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Abstract ApproximateBayesian computation (ABC)meth-
ods permit approximate inference for intractable likelihoods
when it is possible to simulate from the model. However,
theyperformpoorly for high-dimensional data and in practice
must usually be used in conjunction with dimension reduc-
tion methods, resulting in a loss of accuracy which is hard
to quantify or control. We propose a new ABC method for
high-dimensional data based on rare event methods which
we refer to as RE-ABC. This uses a latent variable represen-
tation of the model. For a given parameter value, we estimate
the probability of the rare event that the latent variables corre-
spond to data roughly consistent with the observations. This
is performed using sequential Monte Carlo and slice sam-
pling to systematically search the space of latent variables. In
contrast, standard ABC can be viewed as using a more naive
Monte Carlo estimate. We use our rare event probability esti-
mator as a likelihood estimate within the pseudo-marginal
Metropolis–Hastings algorithm for parameter inference. We
provide asymptotics showing that RE-ABC has a lower com-
putational cost for high-dimensional data than standard ABC
methods. We also illustrate our approach empirically, on a
Gaussian distribution and an application in infectious dis-
ease modelling.
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1 Introduction

Approximate Bayesian computation (ABC) is a family of
methods for approximate inference, used when likelihoods
are impossible or impractical to evaluate numerically but
simulating datasets from the model of interest is straightfor-
ward. ABC can be viewed as a nearest neighbours method. It
simulates datasets given various parameter values, and finds
the closest matches, in some sense, to the observed dataset.
The corresponding parameters are used as the basis for infer-
ence. Various Monte Carlo methods have been adapted to
implement this idea, including rejection sampling (Beaumont
et al. 2002),Markov chainMonte Carlo (MCMC) (Marjoram
et al. 2003) and sequential Monte Carlo (SMC) (Sisson et al.
2009). However, it is well known that nearest neighbours
approaches becomes less effective for higher-dimensional
data, a phenomenon referred to as the curse of dimensional-
ity. The problem is that even under the best parameter values,
it is rare for a high-dimensional simulation to match a fixed
target well, essentially because there are many random com-
ponents all of which must be close matches to observations.

In this paper, we propose a method to deal with this issue
and permit higher-dimensional data or summary statistics to
be used in ABC. The idea involves introducing latent vari-
ables x . We assume data are a deterministic function y(θ, x),
where θ is a vector of parameters. Hence, x encapsulates all
the randomness which occurs in the simulation process. Our
approach is, for a particular θ value, to use rare event meth-
ods to estimate the probability of x values occurring which
produce y(θ, x) ≈ yobs. As discussed later, this probability
equals, up to proportionality, the approximate likelihood of
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θ used in existing ABC algorithms. We estimate this prob-
ability using SMC algorithms for rare events from Cérou
et al. (2012). The resulting estimates are unbiased or low
bias, depending on the algorithm, and can be used by many
inference methods. We concentrate on the pseudo-marginal
Metropolis Hastings algorithm (Andrieu and Roberts 2009),
which outputs a sample from a distribution approximating
the Bayesian posterior.

The intuition for the rare event probability estimates we
use is as follows. Given θ , standard ABCmethods effectively
simulate one or several x values from their prior and calculate
a Monte Carlo estimate of Pr(y(θ, x) ≈ yobs). This relative
error of this estimate has high variance when the probability
is small, as is the case when we require close matches. The
rare event technique of splitting uses nested sets of latent
variables A1 ⊃ A2 ⊃ . . . ⊃ AT , representing increas-
ingly close matches. We aim to estimate Pr(A1), Pr(A2|A1),
Pr(A3|A2), . . . and take the product. If these probabilities
are all relatively large then the variance of the final estima-
tor’s relative error is smaller than using a single stage of
Monte Carlo [for a crude variance analysis justifying this
see L’Ecuyer et al. (2007). Cérou et al. (2012) prove more
detailed results for their SMC algorithms which we sum-
marise later]. We can estimate Pr(A1) using Monte Carlo
with N samples. Next, we reuse the x samples with x ∈ A1.
We sample randomly from these N times and, to avoid
duplicates, perturb each appropriately. We found a good
perturbation method was a slice sampling algorithm from
Murray and Graham (2016). The resulting sample is used
to find a Monte Carlo estimate of Pr(A2|A1). We carry on
similarly to estimate the remaining conditional probabilities.

For this approach to work well, a small perturbation of the
xs must produce a corresponding small perturbation of the
ys. Hence, the mapping y(θ, x) must be well chosen. This
requirement is explored in Sect. 6.1.

We consider two rare event SMC algorithms proposed by
Cérou et al. (2012). In one, the nested sets must be fixed in
advance and in the other they are selected adaptively during
the algorithm. A contribution of this paper is to compare the
efficiency of these algorithms within the setting of ABC. Our
recommendation, discussed in Sect. 6.2, is a combination of
the two approaches: a single run of the adaptive algorithm
to select the nested sets, followed by using these in the fixed
algorithm.

1.1 Related literature

First, we highlight the difference between our approach and
ABC-SMC (Sisson et al. 2009; Moral et al. 2012). These
methods find parameter values which are most likely to
produce simulations closely matching the observations. We
argue that for high-dimensional observations, such simula-
tions are rare even for the best parameter values. Instead, we

use SMC in a different way, to find latent variables which
produce successful simulations. In Sect. 6.3, we discuss
the possibility of combining these two approaches. Another
method that seeks to find promising parameter values is ABC
subset simulation (Chiachio et al. 2014). To our knowledge,
this is the only other approach to ABC using rare event
methods. Again, our approach differs from this by instead
searching a space of latent variables.

The most popular approach to deal with the curse of
dimensionality in ABC is dimension reduction. Here, high-
dimensional datasets are mapped to lower dimensional
vectors of features, often referred to as summary statistics.
The quality of a match between simulated and observed data
is then judged based only on their corresponding summary
vectors. However, using summary statistics involves some
loss of information about the posterior which is hard to
quantify. Low-dimensional sufficient statistics would avoid
this problem but generally do not exist, and there are many
competing methods to choose summaries which make a
good trade-off between low dimension and informativeness
(Blum et al. 2013; Prangle 2017). An alternative approach
of Nott et al. (2014) is to improve ABC output by adjusting
each parameter’s margin to agree with a separate marginal
ABC analysis. These analyses can each use different low-
dimensional summary statistics, so that the effect of the
curse of dimensionality on the margins is reduced. However,
there are still issues in selecting these summaries and deal-
ing with approximation error in the dependence structure.
Recently, an extension has looked at assuming a Gaus-
sian copula dependence structure (Li et al. 2017). More
high-dimensional ABC methods are reviewed in Nott et al.
(2017).

Several other authors have recently investigated latent
variable approaches to ABC. Neal (2012) introduced cou-
pled ABC for household epidemics. This simulates latent
variable vectors from their prior and, for each, finds one or
many parameter vectors leading to closely matching sim-
ulated datasets. These parameters, weighted appropriately,
form a sample from an approximate posterior. A similar strat-
egy is employed for more general applications in Meeds
and Welling (2015)’s optimisation Monte Carlo and the
reverse sampler of Forneron and Ng (2016). Alternatively,
Moreno et al. (2016) perform variational inference, using
latent variable vectors drawn from their prior in the estima-
tion of loss function gradients. Another related method is
Graham and Storkey (2016), who sample from the (θ, x)

space conditioned exactly on the observations using con-
strained Hamiltonian Monte Carlo (HMC). A limitation is
that the y(θ, x) mapping must be differentiable with respect
to both arguments.

A similar SMCapproach to ours is outlined, but not imple-
mented, by Andrieu et al. (2012). Analogous methods have
been implemented for ABC inference of state space mod-
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els, using ABC particle filtering to estimate likelihoods for a
sequence of observations (Jasra 2015).

