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Abstract—Multi-criteria decision making (MCDM) problems
are a well known category of decision making problem that has
received much attention in the literature, with a key approach
being the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS). While TOPSIS has been developed towards
the use of Type-2 Fuzzy Sets (T2FS), to date, the additional
information provided by T2FSs in TOPSIS has been largely
ignored since the final output, the Closeness Coefficient (CC), has
remained a crisp value. In this paper, we develop an alternative
approach to T2 fuzzy TOPSIS, where the final CC values adopt
an interval-valued form. We show in a series of systematically
designed experiments, how increasing uncertainty in the T2
membership functions affects the interval-valued CC outputs.
Specifically, we highlight the complex behaviour in terms of the
relationship of the uncertainty levels and the outputs, including
non-symmetric and non-linear growth in the CC intervals in
response to linearly growing levels of uncertainty. As the first
TOPSIS approach which provides an interval-valued output to
capture output uncertainty, the proposed method is designed to
reduce the loss of information and to maximize the benefit of
using T2FSs. The initial results indicate substantial potential in
the further development and exploration of the proposed and
similar approaches and the paper highlights promising next steps.

I. INTRODUCTION

Multi-criteria decision making (MCDM) problems are a
well known category of decision making problem, and have
been the focus of much research effort. This problem con-
cerns finding the most desirable alternative(s) from a set
of predetermined alternatives, A = {A1, A2, · · · , An} with
respect to the decision information about criteria weights
and criteria values provided by a group of Decision Makers
(DMs), DM = {DM1, DM2, · · · , DMm}. However, a major
problem with dealing with human decision makers is that
they exhibit variation in their decision making [6]. In order
to design a truly intelligent decision support model, such
variations should be considered, especially at the beginning
of the process itself.

Fuzzy MCDM methods, provide the means to assign lin-
guistic labels (e.g., Very Good, Very Poor, etc.) that use
membership functions (MFs) to represent the performance of
each alternative with respect to each criterion. For example,
a well-known MCDM technique is the ‘Fuzzy Technique for
Order Preference by Similarity to Ideal Solution’ (FTOPSIS)
introduced by Chen in 2000 [2]. In this method, the perfor-
mance of each alternative is evaluated against each criterion
using a scale made up of fuzzy MFs. Such sets are used

to enhance pre-screening evaluations; where the value of a
positive performance rating (e.g. Good), can be captured in a
range of values from 5 to 10. Then, an experimental setup is
modeled using fuzzy set methods.

A wide variety of fuzzy MCDM applications have been
developed over the last two decades. Behzadian et al. [1]
reviewed applications of TOPSIS and found that using fuzzy
sets is the most commonly used method in TOPSIS. Specif-
ically, while the classical TOPSIS method [7] assumes that
alternative ratings and criteria weights are crisp numbers, more
than half of the TOPSIS publications (52.2%) utilize linguistic
variables and fuzzy sets to handle problems with imprecise
information. An initial extension of the TOPSIS method for
group decision-making under a fuzzy environment by Chen [2]
in 2000 is one of the early works in this area. Following this
work, many researchers have started to explore this area and to
propose further developments. Various types of enhancements
have been made, including implementations of Type-2 (T2)
fuzzy sets in TOPSIS methods. Notable progress was made
in a method proposed by Chen and Lee [3], in which Interval
Type-2 (IT2) fuzzy sets are used with TOPSIS. The authors
determined ranking values using elements in a fuzzy decision
matrix and from a crisp ranking, they then calculated the
Closeness Coefficient (CC) values using both methods and
compared the results.

More recently, Sang and Liu [12] highlighted the potential
of information loss in respect to the decision matrix when
applying ranking [3], as defuzzification takes place in the
beginning. They proposed an alternative where IT2FSs are
preserved throughout the process. Other researchers, however,
have focused on specific steps of the TOPSIS method. For
example, in [11], the authors propose an IT2 fuzzy TOPSIS
approach in which specifically the determination of a fuzzy
positive ideal solution and a fuzzy negative ideal solution are
achieved using IT2 fuzzy sets. Recently, Dymova et. al. [4],
proposed an IT2 fuzzy TOPSIS method using alpha cuts, and
Kilic and Kaya [8], proposed an IT2 fuzzy TOPSIS method
to evaluate an investment project producing a final ranking.

