

plate) for improving the scavenge performance of a shallow sump have been studied. 

These augmentations exploit two fundamental mechanisms for reducing the residence 

volume: momentum reduction and shielding. 

This work has assumed two extremes of flow regime: wall film and airborne 

droplets. In reality, depending on how the oil enters the chamber, the flow in an 

aeroengine chamber will be some kind of combination of both.  The baseline study 

shows that the airborne droplets regime is the more challenging for scavenge with 

residence volumes being typically three times those for the equivalent wall film case. 

Focusing on the effect of the augmentations on residence volume in the droplets 

cases we conclude that some kind of perforated plate has the most promise for reducing 
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residence volume over a range of engine conditions with the best performing 

augmentation tested here yielding an average reduction in residence volume of 18%.  

This is a gain worth having and it is strongly recommended that perforated plate 

augmentations are further investigated both for plate geometry and extent as well as 

placement within the bearing chamber. 
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NOMENCLATURE 
 

Qg gas volumetric flow rate 

Ql liquid volumetric flow rate 

SR scavenge ratio 

Ω shaft rotational speed 
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Table Caption List 
 

Table 1 Residence volumes of baseline shallow sump 

Table 2 Percentage mean changes in residence volume in airborne droplets flow 

regime 
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Table 1 
 
 

 

Flow 

Regime 

Ql 
SR 

 Residence Volume 

[lpm] [krpm] mean [ml] ± [ml] 

Wall 

Film 

2.7 

1.5 
5 33.0 0.5 

15 55.7 1.2 

4 
5 28.8 0.9 

15 47.7 1.0 

4 

1.5 
5 60.2 0.5 

15 85.5 1.6 

4 
5 45.3 1.8 

15 74.8 2.8 

Airborne 

Droplets 

2.7 

1.5 
5 173.7 1.6 

15 150.2 1.2 

4 
5 143.5 1.1 

15 121.5 0.9 

4 

1.5 
5 239.2 4.0 

15 162.2 1.3 

4 
5 222.2 5.1 

15 126.2 0.8 
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Table 2 (sized for 2 columns) 
 
 
 

Ql 

SR 

 Baseline 

Residence 

Volume [ml] 

Change in Residence Volume [ml] 

[lpm] [krpm] GC 1 GC 2 SS 1 SS 2 PP 1 PP 1S 

2.7 

1.5 
5 173.7 -2.0 -55.7 -11.2 6.2 -31.7 -43.2 

15 150.2 49.0 36.2 8.3 11.5 -37.2 18.5 

4 
5 143.5 -1.2 -55.7 -0.8 10.0 -16.5 -65.7 

15 121.5 48.2 19.0 10.0 -13.7 -28.8 3.7 

4 

1.5 
5 239.2 -24.0 -43.5 -51.5 -59.2 -34.2 -38.5 

15 162.2 40.0 9.3 8.2 -4.3 -42.4 23.8 

4 
5 222.2 -7.2 -31.8 -32.7 -44.2 -22.2 -41.8 

15 126.2 44.3 3.0 13.7 -12.7 -24.2 19.7 

MEAN [ml] 167.3 18.4 -14.9 -7.0 -13.3 -29.6 -15.4 

MEAN CHANGE [%] 11.0 -8.9 -4.2 -7.9 -17.7 -9.2 
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Figure Captions List 
 

Fig. 1 Bearing chamber and its sump 

Fig. 2 Optimised shallow sump (a) indicating similarity to AE3007 sump (b) [6] 

Fig. 3 Flow circuit diagram 

Fig. 4 Bearing chamber with breather hole 

Fig. 5 Baseline shallow sump 

Fig. 6 Grille covers 

Fig. 7 Stepped spillways 

Fig. 8 Perforated plates 

Fig. 9 Differential residence volumes with grille covers (wall film flow regime) 

Fig. 10 Differential residence volumes with grille covers (airborne droplets flow 

regime) 

Fig. 11 Differential residence volumes with stepped spillways (wall film flow 

regime) 

Fig. 12 Differential residence volumes with stepped spillways (airborne droplets 

flow regime) 

Fig. 13 Differential residence volumes with perforated plates (wall film flow 

regime) 

Fig. 14 Differential residence volumes with perforated plates (airborne droplets 

flow regime) 
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Figure 1 
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Figure 2 

 

 

 
 



Journal of Engineering for Gas Turbines and Power 

 

GTP-17-1185, Chandra, page 24 

 

Figure 3 (sized for 2 columns) 
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Figure 4 
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Figure 5 
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Figure 6 

 

 

 
 



Journal of Engineering for Gas Turbines and Power 

 

GTP-17-1185, Chandra, page 28 

 

Figure 7 
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Figure 8 
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Figure 9 (sized for 2 columns) 
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Figure 10 (sized for 2 columns) 
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Figure 11 (sized for 2 columns) 
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