Targino et al. (2015) use similar methods to us in a non-
ABC context. They use SMC to estimate posterior quantities
for a copula model conditional on a rare event. Like us, they
use increasingly rare events as intermediate targets and use
slice sampling for perturbation moves. A difference is our
focus on estimating the probability of the rare event, and pro-
viding results on the asymptotic efficiency of this. Also their
perturbation updates each component of x in turn with a uni-
variate slice sampler, whilewe use trulymultivariate updates.

1.2 Contributions and overview

We provide an approximate inference method for the same
class of intractable problems as ABC.Our algorithm samples
from the same family of posterior approximations as ABC,
but can reach more accurate approximations for the same
computational cost. In particular, its cost rises more slowly
with the data dimension. Therefore, it is feasible to perform
inference using a larger, and hence more informative, set of
summary statistics. In some cases, it is even feasible to use
the full data.

Our method has various differences to competing meth-
ods using latent variables. Unlike the majority of these, it
does not rely solely on randomly sampling latent variables,
but instead searches their space more efficiently. Also unlike
HMCapproaches,wedonot require differentiability assump-
tions for y(θ, x).

Typically, SMC methods have many tuning choices.
Another benefit of our approach is that these can all be auto-
mated. The tuning choices required are simply those for the
ABC and PMMH algorithms.

Section 2 describes background information on the meth-
ods we use. Section 3 presents our algorithm to estimate the
likelihood given a particular parameter vector, and how we
use this within a MCMC inference algorithm. Asymptotic
results on computational cost are also given here, quanti-
fying the improvement over standard ABC. The method is
evaluated on a simple Gaussian example in Sect. 4 and used
in an infectious disease application in Sect. 5. Code for these
examples is available at https://github.com/dennisprangle/
RareEventABC.jl. Section 6 gives a concluding discus-
sion, including when we expect our scheme to work well.
“Appendix A” contains technical details of our asymptotics.

2 Background

2.1 Approximate Bayesian computation

Suppose observations yobs are available, andwewish to learn
the parameters θ of a model π(y|θ) (a density with respect

to a probability measure dy) given a prior π(θ) (a density
with respect to probability measure dθ ). Algorithm 1 is an
ABC rejection sampling algorithm which performs approxi-
mate Bayesian inference. It requires three tuning choices: the
number of simulations N , a threshold ε ≥ 0, and a distance
function d(·, ·). The latter is typically Euclidean distance or
a variation. It is usually sensible to scale data y appropriately
so that all components make contributions of similar size to
the distance, and we will assume that this has already been
done.

Algorithm 1 ABC rejection sampling
Loop over i = 1, 2, . . . , N .

1. Sample θi from π(θ).
2. Sample yi from π(y|θi ).
3. Accept if d(yi , yobs) ≤ ε.

End loop
4. Return: accepted θi values.

The output of Algorithm 1 is a sample from the following
approximate posterior density

πABC(θ |yobs; ε) ∝ π(θ)LABC(θ; ε), (1)

where

LABC(θ; ε) = V (ε)−1
∫

π(y|θ)1[d(y, yobs) ≤ ε]dy, (2)

V (ε) =
∫

1[d(y, yobs) ≤ ε]dy. (3)

The ABC likelihood LABC is a convolution of the exact like-
lihood function and the kernel

k(y; ε) = V (ε)−11[d(y, yobs) ≤ ε], (4)

a uniform density on y values close to yobs. Under someweak
conditions, as ε → 0 the ABC likelihood converges to the
exact likelihood andπABC to the exact posterior [this is shown
by Eq. (6) in “Appendix A”, which describes some sufficient
conditions]. However, this causes acceptances to become
rare. Thus there is a trade-off, controlled by ε, between output
sample size and the accuracy of πABC.

ABC rejection sampling is inefficient in the common
situation where the prior is much more diffuse than the pos-
terior, as a lot of time is spent on simulations that have
very little chance of being accepted. Several more sophisti-
catedABCalgorithmshavebeenproposedwhich concentrate
on performing simulations for θ values believed to have
high posterior density. These include versions of impor-
tance sampling,MCMCandSMC.These also output samples
(sometimes weighted) from an approximation to the poste-
rior, usually πABC as given in (1). See Marin et al. (2012)
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for a review of ABC, including these algorithms and related
theory.

As mentioned earlier, ABC suffers from a curse of dimen-
sionality issue. Intuitively, the problem is that simulations
producing good matches of all summaries simultaneously
become increasingly unlikely as dim(y) grows. For Algo-
rithm 1, it has been proved (Blum 2010; Barber et al. 2015;
Biau et al. 2015) that for a fixed value of N the quality of the
output sample as an approximation of the posterior deterio-
rates as d increases, even taking into account the possibility
of adjusting ε. See Fearnhead and Prangle (2012) for heuris-
tic arguments that the problem also applies to other ABC
algorithms.

2.2 Pseudo-marginal Metropolis–Hastings

The approach of this paper is to estimate the ABC likelihood
(2)more accurately than standardABCmethods. This section
reviews one approach for how such estimates can be used to
sample from πABC.

The Metropolis–Hastings (MH) algorithm samples from
a Markov chain with stationary distribution proportional to
an unnormalised density ψ(θ). It is often used in Bayesian
inference to produce samples from a close approximation
to the posterior distribution. Despite the non-independence
of these samples, they can still be used to produce highly
accurate Monte Carlo estimates of functions of the posterior.
Simulating θt , the t th state of the Markov chain is based on
sampling a state θ ′ from a proposal density q(θ ′|θt−1), typ-
ically centred on the preceding state θt−1. This proposal is

accepted as θt with probability min
(
1, ψ(θ ′)q(θt−1|θ ′)

ψ(θt )q(θ ′|θt−1)

)
. Oth-

erwise θt = θt−1.
This algorithm remains valid if likelihood evaluations

are replaced with unbiased nonnegative estimates as follows
(Andrieu and Roberts 2009). The state of theMarkov chain is
now (θt , ψ̂t ), where ψ̂t is an estimate ofψ(θt ), and the accep-

tance probability must be min
(
1, ψ̂ ′q(θt−1|θ ′)

ψ̂t−1q(θ ′|θt−1)

)
. Crucially,

upon acceptance ψ̂t is set to the estimate ψ̂ ′ for the pro-
posal θ ′. So, rather than being recalculated in every iteration,
this estimate is used in all future iterations until another pro-
posal is accepted. A version of the resulting pseudo-marginal
Metropolis–Hastings (PMMH) algorithm, specialised to this
paper’s setting, is presented below as Algorithm 5.

Optimal tuning of PMMH has been examined theoreti-
cally by Pitt et al. (2012), Doucet et al. (2015) and Sherlock
et al. (2015), covering the case where each ψ̂ ′ estimate is
generated by an SMC algorithm. A central issue is how
many SMCparticles should be used to optimise the computa-
tional efficiency of PMMH.All the authors conclude that this
number should be tuned to achieve a particular variance of
log ψ̂ (it’s assumed, unrealistically, that this variance does not
depend on θ . In practice it’s typical to investigate the variance

at a fixed value of θ believed to have high posterior density).
The value derived for this optimal variance differs between
the authors due to their different assumptions, but all values
lie in the range 0.8–3.3. Sherlock et al. (2015) also inves-
tigate tuning the proposal distribution q, and suggest using
proposal variance 2.5622

dim(θ)
� where� is the posterior variance.

They perform simulation studies generally supporting both
these results. One key assumption made by all the authors is
that log ψ̂ follows a normal distribution. The validity of this
assumption in our setting will be investigated later. It’s also
assumed that the computational cost of SMC is proportional
to the number of particles used and does not depend on θ ,
which is generally true for SMC algorithms.