Clearly, in all the studies reviewed here, IT2 fuzzy TOP-
SIS is recognized as a useful method of addressing MCDM
problems. However, the additional information provided by
IT2 FSs in these methods reviewed here is largely lost, since
the final output (the CC) is still a crisp value. Thus, the



benefit of using such sets is not fully exploited, as the extra
information that they could provide is not available to DMs in
the decision making process. Hence, it is intuitive to develop
a TOPSIS method based on IT2 FSs which takes advantage of
the additional information provided by the sets, where the final
result remains an interval. Motivated by this, we conduct an
initial set of experiments that introduces a number of different
levels of uncertainty using IT2 MFs that are associated with
linguistic labels (e.g. Good, Fair, etc.) that are produced by
blurring initial T1 MFs. The method used in the experiment
preserves the additional uncertainty of the final output (CC)
by maintaining its interval form. The interval result of the
proposed method is the key difference between our method and
the standard fuzzy TOPSIS methods that exist, which produce
a crisp CC. By conducting the experiments we specifically
explore whether any (and which) relationship exists between
the level of uncertainty (amount of blurring) and the TOPSIS
result, i.e. the CC interval. To date, no other researchers have
proposed a fuzzy TOPSIS method which provides an interval
as a final output allowing a richer basis for ranking. In future
research we intend to further explore the associated benefits
in terms of decision making provided by T2 FSs further.

The paper is structured as follows: In Section II a detailed
discussion about the key stages in standard TOPSIS and fuzzy
TOPSIS is provided. Section III presents the methodology
used in this paper as well as an example to show how each
stage works. Section IV briefly explains the experimental
procedure used in this study. Section V provides a detailed
discussion on the experimental results and findings, and finally
Section VI presents the conclusions we have drawn from this
work and potential paths of future work.

II. BACKGROUND

A. The TOPSIS method

In MCDM techniques, there are two basic approaches:
multiple attribute decision making (MADM) and multiple
objective decision making (MODM) [8]. TOPSIS falls in the
MADM category which refers to making a selection from
a number of courses of action in the presence of multiple,
usually conflicting, attributes. The standard TOPSIS method
is to choose alternatives that simultaneously have the shortest
distance from the positive ideal solution (PIS) (hypothetical
best alternative) and the farthest distance from the negative-
ideal solution (NIS) (hypothetical worst alternative) [7]. In the
standard TOPSIS method, the ratings and weights of criteria
are known precisely and crisp data is used to model real-
world situations. Such ratings and weights of criteria can be
concisely expressed in decision matrix format as:

D =


C1 C2 · · · Cn

A1 x11 x12 · · · x1n
A2 x21 x22 · · · x2n
...

...
...

. . .
...

Am xm1 xm2 · · · xmn

,

W =
[
w1 w2 · · · wn

]
,

where A1, A2, · · · , Am are possible alternatives among which
DMs have to choose, C1, C2, · · · , Cn are criteria/attributes
with which measured, xij is the rating of alternative Ai with
respect to criterion Cj and wj is the weight of criterion Cj .

In standard TOPSIS, it is assumed that each attribute in the
decision matrix D captures either monotonically increasing or
monotonically decreasing utility. In other words, the larger
the attribute outcome is, the greater the preference for the
‘benefit’ criteria and the lower the preference for the ‘cost’ cri-
teria. Furthermore, any outcome expressed in a non-numerical
format should be converted based on an appropriate scaling
technique, for example, using a rating scale on certain points
on [0, 10] or [0, 100] by a group of DMs. Since all criteria
are commonly not of equal importance, the method uses a set
of weights from the DMs, captured in a matrix W using the
weight of importance scale. In general, it is often impractical to
use crisp/numeric assessments for modeling in such situations.
For example, human judgments or preferences are often vague
and it is not possible to capture such complex preferences
in an exact numerical form. Thus, fuzzy sets can be used
to express preferences using linguistic variables. The general
Fuzzy TOPSIS (FTOPSIS) method has been a popular choice
in the MCDM field over the last 15 years [2], and will be
reviewed in the next section.

B. The Fuzzy TOPSIS (FTOPSIS) method
We provide the step-wise procedure of the standard FTOP-

SIS method [2] [10] in Fig. 1. In FTOPSIS, a special type of
fuzzy set, namely a fuzzy number, is used to represent human
preferences. A fuzzy number is a fuzzy set in the universe of
discourse X that is both convex and normal. There are dif-
ferent types of fuzzy numbers, the Triangular Fuzzy Number
(TFN) is most widely used in decision making because of its
intuitive membership functions and computational simplicity
[5] [9]. A TFN can be defined as a triplet (l,m, u), where the
parameters l and u specify the start and end of the membership
function, while m is the point where the membership function
peaks.

At the start of FTOPSIS, the same matrices as in standard
TOPSIS are used to present the rating of alternatives and the
weights of criteria, namely the decision matrices D and W,
(see Section II-A). However, instead of using crisp numbers in
the ratings of xij , the FTOPSIS method uses fuzzy numbers
(FN) to represent them. For example, for rating Good, the
associated triangular FN is (7, 9, 10) as shown in Table I. In
contrast, in standard TOPSIS, the value of Good might be
the crisp value 9. Assume that a decision group consists of
k decision makers, then the average weights of criteria and
ratings of alternatives given by k decision makers can be
computed as:

w̃j =
1

k
[w̃1

j + w̃2
j + · · ·+ w̃k

j ], (1)

x̃j =
1

k
[x̃1j + x̃2j + · · ·+ x̃kj ], (2)

where w̃j and x̃j are the importance weights of criteria and
the ratings of alternatives given by kth decision maker. The



 

 

 

 

 

 

 

Step 1: Construct normalized fuzzy decision matrix:  𝑟𝑖𝑗 =
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Step 2: Construct the weighted normalized decision matrix: 𝑣𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗where 𝑤𝑗 is the weight for 𝑗th criterion. 

 

Step 3 Determine the positive ideal and negative ideal solutions: 𝐴∗ =  𝑣1
∗, ⋯ , 𝑣𝑛

∗ ,    [Positive Ideal Solution], where     𝑣𝑖
∗ = (1,1,1);     𝐴− =  𝑣1

−,⋯ , 𝑣𝑛
− ,    

[Negative Ideal Solution];   where   𝑣𝑖
− = (0,0,0) 

 

Step 4 Calculate distance for each alternative using Euclidean formula. The distance from positive ideal alternative:  𝑆𝑖
∗ =  𝑑(𝑣𝑖𝑗 , 𝑣𝑖𝑗

∗)𝑛
𝑗=1  , 𝑖 = 1,⋯ ,𝑚 

The separation from the negative ideal alternative is:  𝑆𝑖
− =  𝑑(𝑣𝑖𝑗, 𝑣𝑖𝑗

−)𝑛
𝑗=1  , 𝑖 = 1,⋯ ,𝑚 ;  where 𝑑(∙ , ∙) represent the distance between two fuzzy numbers. 

Let 𝑚 = (𝑚1, 𝑚2, 𝑚3) and 𝑛 = (𝑛1, 𝑛2, 𝑛3) be two triangular fuzzy numbers (TFN). Distance calculation of these to TFN is  

𝑑(𝑚 , 𝑛 ) =  
1

3
 (𝑚1 − 𝑛1)

2 + (𝑚2 − 𝑛2)
2 + (𝑚3 − 𝑛3)

2         

Step 5: Calculate the relative closeness to the ideal solution, 𝐶𝐶𝑖 : 𝐶𝐶𝑖 =
𝑆𝑖

∗

(𝑆𝑖
∗+𝑆𝑖

−)
  , 0 < 𝐶𝐶𝑖 < 1    

Select the alternative with 𝐶𝐶𝑖 closest to 1.  
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𝑎𝑖𝑗
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Fig. 1. Step-wise procedure of Fuzzy TOPSIS [2], [10]

resulting values of w̃j and x̃j are expressed in the matrices W
and D, respectively. The ratings and the weights are described
as triangular fuzzy numbers which indicate x̃j = (aij , bij , cij)
and w̃j = (wj1, wj2, wj3). Then, the stepwise procedure of
FTOPSIS proceeds as shown in Fig. 1.