2.3 Rare event sequential Monte Carlo

To estimate theABC likelihood (2) in Sect. 3, wewill use two
algorithms of Cérou et al. (2012) for estimating rare event
probabilities using a SMC approach. This section reviews
existing work on these algorithms. A few novel remarks
which are relevant later are given at the end.

The aim is to estimate a small probability, P = Pr(Φ(x) ≤
ε|θ). Here, x is a randomvariable, θ is a vector of parameters,
Φ maps x values to R, and ε is a threshold. In the ABC
setting of later sections, P will be an estimate of LABC(θ; ε)

up to proportionality. As discussed informally in Sect. 1,
both algorithms act by estimating conditional probabilities
Pr(Φ(x) ≤ εk+1|θ,Φ(x) ≤ εk) for a decreasing sequence
of ε values. In Algorithm 2 (FIXED-RE-SMC), a fixed ε

sequence must be prespecified. In Algorithm 3 (ADAPT-RE-
SMC), the sequence is selected adaptively. Whenever we use
RE-SMC without an additional prefix, we are referring to
both algorithms.

Cérou et al. (2012) prove that FIXED-RE-SMC produces
an unbiased estimator of P , but ADAPT-RE-SMC gives an
estimator with O(N−1) bias. They also analyse the asymp-
totic variance of the estimators’ relative errors for large
N under various assumptions. This variance is generally
smaller for ADAPT-RE-SMC. Equality occurs only when
FIXED-RE-SMC uses an ε sequence such that Pr(Φ(x) ≤
εk+1|θ,Φ(x) ≤ εk) is constant as k varies.An approximation
to this sequence can be generated by running ADAPT-RE-
SMC. We discuss which RE-SMC algorithm to use within
our method later. Under optimal conditions, the relative error
variances decrease as T , the number of iterations, grows, so
that the estimates are more accurate than using plain Monte
Carlo, which corresponds to T = 1. This result could be
extended to take computational cost into account. However,
instead wewill analyse the overall efficiency of our proposed
approach in Sect. 3.3.

Remark 1. Step 2 of ADAPT-RE-SMC selects a threshold
sequence in the same way as the ABC-SMC algorithm
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Algorithm 2 Rare event SMC algorithm, with fixed ε

sequence (FIXED-RE-SMC)
Input: Parameters θ , number of particles N , thresholds
ε1, ε2, . . . , εT , Markov kernels for step 3.

1. For i = 1, . . . , N sample x (i)
0 from π(x |θ).

Loop over 1 ≤ t ≤ T :
2. Calculate It = {i |Φ(x (i)

t−1) ≤ εt }. Let P̂t = |It |/N .

(If P̂t = 0 terminate algorithm returning P̂ = 0.)
3. For i = 1, . . . , N sample x (i)

t by drawing j uniformly from

It and applying a Markov kernel to x ( j)
t−1 with invariant density

π(x |θ,Φ(x) ≤ εt−1) (taking ε0 = ∞).
End loop

4. Return: P̂ = ∏T
t=1 P̂t .

Algorithm 3 Rare event SMC algorithm, with adaptive ε

sequence (ADAPT-RE-SMC)
Input: Parameters θ , number of particles N , target number to accept
Nacc, acceptance thresholds ε, rule to generate Markov kernels for
step 3.

1. For i = 1, . . . , N sample x (i)
0 from π(x |θ).

Loop over t = 1, 2, . . .:
2. Let εt be the maximum of (a) the Naccth smallest Φ(x (i)

t−1) value
and (b) ε.
Calculate It = {i |Φ(x (i)

t−1) ≤ εt } and P̂t = |It |/N .

3. For i = 1, . . . , N sample x (i)
t by drawing j uniformly from

It and applying a Markov kernel to x ( j)
t−1 with invariant density

π(x |θ,Φ(x) ≤ εt−1) (taking ε0 = ∞).
4. If εt = ε break loop and go to step 5, setting T = t .

End loop
5. Return: P̂ = ∏T

t=1 P̂t .

of Moral et al. (2012). Unlike that work however, this
sequence is specialised to one particular θ value rather
than being used for many proposed θs.

2. In ADAPT-RE-SMC, typically Nacc particles are
accepted so that |It | = Nacc. However, theremay bemore
acceptances in the final iteration or if ties in distance are
possible.

3. For t ≤ T ,
∏t

τ=1 P̂τ is an upper bound on P̂ in either RE-
SMC algorithm. This bound can be calculated during the
t th iteration of the algorithms. This will be used below
to terminate the algorithms early once the estimate is
guaranteed to be below some prespecified bound.

4. The x (i)
T values can be used for inference of x |θ,Φ(x) ≤

ε. When this is not of interest, as in this paper, then the
computational cost can be reduced by omitting step 3
(resampling and Markov kernel propagation) in the final
iteration of either algorithm.

5. It’s possible for ADAPT-RE-SMC not to terminate. This
could occur if the x (i)

t particles become stuck near amode
whereΦ(x) > ε and theMarkov kernel is unable tomove
them to othermodes. In Sect. 3.2, wewill discuss howour
proposed method can avoid this problem by terminating

once it becomes clear the final likelihood estimate will
be very low.

6. When ties in the distance are possible, ADAPT-RE-SMC
iterations can fail to reduce the threshold. That is, some-
times step 2 can give εt+1 = εt . This can produce very
long run times. Possible improvements to deal with this
are discussed in Sect. 6.3 (note that when ADAPT-RE-
SMC is being used to select a sequence of thresholds then
repeated values should be removed).

7. These algorithms usemultinomial resampling.More effi-
cient schemes exist, but are not investigated by the
theoretical results of Cérou et al. (2012).

2.4 Slice sampling

We require a suitable Markov kernel to use within the
RE-SMC algorithms. This must have invariant density
π(x |θ,Φ(x) ≤ εt−1). As discussed below in Sect. 3.2,
our ABC setting will assume π(x |θ) is uniform on [0, 1]m .
Hence, the required invariant distribution is uniform on the
subset of [0, 1]m such that Φ(x) ≤ εt−1. We will use slice
sampling as theMarkov kernel. This section outlines the gen-
eral idea of slice sampling and a particular algorithm.We also
include some novel material on how it can be adapted to our
setting and advantages over alternative choices.

Slice sampling is a family of MCMC methods to sample
from an unnormalised target density γ (x). The general idea
is to sample uniformly from the set {(x, h) |h ≤ γ (x)} and
marginalise. We will concentrate on an algorithm of Murray
and Graham (2016) for the case where the support of γ (x)

is [0, 1]m , or a subset of this. Their algorithm updates the
current state x by first drawing h from Uniform(0, γ (x)),
then proposing x ′ values, accepting the first one for which
γ (x ′) ≥ h. The proposal scheme initially considers large
changes from x in a randomly chosen direction, and then, if
these are rejected, progressively smaller changes.

For use within RE-SMC, γ (x) can be taken to be the
indicator function 1(Φ(x) ≤ εt−1). This means the con-
dition γ (x ′) ≥ h simplifies to γ (x ′) > 0, so sampling h
can be omitted. The resulting slice sampling update is given
by Algorithm 4, which is a special case of the Murray and
Graham (2016) algorithm mentioned above (and similar to
the hit-and-run sampler; see Smith 1996). See their paper
for details of the proof that γ (x) is the invariant density of
this Markov kernel.

Next, we describe two advantages of using slice sampling
within RE-SMC, particularly in relation to the alternative
of using a Metropolis–Hastings kernel. Firstly, slice sam-
pling requires little tuning. If tuning choices were required,
for example a proposal distribution forMetropolis–Hastings,
then RE-SMC would need to include rules to make a good
choice automatically, whichmay be difficult. Another advan-
tage of slice sampling is that each iteration outputs a unique x
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Algorithm 4 Slice sampling update for RE-SMC
Input: current state x of dimension p,mapΦ(x), threshold ε, initial
search width w. It’s assumed that Φ(x) ≤ ε.