In Step 1, the fuzzy number for its associated membership
function is expressed as (aij , bij , cij), where a, b and c are
the smallest possible value, the peak value and the largest
possible value, respectively. The normalization step is needed
to transform various criteria scales into a single comparable
scale, and to maintain the FNs in [0, 1]. In this step, J is
associated with the benefit criteria. For Step 2, a set of weights
expressed in W given by DMs are applied to the decision
matrix, D by multiplying each column of the matrix D (i.e.,rij
value) with its associated weight wj . Then, in Step 3, two
artificial alternatives known as Positive Ideal Solution (PIS),
A∗, and Negative Ideal Solution (NIS), A−, are defined. Step
4 is a calculation separation between each alternative from
the ideal one by the n-dimensional Euclidean distance. Then,
in the final step, the relative Closeness Coefficient (CCi) of
alternatives ith (Ai) with respect to A∗ is calculated. It is
clear that CCi = 1 if Ai = A∗ and CCi = 0 if Ai = A−.
An alternative Ai is closer to A∗ as CCi approaches 1. Next,
an alternative can now be ranked according to the descending
order of CCi. An example of these steps being used in a
decision problem is presented in Section III.

TABLE I
LINGUISTIC SCALE FOR WEIGHTING OF CRITERIA AND RATING OF

ALTERNATIVES IN THE FUZZY TOPSIS METHOD [2]

(a) Rating scale (b)Weighting scale
Very Poor (VP) (0,0,1) Very Low (0,0,0.1)
Poor (P) (0,1,3) Low (L) (0,0.1,0.3)
Medium Poor (MP) (1,3,5) Medium Low (ML) (0.1,0.3,0.5)
Fair (F) (3,5,7) Medium (M) (0.3,0.5,0.7)
Medium Good (MG) (5,7,9) Medium High (MH) (0.5,0.7,0.9)
Good (G) (7,9,10) High (H) (0.7,0.9,1.0)
Very Good (VG) (9,10,10) Very High (VH) (0.9,1.0,1.0)

TABLE II
RATINGS OF ALL APPLICANTS (ALTERNATIVES) AND IMPORTANCE

WEIGHTS OF CRITERIA GIVEN BY DECISION MAKERS

DM’s rating DM’s rating
Crit. Alts. D1 D2 D3 Crit. Alts. D1 D2 D3
C1 A1 MG G MG C4 A1 VG G VG

A2 G G MG A2 VG VG VG
A3 MG MG F A3 G VG MG

Weight VH VH VH Weight VH VH VH
C2 A1 G MG F C5 A1 F F F

A2 G G G A2 VG MG G
A3 MG G G A3 G G MG

Weight M MH MH Weight VH VH VH
C3 A1 F MG MG

A2 G G MG
A3 G MG MG

Weight VH H H

III. METHODOLOGY

Example: Analyzing the steps of the FTOPSIS method

In order to show how each stage in the standard FTOPSIS
method shown in Fig. 1 works, we provide a practical step-
by-step walk-through based on the example in [2]. Suppose
that a software company wants to hire a system analysis
engineer. After preliminary screening, three applicants A1, A2

and A3 are retained for further evaluation. A committee of
three decision-makers, D1, D2 and D3 has been formed to
conduct the interview and to select the most suitable applicant.
Five desirable criteria are considered; emotional steadiness
(C1); oral communication skills (C2), personality (C3), past
experience (C4) and self-confidence (C5). The DMs use the
linguistic scale in Table I to give ratings and weightings which
are presented in Table II.

Having rated the alternatives, the next step is to aggregate
all the evaluated values to form a fuzzy decision matrix using
Eq. (2). Next, a fuzzy decision matrix of the alternatives
is constructed (i.e. D), to show all of the subjective ratings
given by the set of decision makers. Post aggregation, a
normalization step (Step 1 in Fig. 1) is applied. For this
example, the results of this process are shown in Table



Fig. 2. Triangular Fuzzy Numbers for rating scale

III. The next step is to define the fuzzy PIS and NIS —
in this case, the perfect values are used. The fuzzy PIS is
defined as: A+=[(1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1)]
while the fuzzy NIS is defined
as: A−=[(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0)]. These
values are the result of Step 3 in Fig. 1. The next step is
to find the distance between the ideal solution and each of
the alternatives. This is done using the method described in
the fourth step of Fig. 1. In this example, the CC values
(Step 5) and rankings of alternatives are summarized as
follows: CC(A1)= 0.6296, rankA1 = 3, CC(A2)= 0.7374,
rankA2 = 1 and CC(A3)= 0.7059, rankA3 = 2. In this
case, alternative A2 is the best, followed by A3 and A1.
From this result, in the standard Fuzzy TOPSIS approach
considered here, the CC values are calculated as crisp values.
To get the final ranking, the values are sorted into descending
order.

IV. EXPERIMENT DESIGN

A. Introduction

In this section, we describe our experiment design. A series
of small changes are introduced to the standard T1 fuzzy
MFs (Fig. 2) to construct IT2 fuzzy MFs (Fig. 4), based on
the TOPSIS method. These changes are driven by varying
δ ∈ [0, 1]. The delta values used in this experiment are:
δ =(0.10, 0.13, 0.14, 0.145, 0.15, 0.20, 0.30, 0.40, 0.50, 0.60).
Each delta value is used to shift the MFs used in the standard
fuzzy TOPSIS method (Fig. 2) both left and right as shown
in Fig. 3. The CC values that are the output of the process
are in interval form, thus preserving additional information
compared to crisp outputs. Thus, the uncertainty information
encapsulated in the IT2 fuzzy sets and reflected in the CC
intervals is available to DMs to guide their decision making
process. In the next section, we provide further details on how
T1 FNs are ‘expanded’ to T2 FNs using an example.

B. Example: Fuzzy TOPSIS with δ = 0.50

In order to demonstrate the proposed approach, we apply
δ = 0.50 to T1 fuzzy numbers to produce IT2 fuzzy numbers
to be used in the Fuzzy TOPSIS process. Figure 3 shows the
effect of the direct expanding MFs technique on a T1 fuzzy
number, here, representing the linguistic label Fair. The figure
shows the original T1 MF and the resulting IT2 fuzzy number
bounded by an Upper Membership Function (UMF) and a

Fig. 3. Triangular IT2 FN for label Fair, blurring δ = 0.50

Lower Membership Function (LMF). Next, this method is
repeated for the other linguistic labels in the rating scale. Each
fuzzy label is defined with an associated fuzzy number value.
For example, the linguistic label Fair in Fig. 3, is defined as
[(2.5, 5, 7.5), (3.5, 5, 6.5)], where the first and second elements
capture an upper and lower values, respectively. Note that the
IT2 MFs generated are based on the original T1 MFs from Fig.
2. The remaining labels for the linguistic ratings scale now
become IT2 MFs as shown in Fig. 4. The new scale can be
defined with IT2 fuzzy numbers as shown in Table IV, where
(a) represents the upper values and (b) represents the lower
values. The decision makers then use the IT2 fuzzy numbers
to give ratings for each alternative.