1. Sample v ∼ N (0, Ip)

2. Sample u ∼ Uniform(0, w). Let a = −u, b = w − u.
Loop:

3. Sample z ∼ Uniform(a, b).
4. Define a vector x ′ by x ′

i = r(xi + zvi ) using the reflection function:

r(y) =
{

m m < 1

2 − m m ≥ 1

where m is the remainder of y modulo 2.
5. If Φ(x ′) ≤ ε then return x ′.
6. If z < 0 let a = z, otherwise let b = z.

End loop

value. On the other hand,Metropolis–Hastings rejections can
lead to duplicates, which is problematic within SMC because
it leads to increased variance of probability estimates.

The only tuning choice required by Algorithm 4 is the
initial search width w. A default choice is w = 1, but this
means that the number of loops required will increase for
small ε. To deal with this, we choose w = 1 in the first SMC
iteration and then select w adaptively, as min(1, 2z̄) where z̄
is themaximumfinal value of |z| from all slice sampling calls
in the previous SMC iteration. This choice generally shrinks
w based on the most recent value of z̄, while avoiding some
unwanted behaviours. Firstly, it avoids forcingw to decrease
at a fixed rate, so that eventually only very small steps would
be attempted. Secondly, it avoids w growing above 1, which
would make slice sampling expensive when local moves are
required. The effect of our choice is investigated empirically
later (see Fig. 3).

3 High-dimensional ABC

This section presents our approach to inference in the ABC
setting, using the algorithms reviewed in Sect. 2. Section 3.1
describes how theRE-SMCalgorithms can estimate theABC
likelihood given values of θ and ε, and a latent variable
structure. Such likelihood estimators can be used within sev-
eral inference algorithms to produce approximate Bayesian
inference. In this paper, we concentrate on PMMH. Sec-
tion 3.2 presents the resulting method. Section 3.3 discusses
the computational cost of the resulting RE-ABC algorithm in
comparison with standard ABC, with particular note of the
high-dimensional case.

Two versions of RE-ABC are possible, depending on
whether likelihood estimates are produced usingFIXED-RE-
SMC or ADAPT-RE-SMC. We present both and compare
them throughout the remainder of the paper. As will be

explained, in Sects. 3.2 and 6.2, we conclude by arguing
in favour of using FIXED-RE-SMC together with an initial
run of ADAPT-RE-SMC to select the ε sequence.

3.1 Likelihood estimation

For now, suppose θ and ε > 0 are fixed. We aim to produce
an unbiased estimate of LABC(θ; ε), as defined in (2).

Suppose there exist latent variables x such that the obser-
vations can be written as a deterministic function y =
y(θ, x). The idea is that x and θ suffice to specify a complete
realisation of the simulation process, even including details
such as observation error, and y(θ, x) is a vector of partial
observations. Neglecting θ , which is fixed for now, y(θ, x)

will be written below as simply y = y(x). See Sect. 6.1 for a
discussion of properties of y(θ, x) which help our approach
work well.

We specify a density π(x |θ) (with respect to Lebesgue
measure) for the latent variables. This is part of the specifi-
cation of the model, but it can also be viewed as representing
prior beliefs about the latent variables. Throughout the paper,
we take π(x |θ) to be uniform on [0, 1]m regardless of θ .
Under this interpretation, x is a vector ofm independent stan-
dard uniform random variables which suffice to carry out the
simulation process.

Now, we simply apply one of the RE-SMC algorithms
usingΦ(x) = d(y(x), yobs). The small probability estimated
by these algorithms is

Pr(Φ(x) ≤ ε|θ) =
∫

π(x |θ)1[d(y(x), yobs) ≤ εt ]dx

=
∫

π(y|θ)1[d(y, yobs) ≤ εt ]dy,

which equals LABC(θ; ε) multiplied by the constant V (ε).
Hence, using FIXED-RE-SMC we can obtain an estimate of
LABC(θ; ε)which is unbiased, as required by PMMH. Using
ADAPT-RE-SMC produces a slightly biased estimate, and
we comment on the effect of using this within PMMH in the
next section.

Note that we assume π(x |θ) to be uniform simply for
convenience. Firstly, many latent variable representations
can easily be re-expressed in this form. Secondly, given this
assumption, the slice sampling method of Algorithm 4 is
well suited to be the Markov kernel within RE-SMC. Our
methodology could be adapted to use other π(x |θ) distribu-
tions if desired. The main change needed would be to use
alternative Markov kernels, for example elliptical slice sam-
pling (see Murray and Graham 2016) for the Gaussian case,
or Gibbs updates for the discrete case. These changes could
well improve performance for particular applications.
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3.2 Inference

Algorithm 5 shows the PMMH algorithm for our setting,
which we refer to as RE-ABC. It can use either FIXED-
RE-SMC or ADAPT-RE-SMC when estimates of the ABC
likelihood are required. We’ll use the prefixes FIXED and
ADAPT to refer to the version of RE-ABC based on the
corresponding RE-SMC algorithm.

Algorithm 5 Pseudo-marginal Metropolis–Hastings using
RE-SMC (RE-ABC)

Input: initial state θ1, number of iterations M , number of SMC
particles N and tuning choices for PMMH, RE-SMC and ABC.

1. Let t = 1 and calculate L̂ABC,1 using FIXED-RE-SMC (or
ADAPT-RE-SMC) with slice sampling as the Markov kernel.
Loop over 2 ≤ t ≤ M :

2. Propose new state θ ′ from q(·|θ) and sample u fromUniform(0, 1).
3. Let L̂ ′

ABC be the output of FIXED-RE-SMC (or ADAPT-RE-SMC)
with slice sampling as the Markov kernel. This algorithm can be
stopped early once rejection in the next step is guaranteed.

4. If u >
π(θ ′)L̂ ′

ABCq(θt−1|θ ′)
π(θt−1)L̂ABC,t−1q(θ ′ |θt−1)

:

Reject Let θt = θt−1 and L̂ABC,t = L̂ABC,t−1.

Else:

Accept Let θt = θ ′ and L̂ABC,t = L̂ ′
ABC.

End loop
Return: θ1, θ2, . . . , θM .

For FIXED-RE-ABC, the likelihood estimates are unbi-
ased estimates of LABC(θ; ε) up to proportionality. There-
fore, the probability of acceptance in step 4 corresponds to a
target density proportional to π(θ)LABC(θ; ε), i.e., the stan-
dard ABC posterior (1). ADAPT-RE-ABC involves biased
likelihood estimates so does not sample from exactly this
density. However, the bias introduced is small and may have
little effect compared to the efficiency benefits of the variance
reduction which ADAPT-RE-SMC provides (theoretical and
practical aspects of MCMC algorithms that have this charac-
ter are discussed in Alquier et al. 2016). We investigate this
empirically in Sects. 4 and 5 and find no noticeable effect of
bias. However, we find ADAPT-RE-SMC to sometimes be
less computationally efficient in practice, and so we recom-
mend using the FIXED-RE-SMC algorithm, together with a
single run of ADAPT-RE-SMC to select a ε sequence. Rea-
sons for this are described shortly, and discussed in more
detail in Sect. 6, together with possibilities for improvement.

To reduce computational costsRE-SMCcanbe terminated
as soon as rejection is guaranteed. To implement this, after
step 2 of RE-SMC check whether

tSMC∏
τ=1

P̂τ <
uπ(θt−1)L̂ABC,t−1q(θ ′|θt−1)

π(θ ′)q(θt−1|θ ′)
,

where tSMC is the current value of the t variable within the
RE-SMC algorithm. If this is true, terminate the RE-SMC
algorithm and reject the current proposal in the PMMH algo-
rithm. The MCMC algorithm remains valid since the final
RE-SMC likelihood estimate is guaranteed to be smaller
than

∏tSMC
τ=1 P̂τ and therefore lead to rejection in PMMH.