Finally, the fuzzy TOPSIS procedure as shown in Section

TABLE III
FUZZY DECISION MATRIX

C1 C2 C3

A1 (5.67,7.67,9.33) (5.00,7.00,8.67) (5.67,7.67,9)
A2 (6.33,8.33,9.67) (9,10,10) (8.33,9.67,10)
A3 (6.33,8.33,9.00) (7,8.67,9.67) (7,8.67,9.67)

Weight (0.70,0.87,0.97) (0.90,1.00,1.00) (0.77,0.93,1.00)
C4 C5

A1 (8.33,9.67,9) (3,5,7)
A2 (9,10,10) (7,8.67,9.67)
A3 (7,8.67,9.67) (6.3,8.3,9.67)

Weight (0.90,1,1) (0.43,0.63,0.83)

TABLE IV
INTERVAL TYPE-2 FUZZY LINGUISTIC SCALE FOR RATING OF

ALTERNATIVES WHEN δ = 0.50

Rating Label (a)Upper values for
IT2 fuzzy MFs

(b)Lower values for
IT2 fuzzy MFs

Very Poor (VP) (0,0,1.5) (0,0,0.5)
Poor (P) (-0.5,1,3.5) (0.5,1,2.5)
Medium Poor (MP) (0.5,3,5.5) (1.5,3,4.5)
Fair (F) (2.5,5,7.5) (3.5,5,6.5)
Medium Good (MG) (4.5,7,9.5) (5.5,7,8.5)
Good (G) (6.5,9,10.5) (7.5,9,9.5)
Very Good (VG) (8.5,10,10.5) (9.5,10,9.5)



Fig. 4. Triangular FN for rating scale, blurring δ = 0.50

II-B is applied to get the rank of each alternative. To recap,
the procedure starts by collecting the ratings from DMs and
calculates the average for each rating value. The results are
represented as IT2 fuzzy numbers that is captured in a decision
matrix, D, which has two elements for each rating, namely for
the upper and lower values. Then, those values are processed
separately in each step as described in Section II-B. Since
we preserve the uncertainty (by considering the footprint of
uncertainty, i.e. the upper and lower values, separately) from
the start to the end of procedure, the final CC values can
be expressed in interval form based on the two individual
outputs. Note that each CC value indicates the relative distance
in respect to PIS and NIS as shown in example in Section III.
We present the results in Table V and Fig. 5 for all values
of δ.

V. DISCUSSION

In the experiments, for all δ, the rank order of the alterna-
tives, A1, A2 and A3, based on the centre of each interval,
remains the same as in Chen’s [2] example shown in Section
III, namely that A2 is the best followed by A3 and A1.
Figure 5 shows the results of the IT2 fuzzy TOPSIS inference
methodology based on each of the delta values (uncertainty
levels) used in this experiment. All previous studies of IT2
fuzzy TOPSIS have focused only on the centre-point of the
resultant intervals.

Three things can be observed from Fig. 5.

1) The position of the centre of the resultant intervals
moves to the left as δ increases.

TABLE V
CC VALUES FOR PROPOSED IT2 FUZZY TOPSIS APPROACH

δ = 0.10 δ = 0.13 δ = 0.14

A1 [0.6276,0.6428] [0.6244,0.6428] [0.6223,0.6426]
A2 [0.7320,0.7863] [0.7223,0.7870] [0.7191,0.7867]
A3 [0.6820,0.7153] [0.6760,0.7176] [0.6740,0.7182]

δ = 0.145 δ = 0.15 δ = 0.20

A1 [0.6228,0.6424] [0.6223,0.6423] [0.6172,0.6395]
A2 [0.7160,0.7861] [0.7160,0.7861] [0.7010,0.7799]
A3 [0.6721,0.7187] [0.6721,0.7187] [0.6625,0.7192]

δ = 0.30 δ = 0.40 δ = 0.50

A1 [0.6077,0.6296] [0.5995,0.6157] [0.5925,0.6007]
A2 [0.6743,0.7570] [0.6521,0.7276] [0.6338,0.6979]
A3 [0.6449,0.7116] [0.6296,0.6942] [0.6167,0.6726]

2) The size of the intervals initially increases as δ increases,
beginning to overlap across alternatives when δ reaches
0.145 - in this example.

3) However, the increasing width of the intervals is not
linear with respect to increasing δ, for example first
growing and then shrinking again, i.e. compare the
intervals for δ = 0.10 to δ = 0.60 in 0.1 increments.