Early termination prevents extremely long runs of RE-SMC
for θ values with low posterior densities. It is most efficient
for FIXED-RE-SMC, where it is always possible to termi-
nate in any iteration if the P̂τ values are small enough. For
ADAPT-RE-SMC, P̂τ ≥ Nacc

N so there is a lower bound of
how many iterations are required before termination. This
argument suggests ADAPT-RE-SMC is less computationally
efficient and agrees with later empirical findings (see Fig. 5).

Earlier we commented that ADAPT-RE-SMC can fail to
terminate in some situations. When ties in the distance are
not possible, then this is usually not a problem within RE-
ABCdue to the early termination rule just outlined. However,
care is still required the first time ADAPT-RE-SMC is run,
and when it is used in pilot runs. Ties in the distance are
potentially more problematic and are discussed further in
Sect. 6.3.

There are numerous tuning choices required in this
PMMHalgorithm.Most of these canbebasedon theoutput of
a pilot analysis, for example anABCanalysis or a short initial
run of PMMH. The estimated posterior mean μ̂ can be used
as an initial PMMH state. The estimated posterior variance �̂

can be used to tune the PMMH proposal density. Following
the PMMH theory discussed in Sect. 2.2, we sample proposal

increments from N
(
0, 2.5622

dim(θ)
�̂

)
(note that the early termi-

nation rule avoids SMC calls having very long run times
for some θ values, approximately meeting the assumptions
of the PMMH tuning literature). The threshold sequence for
FIXED-RE-SMC can be selected by running ADAPT-RE-
SMC with θ = μ̂. To select the number of particles, a few
preliminary runs of FIXED-RE-SMC (or ADAPT-RE-SMC)
can be performed with θ = μ̂, aiming to produce a log-
likelihood variance of roughly 1. This is at themore conserva-
tive end of the range suggested by the theory reviewed earlier.

A crucial tuning choice which remains is ε. As in other
ABCmethods,we suggest tuning this pragmatically based on
the computational resources available. This can be done by
running ADAPT-RE-SMC with θ = μ̂ and ε = 0 and stop-
ping after a prespecified time, corresponding to how long is
available for an iteration of PMMH. The value of εt when
the algorithm is stopped can be used as ε. It is still possi-
ble for the SMC algorithms to take much longer to run for
other θ values. However, the early termination rule will usu-
ally mitigate this. Diagnostic plots can be used to investigate
whether the ε value selected produces simulations judged to
be sufficiently similar to the observations. For example, see
Figure 1 of the supplementary material.
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3.3 Cost

Here, we summarise results on the cost of ABC and RE-
ABC in terms of time per samples produced (or effective
sample size for PMMH algorithms), in the asymptotic case
of small ε. Arguments supporting these results are given in
“Appendix A”. Several assumptions are required, principally
that π(y|θ) is a density with respect to Lebesgue measure—
informally, the observations must be continuous. Weakening
these assumptions is discussed in supplementary material.
Note that the results are the same whether FIXED-RE-ABC
and ADAPT-RE-ABC is used.

The time per sample is asymptotic to 1/V (ε) for ABC
and [log V (ε)]2 for RE-ABC (see (3) for definition of V (ε).)
So, asymptotically, RE-ABC has a significantly lower cost
to reach the same target density. To illustrate the effect of
D = dim(y), we can consider the asymptotic case of large
D (n.b. as shown in the supplementary material, when some
observations are non-continuous then D can be replacedwith
the dimension of {y|d(y, yobs) < ε} for small ε.) Under the
Lebesgue assumption, (3) gives that V (ε) ∝ εD . Hence, the
time per sample is asymptotic to the following expressions,
written in terms of τ = 1/ε for interpretability: C1 = τ D

for ABC and C2 = D2[log τ ]2 = [logC1]2 for RE-ABC.
Hence, ABC has an exponential cost in D, while RE-ABC
has only a quadratic cost. Thismakes high-dimensional infer-
encemore tractable for RE-ABCbut dimension reduction via
summary statistics will remain useful in controlling the cost
when D is large.

These results assume the algorithms are run sequentially.
The PMMH stage of RE-ABC is innately sequential, but
particle updates can be run in parallel, providing a benefit
from parallelisation. Compared to the most efficient ABC
algorithms, this is an advantage overABC-MCMCand seems
roughly comparable to that of ABC-SMC algorithms.

4 Gaussian example

In this section, we compare ABC (Algorithm 1) and RE-
ABC (Algorithm 5) on a simple Gaussian model. The model
is Yi ∼ N (0, σ 2) independently for 1 ≤ i ≤ 25. We use the
prior σ ∼ Uniform(0, 10). This is an interesting test case
because dim(y) is large enough to cause difficulties for ABC
methods but calculations are quick, and the results can be
compared to those of likelihood-based methods.

4.1 Comparison of ABC and RE-ABC

We compared ABC and RE-ABC for observations drawn
from the model using σ = 3. For each of ε = 8, 9, . . . , 30,
we ran ABC until N = 500 simulations were accepted and
calculated the root-mean-squared error and time per accep-

tance. Both FIXED-RE-ABC and ADAPT-RE-ABC were
run for 2000 iterations with ε = 3, 5, 10, 15, 20, 25. As
described in Sect. 3.2, pilot runs were used to tune the num-
ber of particles, the Metropolis–Hastings proposal standard
deviation and, where necessary, the threshold sequence. We
chose the number of acceptances in all ADAPT-RE-ABC
analyses to be half the number of particles. To avoid deal-
ing with burn-in, we started the PMMH chains at σ = 3.
For comparison, we also ran ABC-MCMC (Marjoram et al.
2003) and MCMC using the exact likelihood.

Figure 1 shows the results. The left panel illustrates that
accuracy improves as the acceptance threshold ε is reduced
below roughly 15, and, as expected, all methods produce
very similar results. In particular, the biased likelihood esti-
mates in ADAPT-RE-ABC have a negligible effect overall.
The right panel investigates the time taken per sample by
ABC. For MCMC output, this is time divided by the effec-
tive sample size (the IMSE estimate of Geyer 1992.) Under
ABC and ABC-MCMC, time per sample increases rapidly
as ε is reduced. For both RE-ABC algorithms, the increase is
slower, allowing smaller values of ε to be investigated. Nei-
ther RE-ABC algorithm is obviously more efficient than the
other. This difference between ABC and RE-ABC is consis-
tent with the asymptotics on computational cost described in
Sect. 3.3. However, for large ε valuesABCandABC-MCMC
are cheaper. Overall, RE-ABC permits smaller ε values to be
investigated at a reasonable computational cost, producing
more accurate approximations.

Figure 2 provides some further insight into the efficiency
of the RE-ABC algorithms, by looking at the times taken for
calls to the RE-SMC algorithms. These have similar distribu-
tions for FIXED-RE-ABC and ADAPT-RE-ABC, indicating
that there is little difference in their efficiency. One point of
interest is that ADAPT-RE-SMC takes a minimum time of
0.095 seconds even when it stops early, while FIXED-RE-
SMCsometimes stops early in amuch shorter time.However,
this happens too rarely to have much effect on overall effi-
ciency.

4.2 Validity of assumptions

We also used the Gaussian example to investigate the valid-
ity of various assumptions about RE-ABC used in this paper.
First, we considered the cost of slice sampling calls in RE-
SMC. Figure 3 shows the mean number of iterations that
slice sampling requires during an illustrative FIXED-RE-
SMC run. Two cases are shown: non-adaptive slice sampling
tuning (w = 1 in Algorithm 4) or adaptive tuning (w updated
as described in Sect. 2.4). This gives empirical evidence that
adaptive tuning prevents the slice sampling cost from increas-
ing during the algorithm, as desired. Repeated trials show that
both methods produce very similar mean likelihoods. How-
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ever, adaptive tuning did increase the log-likelihood variance
slightly so there is a small trade-off in its use.

Secondly, we investigated the distribution of likelihood
estimates produced by FIXED-RE-SMC given a particu-
lar θ value. Recall that the theoretical literature on PMMH
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Fig. 3 Number of slice sampling iterations required under adaptive
and non-adaptive rules for selecting the tuning parameter w within a
run of FIXED-RE-SMC on IID Gaussian data

assumes that these follow a log-normal distribution. Fig-
ure 4 shows quantile-quantile plots comparing log-likelihood
estimates to normal quantiles. The estimates are approxi-
mately normalwhen a sufficient number of particles are used,
but become increasingly skewed as this shrinks. A major
departure from normality is that for a small number of parti-
cles many likelihood estimates are zero. The corresponding
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points are omitted from the plot. In conclusion, the normal-
ity assumption seems reasonable if a sufficient number of
particles are used.

5 Epidemic application

Infectious disease data are often modelled using compart-
ment models where members of a population pass through
several stages. We will consider a model with susceptible,
infectious and removed stages – the so-called SIR model
(Andersson and Britton 2000). A susceptible individual has
not yet been infected with the disease but is vulnerable. An
infectious individual has been infected and may spread the
disease to others. A removed individual can no longer spread
the disease. Depending on the disease this may be due to
immunity following recovery, or death.

We will use a stochastic version of this model based on
a continuous time stochastic process {S(t), I (t) : t ≥ 0}
for numbers susceptible and infectious at time t . The total
population size is fixed at n so the number removed at time
t can be derived as R(t) = n − S(t) − I (t). The initial
conditions are (S(0), I (0)) = (n − 1, 1). Two jump tran-
sitions are possible: infection (i, j) �→ (i − 1, j + 1) and
removal (i, j) �→ (i, j − 1). The simplest version of the
model is Markovian and is defined by the instantaneous haz-
ard functions of the two transitions, which are λ

n S(t)I (t) for
infection and γ I (t) for removal. The unknown parameters
are λ, controlling infection rates and γ , the removal rate. A
goal of inference is often to learn about the basic reproduction

number R0 = λ/γ . This is the expected number of further
infections caused by an initial infected individual in a large
susceptible population. When R0 < 1, most epidemics will
infect an insignificant proportion of a large population.Many
variations on the Markovian SIR model are possible, some
of which are outlined below.

Likelihood-based inference is straightforward for fully
observed data from an SIR model. However, in practice only
partial and possibly noisy observations of removal times
are available, producing an intractable likelihood. For many
models near-exact inference is possible by MCMC methods
(summarised by McKinley et al. 2014), but small changes
to the details require new and model-specific algorithms.
Approximate inference can be performed by ABC (sum-
marised by Kypraios et al. 2016), which is more adaptable
but does not scale well to high-dimensional data. Here, we
illustrate how RE-ABC can, without modification, perform
inference for several variations on the SIR model, and do so
more efficiently than standard ABCmethods. As we concen-
trate on a classic and well-studied dataset, our analysis does
not provide any novel subject-area insights.

Section 5.1 describes a method of simulating from SIR
models. Section 5.2 discusses the distance function we use to
implement RE-ABC. Data analysis is performed in Sect. 5.3.

5.1 Sellke construction

The Sellke construction (Sellke 1983) for an SIR model
provides an appealing way to simulate epidemic models. It
introduces latent infectious periods gi ∼ Finf and pressure
thresholds pi ∼ Fpress for 1 ≤ i ≤ n, all independent. For the
Markovian SIR model, Finf is Exp(γ ) and Fpress is Exp(1),
but other choices are possible and may be more biologically
plausible. We condition on g1 = 0 so that the first infection
occurs at time 0. Algorithm 6 shows how these variables and
the parameter λ are converted to simulated removal times.
To use slice sampling, we require the latent variables to be
uniformly distributed a priori. Therefore, we use quantiles of
the gi s and pi s as the latent variables.

The cost of Algorithm 6 is O(n log n), where n is the
population size. This is because the main loop runs at most
2n −1 times and involves finding the minimum of a set of up
to n − 1 removal times, which requires O(log n) steps (this
is the case if the set is stored as an ordered vector. The cost
of adding a new item is O(log n)).

Alternative simulation methods exist, principally the
Gillespie algorithm (described in Kypraios et al. 2016, forex-
ample).Here, the latent variables forma sequence controlling
the behaviour of each successive jump event. The Gillespie
algorithm has the advantage of O(n) cost. However, it seems
hard for slice sampling to explore the space of latent variables
due to the behaviour of the mapping y(θ, x). In particular, a
small change in latent variables which alters the type of one
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jump will typically have a large and unpredictable effect on
all the subsequent jumps. For more discussion on desirable
properties of y(θ, x), see Sect. 6.

Note that when Fpress is Exp(1) then R0 = λE(Finf)

(Andersson and Britton 2000). However, to our knowledge
the definition of R0 has not been extended to cover general
Fpress.

Algorithm 6 Sellke construction epidemic simulator
Input: population size n, scaled infection rate parameter β = λ/n,
infectious periods g1, . . . , gn and pressure thresholds p2, . . . , pn .

1. Set r1 �→ g1 (assumes individual 1 has infection time 0).
2. Set ri �→ ∞ for i > 2.
3. Set I �→ 1 (current number infected), t �→ 0 (current time), p �→ 0

(current pressure).
4. While I > 0:
5. Find pa = min{pi |pi > p}. If this set is empty use pn+1 = ∞.
6. Find rb = min{ri |ri > t}.
7. Set p′ �→ p +β I (rb − t) (pressure at time rb if I does not change)
8. If pa < p′:

(a) Set I �→ I + 1, t �→ t + pa−p
β I , ra �→ t + ga , p �→ pa .

9. Else:

(a) Set I �→ I − 1, t �→ rb, p �→ p′.

10. End while

Output: Removal times r1, r2, . . . , rn . Infinite removal time repre-
sents an individual who is never infected.

5.2 Distance function

Recall that the data are the inter-removal times, or equiv-
alently the times since the first removal. For a simulated
dataset, let r(1) ≤ r(2) ≤ . . . ≤ r(ν) denote the ordered
removal times of a dataset with ν removals. The times since
first removal are then s(i) = r(i) −r(1) for 1 ≤ i ≤ ν. Similar
notation, with the addition of a subscript obs will be used
for the observed dataset. We define the distance between a
simulated and observed dataset as:

⎡
⎣ ∑

i≤min(νobs,ν)

(sobs,(i) − s(i))
2

⎤
⎦
1/2

+
∑

νobs<i≤ν

[k + ρ̄ − ρ(i)] +
∑

ν<i≤νobs

[k + ρ(i)].
(5)

Here, k is a tuning parameter penalisingmismatches between
ν and νobs. We take k = 1000. The ρ(i) terms are the sorted
simulated pressure thresholds and ρ̄ is the total simulated
pressure (which equalsβ times the sumof the infectious peri-
ods for removed individuals). They are included to encourage
these pressures to increase or decreasing appropriately to

match ν and νobs. Without the pressure terms RE-SMC per-
formed poorly due to the discrete nature of ν. See Sect. 6.3
for further discussion.