As this paper, for the first time, explores the information
captured in these interval-valued CC outputs, we further dis-
cuss each of the three cases in more detail below. For the first
observation, in Fig. 5, it can be seen clearly that the position
of the centre of the resultant intervals moves gradually to the
left as δ increases from 0.10 to 0.60. However, the ranking of
alternative stays the same, but the solutions are moving further
away from the theoretical ideal solution. This is an interesting
observation.

Next, for the second observation in the same figure, it is
clear that as δ increases from 0.10 to 0.30, the CC intervals
become wider. The intervals associated with A2 and A3 begin
to intersect when δ reaches 0.145. This result is broadly as
expected in that δ indicates the amount of uncertainty in
the input ratings given by the DMs, leading to increased
uncertainty in the resulting recommendation produced by IT2
fuzzy TOPSIS. Whereas previous authors have used the centre-
point of the resultant intervals, it is clear that the intervals
themselves provide additional information. In the real world,
as uncertainty affects the inputs, the outputs need to reflect
this level of uncertainty. In practice, it is likely that when the
intervals overlap, then the outputs need to be interpreted with
more care. The exact interpretation of the size of the output
intervals and its relationship to the degree of confidence that
can be placed in the overall output is something that will be
further explored in future work.

Finally, the fact that the intervals do not necessarily continue
to increase in size as δ increases is an interesting and novel
observation. Based on the same figure, it shows that all
intervals start to narrow in term of size of interval when δ
reaches 0.40 and above is introduced to the MFs. Interestingly,
when δ reaches 0.60, the interval CC for A1, (CCA1 =
[0.5865, 0.5866]), drastically narrows and almost changes to a
crisp value while the intervals A2, (CCA2 = [0.6187, 0.6709])
and A3, (CCA3 = [0.6059, 0.6508]) narrow more slowly. It is
not trivial to explain these observed changes of a resulting
intervals, but it may be related to relative distance among
ratings given by DMs with PIS and NIS.

All of the above highlight how the traditional approach of
using the mid-point of the intervals alone risks omitting im-
portant information. Further research is needed to investigate
this observed findings and the interval output behaviour. As
noted, considering the literature, this is the first study of IT2
fuzzy TOPSIS where the CC values adopt an interval form.
By considering such intervals, more of the information that is
captured in the IT2 MFs is preserved. Intuitively, evaluating
the resulting information appropriate and leveraging it as part
of the decision process hols substantial promise over both the



Fig. 5. The resulting closeness coefficient (CC) intervals for different values of δ. The ‘+’ symbol indicates the centre of each of the intervals.

T1 and the standard IT2 (preserving crisp CC outputs only)
TOPSIS methods.

VI. CONCLUSIONS

In this paper, a new IT2 variant to TOPSIS has been pro-
posed. A series of experiments were carried out by introducing
a number of different levels of uncertainty δ, to the T1 MFs
associated with linguistic labels used in a standard T1 TOPSIS.
The aim of the experiments was to explore how variation in
the uncertainty levels in the IT2 fuzzy sets in a TOPSIS system
affects the CC outputs. In particular, the proposed IT2 TOPSIS
approach, for the first time, generates intervals as final outputs,
which allow the reasoning about the effect of uncertainty in
the inputs. The results show that there is a direct relationship
between the amount of uncertainty present in the MFs and the
size of the CC intervals. However, the results also highlight
that this relationship is not trivial, for example, increasing
uncertainty levels δ result first in increasing, and then in again
shrinking output intervals.

To date, no other studies have proposed the use of interval-
valued CC values. By keeping the CC values in interval-valued
form, the proposed method reduces the loss of information
and maximizes the potential benefit of using IT2 FSs. In a
decision-making context, this interval-valued output provides
DMs with richer information, in turn allowing them to make
more fine-grained and for example, potentially more cautious
(if intervals are wider and overlapping) decisions. While the
generic interpretation of the resulting intervals and specifically,
their respective widths, is not trivial in a decision making
context, the paper has established a systematic approach to
linking input uncertainty to output uncertainty in TOPSIS
which itself provides a rich basis for future study. In the future,
we will further explore the appropriate interpretation of the

intervals, while focusing in particular on real-world decision
making problems.
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