5.3 Analysis of Abakaliki data

TheAbakaliki dataset contains times between removals from
a smallpox epidemic in which 30 individuals were infected
from a closed population of 120. It has been studied by many
authors under many variations to the basic SIR model. We
study three models. The first model uses a Gamma(k, γ )

infectious period (similar to Neal and Roberts 2005). The
second assumes pressure thresholds are distributed by a
Weibull(k, 1) distribution (as in Streftaris and Gibson 2012.)
The third is theMarkovianSIRmodel, butwith removal times
only recorded within 5 day bins. This is realised by alter-
ing the sobs,(i) − s(i) term (difference between simulated and
observed day of removal) in (5) to f (sobs,(i))− f (s(i))where
f (s) = 5s/5�, the greatestmultiple of 5 less than or equal to
s. In each model, there are two or three unknown parameters:
λ, controlling infection rates; γ , infectious period scale; k, a
shape parameter. These are all assigned independent expo-
nential prior distributions with rate 0.1, representing weakly
informative prior beliefs that these parameters are less likely
to be large.

We chose the acceptance threshold to be ε = 15 on the
pragmatic grounds that this produced run times of no more
than 6 hours on a desktop PC. Tuning was performed using
pilot runs as described in Sect. 3.2. Of particular note is
the number of particles required: 300 (Gamma infectious
period), 200 (Weibull pressure thresholds) and 400 (binned
removal times). First we present results for FIXED-RE-
ABC,with discussion onADAPT-RE-ABC to follow shortly.
Table 1 summarises the approximate posterior results. As the
parameters differ between models, we don’t present param-
eter estimates. Instead, we give several quantities of interest
for each: the R0 estimate (where defined) and the means
and standard deviations of (a) the pressure thresholds and
(b) the infectious period. Most quantities are similar to each
other and previous analyses (see McKinley et al. 2014 for a
summary of many of these) despite the different modelling
assumptions. A noticeable difference is that the infectious
period is less variable in themodel where it follows aGamma
distribution.

Figure 1 of the supplementary material shows simulated
epidemics from each model. This shows that our choice of
ε produces epidemics reasonably close to the observed data
for every model. Formal model choice is not straightforward
in our framework (see discussion in Sect. 6), but it is easy
to explore whether the models produced large differences
in log-likelihood. In this case, differences were modest, as
shown by Figure 2 in the supplementary material, and within
what would be explained, using BIC type arguments, by the
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Table 1 Approximate posterior estimates of basic reproduction number R0 and the means and standard deviations of pressure thresholds and
infectious periods for the Abakaliki data under three models computed using FIXED-RE-ABC

Model R0 Pressure thresholds Infectious period
Mean SD Mean SD

5 day bins 1.16 (0.30) 0.11 (0.03) 0.11 (0.03) 11.1 (3.0) 11.1 (3.0)

Gamma infectious period 1.18 (0.24) 0.09 (0.03) 0.09 (0.03) 13.6 (3.8) 6.8 (2.2)

Weibull pressure thresholds – 0.10 (0.04) 0.11 (0.03) 12.4 (3.3) 12.4 (3.3)

The table contains Monte Carlo estimates along with standard deviations in brackets. The R0 value is not given for the Weibull pressure threshold
model as no definition is available for this model

differing number of parameters in the models. So we con-
clude qualitatively that are no clear differences in fit between
the models.

ADAPT-RE-ABC was also tried and returned parameter
inference results extremely similar to those for FIXED-RE-
ABC– see Table 1 in the supplementarymaterial. This shows
that, as in Sect. 4, the bias in its likelihood estimates has a neg-
ligible effect on the final results. However, for some analyses
the run times were longer. For example, the Gamma infec-
tious period model took 263 minutes for FIXED-RE-ABC
and 323 minutes for ADAPT-RE-ABC. Figure 5 investigates
this in more detail. It shows that the run time difference is
because most calls to RE-SMC terminate early, and these are
generally quicker under FIXED-RE-SMC. It is also interest-
ing that ADAPT-RE-SMC is typically faster for completed
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Fig. 5 Histograms of times (in s) taken by calls to RE-SMC within
FIXED-RE-ABC and ADAPT-RE-ABC analyses of Abakaliki data.
Both analyses used ε = 15 and the same tuning details, chosen using
a pilot run. The left column is for those calls in which RE-SMC was
completed, while the right shows those where it was terminated early

RE-SMC calls. These findings are discussed in the next sec-
tion.

We also ran ABC-MCMC for comparison, using the same
MCMC and ε tuning choices as for RE-ABC. For run times
of comparable length to RE-ABC, ABC-MCMC produced
too few acceptances to calculate effective sample sizes accu-
rately. Instead, we consider the time per acceptance. For
ABC-MCMC this was at least 12 minutes for all models.
For RE-ABC, this value was always less than 2 minutes.

6 Discussion

Wehave presented amethod for approximate inference under
an intractable likelihood when simulation of data is possible.
It uses the same posterior approximation as ABC, (1), which
is controlled by a tuning parameter ε. The advantage of our
method is that smaller values of ε can be achieved for the
same computational cost, resulting in more accurate infer-
ence. We have shown this is the case through asymptotics
(Sect. 3.3) and empirically (Sects. 4, 5.) This increased accu-
racy allows higher-dimensional data or summary statistics to
be analysed in practice.

6.1 Latent variable considerations

Our method represents the model of interest with latent vari-
ables x and uses SMC and slice sampling to search for
promising x values. For this search strategy to work well,
it seems necessary that:

– Evaluating y(θ, x) is reasonably cheap.
– Sets of the form {x |d(yobs, y(θ, x)) ≤ ε} are easy to

explore using slice sampling. This would be difficult
for sets made up of many disconnected components, or
which are lower dimensional manifolds. Smoothness of
y to changes in x will help meet this condition.

Furthermore, our current implementation requires that the
number of latent variables is fixed. However, the method
could be adapted to the case of a variable number by altering
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the slice sampling algorithm (see Section 4.2 of Murray and
Graham 2016).

6.2 Adaptive and non-adaptive algorithms

The RE-ABC algorithm can use RE-SMC with a fixed ε

sequence (FIXED-RE-SMC) or one that is chosen adaptively
(ADAPT-RE-SMC). FIXED-RE-SMC provides unbiased
estimates of the ABC likelihood, as required by the PMMH
algorithm, while ADAPT-RE-SMC has a small bias. In prac-
tice, we observe very little difference in the posterior results
between the two algorithms, suggesting that this bias has a
negligible effect in practice. We also note that, if desired, a
bias correction approach from Cérou et al. (2012) could be
applied.

Nonetheless, we recommend using the FIXED-RE-SMC
algorithm within RE-ABC (together with a pilot run of
ADAPT-RE-SMC to choose the ε sequence.) The main rea-
son is that it is faster to run in practice, as found in Sect. 5.
Figure 5 shows that this is because FIXED-RE-SMC can
terminate more quickly for poor proposed θ values. Interest-
ingly, in the iterations where early termination is not required
ADAPT-RE-SMC is slightly quicker. We speculate that this
is because it often finds a shorter ε sequence. Furthermore,
the theory of Cérou et al. (2012) suggests that ADAPT-
RE-SMC produces less variable ABC likelihood estimates,
which would improve PMMH efficiency. Therefore, there
may be some scope for a more efficient RE-SMC algorithm
which combines the best features of the adaptive and non-
adaptive approaches.

6.3 Possible extensions

More efficient ε sequence adaptation ADAPT-RE-ABC
adapts the ε sequence for each θ value separately. One alter-
native is to instead update the sequence based on information
from SMC runs at previous θ values used by PMMH. This
could be done using stochastic approximation (see, e.g.,
Andrieu and Thoms 2008; Garthwaite et al. 2016), with the
aim of making the P̂t values in Algorithm 2 as similar as
possible—which minimises asymptotic variance of the like-
lihood estimates, as discussed in Sect. 2.3. The result would
be an adaptiveMCMC algorithm, and it may be theoretically
challenging to prove it has desirable convergence properties
(Andrieu and Thoms 2008).
Joint exploration of (θ, x) Many θ values proposed by RE-
ABC are rejected after calculating an expensive likelihood
estimate. An appealing alternative is to update the parame-
ters θ conditional on sampled x values, for example through a
Gibbs sampler with state (θ, x). Unfortunately in exploratory
analyses of such methods, we found the θ updates generally
did not mix well. The reason is that x is much more infor-

mative for θ than the observations yobs. This results in small
θ moves compared to the posterior’s scale.

Alternatively, one could consider nesting an SMC algo-
rithm to explore x within one to explore θ , following Chopin
et al. (2013) and Crisan and Miguez (2016). Exploring θ

could proceed by reducing ε at each iteration. This might
avoid the time penalty of ADAPT-RE-SMC when used in
PMMH, discussed in Sect. 6.2.

Discrete data RE-SMCcan struggle if there is a discrete data
variable x∗. It can be hard for SMC to move from accepting
a set of latent variables A to another A′ in which the range of
possible x∗ values is smaller, because Pr(x ∈ A′|x ∈ A, θ)

may be very small. The issue is particularly obvious for
ADAPT-RE-SMC as the ε sequence may fail to move below
some threshold for a large number of iterations. For FIXED-
RE-SMC, it would instead result in high-variance likelihood
estimates. In Sect. 5.2, this problem occurs for ν, the number
of removals. There we adopt an application-specific solution
by introducing continuous latent variables (pressure thresh-
olds) into the distance function (5). It would be useful to
investigate more general solutions from the rare event lit-
erature (e.g., Walter 2015). Despite these potential issues,
RE-ABC can perform well with discrete data in practice, for
example in the binned data model of Sect. 5.3.

Non-uniform ABC kernels In this paper, the ABC likelihood
(2) is a convolution of the exact likelihood and a uniform
kernel (4). Alternative kernel functions have also been used
in ABC (e.g.,Wilkinson 2013) such as a Gaussian: k(y; ε) ∝
exp[− 1

2ε2
d(y, yobs)]. RE-ABC could easily be adapted to

make use of these, but it is not clear what effect it would
have on our asymptotic results.

Estimating log-likelihood gradients Where log-likelihood
gradients can be estimated they allow more efficient infer-
ence schemes based on stochastic gradient descent (Poyiadjis
et al. 2011) or MCMC (Dahlin et al. 2015). Estimating such
gradients from SMC algorithms is possible using the Fisher
identity (Poyiadjis et al. 2011). However, the calculation
would involve evaluating ∇θ y(θ, x), which may be demand-
ing for complicated y functions. Moreno et al. (2016) use
automatic differentiation to evaluate this for some models.
Alternatively, Andrieu et al. (2012) propose using infinites-
imal perturbation analysis methods. It would be interesting
to use either approach with RE-ABC.

Model choice A desirable extension to RE-ABC would be
methods for model choice. Possible methods to extend our
PMMH approach include reversible jump MCMC or using
a deviance information criterion. See Chkrebtii et al. (2015)
and François and Laval (2011) for versions of these methods
in the ABC context. Alternatively, it may be more fruitful to
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use our likelihood estimate in algorithms which directly out-
put model evidence estimates, such as importance sampling
or population Monte Carlo (Cappé et al. 2004).
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Appendix A: Computational cost

This appendix justifies the computational costs of ABC and
RE-ABC stated in Sect. 3.3. The argument for ABC is rig-
orous, while that for RE-ABC is more heuristic. Note that
throughout this appendix there is no need to distinguish
between FIXED-RE-ABC and ADAPT-RE-ABC.

The results are for the asymptotic regime of small ε and
hold for almost all yobs. We make several assumptions:

A1 The density π(y|θ) is with respect to Lebesgue measure
dy of dimension D.

A2 The distance function is Euclidean distance.
A3 Running slice sampling once requires O(1) function

evaluations.
A4 RE-SMCuses O (− log Pr(d(y, yobs) ≤ ε|θ)) iterations.
A5 The time required to evaluate y(θ, x) is bounded above

and below by nonzero constants which do not depend
on θ or x .

Also, we will usually focus on the case where D is asymp-
totically large.

Informally, A1 requires that all components of y have con-
tinuous distributions. Under A2 a key mathematical result
below, (6), follows easily. Also, a consequence of A2 which
we will use is that, from (3), V (ε) ∝ ε−D . A3 states that the
cost of slice sampling does not increase as ε shrinks. This
is plausible due to our adaptive choice of w (see Sect. 2.4)
and was empirically verified above (see Fig. 3.) It follows
that running RE-SMC requires O(N T ) function evaluations:
the number is asymptotic to the number of particles multi-
plied by the number of SMC iterations. A4 states that the
number of iterations used by RE-SMC is asymptotically
proportional to the log of the rare probability being esti-
mated. This follows from a result of Cérou et al. (2012),
reviewed in Sect. 2.3, that when the RE-SMC algorithm
is tuned optimally Pr(Ak+1|θ, x ∈ Ak) is constant, say α,
where Ak denotes the event d(y(θ, x), yobs) ≤ εk . Therefore,
Pr(d(y, yobs) ≤ ε|θ) = αT , and taking logs gives A4. So the

assumption is that RE-SMC is tuned to perform similarly
to optimal tuning. Assumption A5 states that performing a
simulation has a minimum and maximum time requirement
regardless of the inputs, which is usually reasonable. This
ensures that computation time is asymptotic to the number
of simulations performed.

Many of these assumptions can be weakened. This is dis-
cussed in the supplementary material, especially for the case
of the epidemic model of Sect. 5.

A.1 ABC

Consider the probability of a simulation being accepted given
θ :

Pr(d(y, yobs) ≤ ε|θ) =
∫

π(y|θ)1(d(y, yobs) ≤ ε)dy.

By the Lebesgue differentiation theorem (see Stein and
Shakarchi 2009 for example) for almost all yobs:

lim
ε→0

V (ε)−1
∫

π(y|θ)1(d(y, yobs) ≤ ε)dy = π(yobs|θ),

(6)

Hence for small ε:

Pr(d(y, yobs) ≤ ε|θ) ∼ V (ε), (7)

where ∼ represents an asymptotic relation (note that while
π(yobs|θ) does not affect this asymptotic relationship, the
acceptance probability will decrease for small π(yobs|θ),
i.e., for poor θ choices).

By assumption A5 the time per accepted sample is asymp-
totic to the number of simulations per accepted sample.
Using (7), the latter is asymptotic to 1/V (ε). In the case
of large D assumption A2 gives that this is O(τ D), where
τ = 1/ε. For ABC versions of MCMC and SMC, time per
accepted sample (or effective sample) is also bounded below
by minθ Pr(d(y, yobs) ≤ ε|θ)−1, so the same result applies.

A.2 RE-ABC

For simplicity, we analyse RE-ABC without the possibility
of early termination in the RE-SMC algorithm. An algo-
rithm including early termination will give the same output
for a smaller computational cost, although we suspect the
gain is only likely to be a O(1) factor. Using the asymptotic
results reviewed in Sect. 2 on SMC likelihood estimation and
PMMH, we conclude the following. The number of particles
inRE-SMCshould be N = O(T ) to give a likelihood estima-
tor whose log has variance O(1), which optimises efficiency
when these estimates are used in PMMH. So, using A3, the
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number of simulations required by an iteration of RE-ABC
is O(T 2). Using A4 and (7) gives T = O(− log V (ε)).

So the number of simulations required per iteration of
RE-ABC is O([log V (ε)]2). In the case of large D using A2
gives that this is O(D2[log τ ]2). As in the previous section,
assumption A5 implies these expressions also give the time
per sample of RE-ABC. They are also valid for the more
relevant quantity of time per effective sample since effective
sample size is proportional to the actual sample size.
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